324 results on '"Lembrechts, Jonas J."'
Search Results
2. Patterns of tropical forest understory temperatures
- Author
-
Ismaeel, Ali, Tai, Amos P. K., Santos, Erone Ghizoni, Maraia, Heveakore, Aalto, Iris, Altman, Jan, Doležal, Jiří, Lembrechts, Jonas J., Camargo, José Luís, Aalto, Juha, Sam, Kateřina, Avelino do Nascimento, Lair Cristina, Kopecký, Martin, Svátek, Martin, Nunes, Matheus Henrique, Matula, Radim, Plichta, Roman, Abera, Temesgen, and Maeda, Eduardo Eiji
- Published
- 2024
- Full Text
- View/download PDF
3. Winters are changing: snow effects on Arctic and alpine tundra ecosystems1
- Author
-
Rixen, Christian, Høye, Toke Thomas, Macek, Petr, Aerts, Rien, Alatalo, Juha M, Anderson, Jill T, Arnold, Pieter A, Barrio, Isabel C, Bjerke, Jarle W, Björkman, Mats P, Blok, Daan, Blume-Werry, Gesche, Boike, Julia, Bokhorst, Stef, Carbognani, Michele, Christiansen, Casper T, Convey, Peter, Cooper, Elisabeth J, Cornelissen, J Hans C, Coulson, Stephen J, Dorrepaal, Ellen, Elberling, Bo, Elmendorf, Sarah C, Elphinstone, Cassandra, Forte, T’ai GW, Frei, Esther R, Geange, Sonya R, Gehrmann, Friederike, Gibson, Casey, Grogan, Paul, Halbritter, Aud Helen, Harte, John, Henry, Gregory HR, Inouye, David W, Irwin, Rebecca E, Jespersen, Gus, Jónsdóttir, Ingibjörg Svala, Jung, Ji Young, Klinges, David H, Kudo, Gaku, Lämsä, Juho, Lee, Hanna, Lembrechts, Jonas J, Lett, Signe, Lynn, Joshua Scott, Mann, Hjalte MR, Mastepanov, Mikhail, Morse, Jennifer, Myers-Smith, Isla H, Olofsson, Johan, Paavola, Riku, Petraglia, Alessandro, Phoenix, Gareth K, Semenchuk, Philipp, Siewert, Matthias B, Slatyer, Rachel, Spasojevic, Marko J, Suding, Katharine, Sullivan, Patrick, Thompson, Kimberly L, Väisänen, Maria, Vandvik, Vigdis, Venn, Susanna, Walz, Josefine, Way, Robert, Welker, Jeffrey M, Wipf, Sonja, and Zong, Shengwei
- Subjects
review ,tundra ,ground temperatures ,snow experiments ,ITEX - Abstract
Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season’s start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover’s role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates.
- Published
- 2022
4. Going up the Andes: patterns and drivers of non-native plant invasions across latitudinal and elevational gradients
- Author
-
Fuentes-Lillo, Eduardo, Lembrechts, Jonas J., Barros, Agustina, Aschero, Valeria, Bustamante, Ramiro O., Cavieres, Lohengrin A., Clavel, Jan, Herrera, Ileana, Jiménez, Alejandra, Tecco, Paula, Hulme, Philip E., Núñez, Martín A., Rozzi, Ricardo, García, Rafael A., Simberloff, Daniel, Nijs, Ivan, and Pauchard, Aníbal
- Published
- 2023
- Full Text
- View/download PDF
5. Plant traits poorly predict winner and loser shrub species in a warming tundra biome
- Author
-
García Criado, Mariana, Myers-Smith, Isla H., Bjorkman, Anne D., Normand, Signe, Blach-Overgaard, Anne, Thomas, Haydn J. D., Eskelinen, Anu, Happonen, Konsta, Alatalo, Juha M., Anadon-Rosell, Alba, Aubin, Isabelle, te Beest, Mariska, Betway-May, Katlyn R., Blok, Daan, Buras, Allan, Cerabolini, Bruno E. L., Christie, Katherine, Cornelissen, J. Hans C., Forbes, Bruce C., Frei, Esther R., Grogan, Paul, Hermanutz, Luise, Hollister, Robert D., Hudson, James, Iturrate-Garcia, Maitane, Kaarlejärvi, Elina, Kleyer, Michael, Lamarque, Laurent J., Lembrechts, Jonas J., Lévesque, Esther, Luoto, Miska, Macek, Petr, May, Jeremy L., Prevéy, Janet S., Schaepman-Strub, Gabriela, Sheremetiev, Serge N., Siegwart Collier, Laura, Soudzilovskaia, Nadejda A., Trant, Andrew, Venn, Susanna E., and Virkkala, Anna-Maria
