1. Layer 1 NDNF interneurons are specialized top-down master regulators of cortical circuits.
- Author
-
Hartung J, Schroeder A, Péréz Vázquez RA, Poorthuis RB, and Letzkus JJ
- Subjects
- Animals, Mice, Neocortex metabolism, Neocortex cytology, Neocortex physiology, Neuropeptide Y metabolism, Parvalbumins metabolism, Vasoactive Intestinal Peptide metabolism, Interneurons metabolism
- Abstract
Diverse types of inhibitory interneurons (INs) impart computational power and flexibility to neocortical circuits. Whereas markers for different IN types in cortical layers 2-6 (L2-L6) have been instrumental for generating a wealth of functional insights, only the recent identification of a selective marker (neuron-derived neurotrophic factor [NDNF]) has opened comparable opportunities for INs in L1 (L1INs). However, at present we know very little about the connectivity of NDNF L1INs with other IN types, their input-output conversion, and the existence of potential NDNF L1IN subtypes. Here, we report pervasive inhibition of L2/3 INs (including parvalbumin INs and vasoactive intestinal peptide INs) by NDNF L1INs. Intersectional genetics revealed similar physiology and connectivity in the NDNF L1IN subpopulation co-expressing neuropeptide Y. Finally, NDNF L1INs prominently and selectively engage in persistent firing, a physiological hallmark disconnecting their output from the current input. Collectively, our work therefore identifies NDNF L1INs as specialized master regulators of superficial neocortex according to their pervasive top-down afferents., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF