Harald Kuntschner, E. Bayet, P. T. de Zeeuw, Timothy A. Davis, Roger L. Davies, Pierre-Alain Duc, M. Bois, Leo Blitz, Richard M. McDermid, Thorsten Naab, Anne-Marie Weijmans, Sadegh Khochfar, Martin Bureau, Marc Sarzi, Tom Oosterloo, Paolo Serra, Frédéric Bournaud, Raffaella Morganti, Eric Emsellem, Alison F. Crocker, Katherine Alatalo, Lisa M. Young, Michele Cappellari, Davor Krajnović, Nicholas Scott, Dept of physics and astrophysics, University College of London [London] (UCL), Sub-department of Astrophysics [Oxford], Department of Physics [Oxford], University of Oxford [Oxford]-University of Oxford [Oxford], Department of Computer and Information Science and Engineering [Gainesville] (UF|CISE), University of Florida [Gainesville] (UF), Department of Astronomy [Berkeley], University of California [Berkeley], University of California-University of California, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Département d'Astrophysique (ex SAP) (DAP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, European Southern Observatory (ESO), Max-Planck-Institut für Extraterrestrische Physik (MPE), Netherlands Institute for Radio Astronomy (ASTRON), Max-Planck-Institut für Astrophysik (MPA), Max-Planck-Gesellschaft, Centre for Astrophysics Research [Hatfield], University of Hertfordshire [Hatfield] (UH), Centre for Astrophysics & Supercomputing, Swinburne University of Technology [Melbourne], NASA Ames Research Center (ARC), Dunlap Institute for Astronomy and Astrophysics [Toronto], University of Toronto, University of Oxford-University of Oxford, University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), École normale supérieure - Paris (ENS-PSL), Astronomy, and Kapteyn Astronomical Institute
[Abridged] We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS$ 3D sample. Our goal is to better understand the star formation processes occurring in those galaxies, starting here with the dense star-forming gas. We use existing integrated $^{12}$CO(1-0, 2-1), $^{13}$CO(1-0, 2-1), HCN(1-0) and HCO$^{+}$(1-0) observations and present new $^{12}$CO(3-2) single-dish data. From these, we derive for the first time the average kinetic temperature, H$_{2}$ volume density and column density of the emitting gas, this using a non-LTE theoretical model. Since the CO lines trace different physical conditions than of those the HCN and HCO$^{+}$ lines, the two sets of lines are treated separately. We also compare for the first time the predicted CO spectral line energy distributions (SLEDs) and gas properties of our molecular gas-rich ETGs with those of a sample of nearby well-studied disc galaxies. The gas excitation conditions in 13 of our 18 ETGs appear analogous to those in the centre of the Milky Way. Such results have never been obtained before for ETGs and open a new window to explore further star-formation processes in the Universe. The conclusions drawn should nevertheless be considered carefully, as they are based on a limited number of observations and on a simple model. In the near future, with higher CO transition observations, it should be possible to better identify the various gas components present in ETGs, as well as more precisely determine their associated physical conditions. To achieve these goals, we show here from our theoretical study, that mid-J CO lines (such as the $^{12}$CO(6-5) line) are particularly useful., 28 pages, Accepted in MNRAS, 7 figures, 6 tables