- Published
- 2023
- Full Text
- View/download PDF
6. Global maps of soil temperature
- Author
-
Lembrechts, Jonas J, Hoogen, Johan, Aalto, Juha, Ashcroft, Michael B, De Frenne, Pieter, Kemppinen, Julia, Kopecký, Martin, Luoto, Miska, Maclean, Ilya MD, Crowther, Thomas W, Bailey, Joseph J, Haesen, Stef, Klinges, David H, Niittynen, Pekka, Scheffers, Brett R, Van Meerbeek, Koenraad, Aartsma, Peter, Abdalaze, Otar, Abedi, Mehdi, Aerts, Rien, Ahmadian, Negar, Ahrends, Antje, Alatalo, Juha M, Alexander, Jake M, Allonsius, Camille Nina, Altman, Jan, Ammann, Christof, Andres, Christian, Andrews, Christopher, Ardö, Jonas, Arriga, Nicola, Arzac, Alberto, Aschero, Valeria, Assis, Rafael L, Assmann, Jakob Johann, Bader, Maaike Y, Bahalkeh, Khadijeh, Barančok, Peter, Barrio, Isabel C, Barros, Agustina, Barthel, Matti, Basham, Edmund W, Bauters, Marijn, Bazzichetto, Manuele, Marchesini, Luca Belelli, Bell, Michael C, Benavides, Juan C, Alonso, José Luis Benito, Berauer, Bernd J, Bjerke, Jarle W, Björk, Robert G, Björkman, Mats P, Björnsdóttir, Katrin, Blonder, Benjamin, Boeckx, Pascal, Boike, Julia, Bokhorst, Stef, Brum, Bárbara NS, Brůna, Josef, Buchmann, Nina, Buysse, Pauline, Camargo, José Luís, Campoe, Otávio C, Candan, Onur, Canessa, Rafaella, Cannone, Nicoletta, Carbognani, Michele, Carnicer, Jofre, Casanova‐Katny, Angélica, Cesarz, Simone, Chojnicki, Bogdan, Choler, Philippe, Chown, Steven L, Cifuentes, Edgar F, Čiliak, Marek, Contador, Tamara, Convey, Peter, Cooper, Elisabeth J, Cremonese, Edoardo, Curasi, Salvatore R, Curtis, Robin, Cutini, Maurizio, Dahlberg, C Johan, Daskalova, Gergana N, de Pablo, Miguel Angel, Della Chiesa, Stefano, Dengler, Jürgen, Deronde, Bart, Descombes, Patrice, Di Cecco, Valter, Di Musciano, Michele, Dick, Jan, Dimarco, Romina D, Dolezal, Jiri, Dorrepaal, Ellen, Dušek, Jiří, Eisenhauer, Nico, Eklundh, Lars, Erickson, Todd E, and Erschbamer, Brigitta
- Subjects
Climate Action ,Climate Change ,Ecosystem ,Microclimate ,Soil ,Temperature ,bioclimatic variables ,global maps ,microclimate ,near-surface temperatures ,soil-dwelling organisms ,soil temperature ,temperature offset ,weather stations ,Environmental Sciences ,Biological Sciences ,Ecology - Abstract
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
- Published
- 2022
7. Rapid upwards spread of non-native plants in mountains across continents
- Author
-
Iseli, Evelin, Chisholm, Chelsea, Lenoir, Jonathan, Haider, Sylvia, Seipel, Tim, Barros, Agustina, Hargreaves, Anna L., Kardol, Paul, Lembrechts, Jonas J., McDougall, Keith, Rashid, Irfan, Rumpf, Sabine B., Arévalo, José Ramón, Cavieres, Lohengrin, Daehler, Curtis, Dar, Pervaiz A., Endress, Bryan, Jakobs, Gabi, Jiménez, Alejandra, Küffer, Christoph, Mihoc, Maritza, Milbau, Ann, Morgan, John W., Naylor, Bridgett J., Pauchard, Aníbal, Ratier Backes, Amanda, Reshi, Zafar A., Rew, Lisa J., Righetti, Damiano, Shannon, James M., Valencia, Graciela, Walsh, Neville, Wright, Genevieve T., and Alexander, Jake M.
