1. Hong-Ou-Mandel Interference in a temporal-average-inversion-symmetric chain
- Author
-
Hu, Shi, Hu, Meiqing, Li, Shihao, Zhong, Zihui, and Lei, Zhoutao
- Subjects
Quantum Physics ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
We show how to implement tunable beam splitter and Hong-Ou-Mandel interference in the Su-Schrieffer-Heeger chain by manipulating the topological edge states adiabatically. The boson initially injected in the one end of the chain can be transferred to the two-end with a tunable proportion depends on the dynamical phases accumulated during the adiabatic evolution. We also observe Hong-Ou-Mandel interference via the tunable beam splitter ($50:50$) and achieve a spatially entangled two-particle NOON state. We demonstrate the robustness of our proposal under chiral- and time-reversal-symmetry-preserving disorder. However, the chiral symmetry is scarce for realist system. Therefore, we demonstrate Hong-Ou-Mandel interference are robust to inversion symmetric disorder breaking the chiral symmetry, highlighting the protection of inversion symmetry. More importantly, the inversion symmetry violated by static disorder can be restored for more common situations where disorder becomes time dependent, giving rise to the temporal-average-inversion-symmetry protected Hong-Ou-Mandel interference. Our approach opens a new way to study quantum effects in topological matter with potential applications.
- Published
- 2024