- Published
- 2023
- Full Text
- View/download PDF
8. Hiking trails shift plant species' realized climatic niches and locally increase species richness
- Author
-
Wedegärtner, Ronja E. M., Lembrechts, Jonas J., van der Wal, René, Barros, Agustina, Chauvin, Aurélie, Janssens, Ilias, and Graae, Bente Jessen
- Published
- 2022
9. Phenotypic variation along urban-to-rural gradients: an attempt to disentangle the mechanisms at play using the alien species Matricaria discoidea (Asteraceae)
- Author
-
Géron, Charly, Lembrechts, Jonas J., Hamdi, Rafiq, Berckmans, Julie, Nijs, Ivan, and Monty, Arnaud
- Published
- 2022
- Full Text
- View/download PDF
10. Quantifying soil properties relevant to soil organic carbon biogeochemical cycles by infrared spectroscopy: The importance of compositional data analysis
- Author
-
Zhao, Pengzhi, Fallu, Daniel J., Pears, Ben R., Allonsius, Camille, Lembrechts, Jonas J., Van de Vondel, Stijn, Meysman, Filip J.R., Cucchiaro, Sara, Tarolli, Paolo, Shi, Pu, Six, Johan, Brown, Antony G., van Wesemael, Bas, and Van Oost, Kristof
- Published
- 2023
- Full Text
- View/download PDF
11. SoilTemp: A global database of near‐surface temperature
- Author
-
Lembrechts, Jonas J, Aalto, Juha, Ashcroft, Michael B, De Frenne, Pieter, Kopecký, Martin, Lenoir, Jonathan, Luoto, Miska, Maclean, Ilya MD, Roupsard, Olivier, Fuentes‐Lillo, Eduardo, García, Rafael A, Pellissier, Loïc, Pitteloud, Camille, Alatalo, Juha M, Smith, Stuart W, Björk, Robert G, Muffler, Lena, Backes, Amanda Ratier, Cesarz, Simone, Gottschall, Felix, Okello, Joseph, Urban, Josef, Plichta, Roman, Svátek, Martin, Phartyal, Shyam S, Wipf, Sonja, Eisenhauer, Nico, Pușcaș, Mihai, Turtureanu, Pavel D, Varlagin, Andrej, Dimarco, Romina D, Jump, Alistair S, Randall, Krystal, Dorrepaal, Ellen, Larson, Keith, Walz, Josefine, Vitale, Luca, Svoboda, Miroslav, Higgens, Rebecca Finger, Halbritter, Aud H, Curasi, Salvatore R, Klupar, Ian, Koontz, Austin, Pearse, William D, Simpson, Elizabeth, Stemkovski, Michael, Graae, Bente Jessen, Sørensen, Mia Vedel, Høye, Toke T, Calzado, M Rosa Fernández, Lorite, Juan, Carbognani, Michele, Tomaselli, Marcello, Forte, T'ai GW, Petraglia, Alessandro, Haesen, Stef, Somers, Ben, Van Meerbeek, Koenraad, Björkman, Mats P, Hylander, Kristoffer, Merinero, Sonia, Gharun, Mana, Buchmann, Nina, Dolezal, Jiri, Matula, Radim, Thomas, Andrew D, Bailey, Joseph J, Ghosn, Dany, Kazakis, George, Pablo, Miguel A, Kemppinen, Julia, Niittynen, Pekka, Rew, Lisa, Seipel, Tim, Larson, Christian, Speed, James DM, Ardö, Jonas, Cannone, Nicoletta, Guglielmin, Mauro, Malfasi, Francesco, Bader, Maaike Y, Canessa, Rafaella, Stanisci, Angela, Kreyling, Juergen, Schmeddes, Jonas, Teuber, Laurenz, Aschero, Valeria, Čiliak, Marek, Máliš, František, De Smedt, Pallieter, Govaert, Sanne, Meeussen, Camille, Vangansbeke, Pieter, Gigauri, Khatuna, Lamprecht, Andrea, Pauli, Harald, Steinbauer, Klaus, Winkler, Manuela, Ueyama, Masahito, and Nuñez, Martin A
- Subjects
Climate Action ,Climate Change ,Ecosystem ,Microclimate ,Snow ,Temperature ,climate change ,database ,ecosystem processes ,microclimate ,soil climate ,species distributions ,temperature ,topoclimate ,Environmental Sciences ,Biological Sciences ,Ecology - Abstract
Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
- Published
- 2020
12. Hiking and livestock favor non-native plants in the high Andes
- Author
-
Alvarez, María Alisa, Barros, Ana Agustina, Vázquez, Diego P., Bonjour, Lorena de Jesús, Lembrechts, Jonas J., Wedegärtner, Ronja E. M., and Aschero, Valeria
- Published
- 2022
- Full Text
- View/download PDF
13. The Role of Roads and Trails for Facilitating Mountain Plant Invasions
- Author
-
Barros, Agustina, primary, Haider, Sylvia, additional, Müllerová, Jana, additional, Alexander, Jake M., additional, Alvarez, María Alisa, additional, Aschero, Valeria, additional, Daehler, Curtis, additional, Peyre, Gwendolyn, additional, Backes, Amanda Ratier, additional, Arévalo, José Ramón, additional, Cavieres, Lohengrin, additional, Dar, Pervaiz, additional, Fuentes-Lillo, Eduardo, additional, Liedtke, Rebecca, additional, McDougall, Keith, additional, Milbau, Ann, additional, Morgan, John W., additional, Naylor, Bridgett J., additional, Nuñez, Martín A., additional, Pauchard, Aníbal, additional, Rashid, Irfan, additional, Reshi, Zafar A., additional, Rew, Lisa J., additional, Sandoya, Veronica, additional, Seipel, Timothy, additional, Vorstenbosch, Tom, additional, Vítková, Michaela, additional, Walsh, Neville, additional, Wedegärtner, Ronja E.M., additional, Zong, Shengwei, additional, and Lembrechts, Jonas J., additional
- Published
- 2022
- Full Text
- View/download PDF
14. Tundra Trait Team: A database of plant traits spanning the tundra biome
- Author
-
Bjorkman, Anne D, Myers‐Smith, Isla H, Elmendorf, Sarah C, Normand, Signe, Thomas, Haydn JD, Alatalo, Juha M, Alexander, Heather, Anadon‐Rosell, Alba, Angers‐Blondin, Sandra, Bai, Yang, Baruah, Gaurav, Beest, Mariska te, Berner, Logan, Björk, Robert G, Blok, Daan, Bruelheide, Helge, Buchwal, Agata, Buras, Allan, Carbognani, Michele, Christie, Katherine, Collier, Laura S, Cooper, Elisabeth J, Cornelissen, J Hans C, Dickinson, Katharine JM, Dullinger, Stefan, Elberling, Bo, Eskelinen, Anu, Forbes, Bruce C, Frei, Esther R, Iturrate‐Garcia, Maitane, Good, Megan K, Grau, Oriol, Green, Peter, Greve, Michelle, Grogan, Paul, Haider, Sylvia, Hájek, Tomáš, Hallinger, Martin, Happonen, Konsta, Harper, Karen A, Heijmans, Monique MPD, Henry, Gregory HR, Hermanutz, Luise, Hewitt, Rebecca E, Hollister, Robert D, Hudson, James, Hülber, Karl, Iversen, Colleen M, Jaroszynska, Francesca, Jiménez‐Alfaro, Borja, Johnstone, Jill, Jorgensen, Rasmus Halfdan, Kaarlejärvi, Elina, Klady, Rebecca, Klimešová, Jitka, Korsten, Annika, Kuleza, Sara, Kulonen, Aino, Lamarque, Laurent J, Lantz, Trevor, Lavalle, Amanda, Lembrechts, Jonas J, Lévesque, Esther, Little, Chelsea J, Luoto, Miska, Macek, Petr, Mack, Michelle C, Mathakutha, Rabia, Michelsen, Anders, Milbau, Ann, Molau, Ulf, Morgan, John W, Mörsdorf, Martin Alfons, Nabe‐Nielsen, Jacob, Nielsen, Sigrid Schøler, Ninot, Josep M, Oberbauer, Steven F, Olofsson, Johan, Onipchenko, Vladimir G, Petraglia, Alessandro, Pickering, Catherine, Prevéy, Janet S, Rixen, Christian, Rumpf, Sabine B, Schaepman‐Strub, Gabriela, Semenchuk, Philipp, Shetti, Rohan, Soudzilovskaia, Nadejda A, Spasojevic, Marko J, Speed, James David Mervyn, Street, Lorna E, Suding, Katharine, Tape, Ken D, Tomaselli, Marcello, Trant, Andrew, Treier, Urs A, Tremblay, Jean‐Pierre, Tremblay, Maxime, Venn, Susanna, and Virkkala, Anna‐Maria
- Subjects
alpine ,Arctic ,plant functional traits ,tundra ,Ecology - Published
- 2018
15. Woody invaders from contrasted climatic origins distribute differently across the urban-to-rural gradient in oceanic Europe – Is it trait-related?
- Author
-
Géron, Charly, Lembrechts, Jonas J., Nijs, Ivan, and Monty, Arnaud
- Published
- 2022
- Full Text
- View/download PDF
16. Microclimate alters the picture
- Author
-
Lembrechts, Jonas J.
- Published
- 2023
- Full Text
- View/download PDF
17. Unexpected westward range shifts in European forest plants link to nitrogen deposition.
- Author
-
Sanczuk, Pieter, Verheyen, Kris, Lenoir, Jonathan, Zellweger, Florian, Lembrechts, Jonas J., Rodríguez-Sánchez, Francisco, Baeten, Lander, Bernhardt-Römermann, Markus, De Pauw, Karen, Vangansbeke, Pieter, Perring, Michael P., Berki, Imre, Bjorkman, Anne D., Brunet, Jörg, Chudomelová, Markéta, De Lombaerde, Emiel, Decocq, Guillaume, Dirnböck, Thomas, Durak, Tomasz, and Greiser, Caroline
- Published
- 2024
- Full Text
- View/download PDF
18. Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions.
- Author
-
Klinges, David H., Baecher, J. Alex, Lembrechts, Jonas J., Maclean, Ilya M. D., Lenoir, Jonathan, Greiser, Caroline, Ashcroft, Michael, Evans, Luke J., Kearney, Michael R., Aalto, Juha, Barrio, Isabel C., De Frenne, Pieter, Guillemot, Joannès, Hylander, Kristoffer, Jucker, Tommaso, Kopecký, Martin, Luoto, Miska, Macek, Martin, Nijs, Ivan, and Urban, Josef
- Subjects
ECOLOGICAL models ,SOIL temperature ,ECOSYSTEMS ,SPECIES distribution ,SPATIAL resolution - Abstract
Aim: The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data. Location: Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA). Time Period: 1960–2018. Major Taxa Studied: Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth. Methods: We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses. Results: For predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20‐fold, and temporal resolution 30‐fold respectively. Main Conclusions: We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
19. Upward range shift of a dominant alpine shrub related to 50 years of snow cover change
- Author
-
Zong, Shengwei, Lembrechts, Jonas J., Du, Haibo, He, Hong S., Wu, Zhengfang, Li, Maihe, and Rixen, Christian
- Published
- 2022
- Full Text
- View/download PDF
20. Anthropogenic factors overrule local abiotic variables in determining non-native plant invasions in mountains
- Author
-
Fuentes-Lillo, Eduardo, Lembrechts, Jonas J., Cavieres, Lohengrin A., Jiménez, Alejandra, Haider, Sylvia, Barros, Agustina, and Pauchard, Aníbal
- Published
- 2021
- Full Text
- View/download PDF
21. Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass‐loss rate and stabilization
- Author
-
Sarneel, Judith M., primary, Hefting, Mariet M., additional, Sandén, Taru, additional, van den Hoogen, Johan, additional, Routh, Devin, additional, Adhikari, Bhupendra S., additional, Alatalo, Juha M., additional, Aleksanyan, Alla, additional, Althuizen, Inge H. J., additional, Alsafran, Mohammed H. S. A., additional, Atkins, Jeff W., additional, Augusto, Laurent, additional, Aurela, Mika, additional, Azarov, Aleksej V., additional, Barrio, Isabel C., additional, Beier, Claus, additional, Bejarano, María D., additional, Benham, Sue E., additional, Berg, Björn, additional, Bezler, Nadezhda V., additional, Björnsdóttir, Katrín, additional, Bolinder, Martin A., additional, Carbognani, Michele, additional, Cazzolla Gatti, Roberto, additional, Chelli, Stefano, additional, Chistotin, Maxim V., additional, Christiansen, Casper T., additional, Courtois, Pascal, additional, Crowther, Thomas W., additional, Dechoum, Michele S., additional, Djukic, Ika, additional, Duddigan, Sarah, additional, Egerton‐Warburton, Louise M., additional, Fanin, Nicolas, additional, Fantappiè, Maria, additional, Fares, Silvano, additional, Fernandes, Geraldo W., additional, Filippova, Nina V., additional, Fliessbach, Andreas, additional, Fuentes, David, additional, Godoy, Roberto, additional, Grünwald, Thomas, additional, Guzmán, Gema, additional, Hawes, Joseph E., additional, He, Yue, additional, Hero, Jean‐Marc, additional, Hess, Laura L., additional, Hogendoorn, Katja, additional, Høye, Toke T., additional, Jans, Wilma W. P., additional, Jónsdóttir, Ingibjörg S., additional, Keller, Sabina, additional, Kepfer‐Rojas, Sebastian, additional, Kuz'menko, Natalya N., additional, Larsen, Klaus S., additional, Laudon, Hjalmar, additional, Lembrechts, Jonas J., additional, Li, Junhui, additional, Limousin, Jean‐Marc, additional, Lukin, Sergey M., additional, Marques, Renato, additional, Marín, César, additional, McDaniel, Marshall D., additional, Meek, Qi, additional, Merzlaya, Genrietta E., additional, Michelsen, Anders, additional, Montagnani, Leonardo, additional, Mueller, Peter, additional, Murugan, Rajasekaran, additional, Myers‐Smith, Isla H., additional, Nolte, Stefanie, additional, Ochoa‐Hueso, Raúl, additional, Okafor, Bernard N., additional, Okorkov, Vladimir V., additional, Onipchenko, Vladimir G., additional, Orozco, María C., additional, Parkhurst, Tina, additional, Peres, Carlos A., additional, Petit Bon, Matteo, additional, Petraglia, Alessandro, additional, Pingel, Martin, additional, Rebmann, Corinna, additional, Scheffers, Brett R., additional, Schmidt, Inger, additional, Scholes, Mary C., additional, Sheffer, Efrat, additional, Shevtsova, Lyudmila K., additional, Smith, Stuart W., additional, Sofo, Adriano, additional, Stevenson, Pablo R., additional, Strouhalová, Barbora, additional, Sundsdal, Anders, additional, Sühs, Rafael B., additional, Tamene, Gebretsadik, additional, Thomas, Haydn J. D., additional, Tolunay, Duygu, additional, Tomaselli, Marcello, additional, Tresch, Simon, additional, Tucker, Dominique L., additional, Ulyshen, Michael D., additional, Valdecantos, Alejandro, additional, Vandvik, Vigdis, additional, Vanguelova, Elena I., additional, Verheyen, Kris, additional, Wang, Xuhui, additional, Yahdjian, Laura, additional, Yumashev, Xaris S., additional, and Keuskamp, Joost A., additional
- Published
- 2024
- Full Text
- View/download PDF
22. Missing Value Imputation of Wireless Sensor Data for Environmental Monitoring
- Author
-
Decorte, Thomas, primary, Mortier, Steven, additional, Lembrechts, Jonas J., additional, Meysman, Filip J. R., additional, Latré, Steven, additional, Mannens, Erik, additional, and Verdonck, Tim, additional
- Published
- 2024
- Full Text
- View/download PDF
23. Roadside disturbance promotes plant communities with arbuscular mycorrhizal associations in mountain regions worldwide
- Author
-
Clavel, Jan, primary, Lembrechts, Jonas J., additional, Lenoir, Jonathan, additional, Haider, Sylvia, additional, McDougall, Keith, additional, Nuñez, Martin A., additional, Alexander, Jake, additional, Barros, Agustina, additional, Milbau, Ann, additional, Seipel, Tim, additional, Pauchard, Anibal, additional, Fuentes‐Lillo, Eduardo, additional, Ratier Backes, Amanda, additional, Dar, Pervaiz, additional, Reshi, Zafar A., additional, Aleksanyan, Alla, additional, Zong, Shengwei, additional, Arevalo Sierra, José Ramón, additional, Aschero, Valeria, additional, Verbruggen, Erik, additional, and Nijs, Ivan, additional
- Published
- 2024
- Full Text
- View/download PDF
24. Microclimate, an important part of ecology and biogeography
- Author
-
Kemppinen, Julia, primary, Lembrechts, Jonas J., additional, Van Meerbeek, Koenraad, additional, Carnicer, Jofre, additional, Chardon, Nathalie Isabelle, additional, Kardol, Paul, additional, Lenoir, Jonathan, additional, Liu, Daijun, additional, Maclean, Ilya, additional, Pergl, Jan, additional, Saccone, Patrick, additional, Senior, Rebecca A., additional, Shen, Ting, additional, Słowińska, Sandra, additional, Vandvik, Vigdis, additional, von Oppen, Jonathan, additional, Aalto, Juha, additional, Ayalew, Biruk, additional, Bates, Olivia, additional, Bertelsmeier, Cleo, additional, Bertrand, Romain, additional, Beugnon, Rémy, additional, Borderieux, Jeremy, additional, Brůna, Josef, additional, Buckley, Lauren, additional, Bujan, Jelena, additional, Casanova‐Katny, Angelica, additional, Christiansen, Ditte Marie, additional, Collart, Flavien, additional, De Lombaerde, Emiel, additional, De Pauw, Karen, additional, Depauw, Leen, additional, Di Musciano, Michele, additional, Díaz Borrego, Raquel, additional, Díaz‐Calafat, Joan, additional, Ellis‐Soto, Diego, additional, Esteban, Raquel, additional, de Jong, Geerte Fälthammar, additional, Gallois, Elise, additional, Garcia, Maria Begoña, additional, Gillerot, Loïc, additional, Greiser, Caroline, additional, Gril, Eva, additional, Haesen, Stef, additional, Hampe, Arndt, additional, Hedwall, Per‐Ola, additional, Hes, Gabriel, additional, Hespanhol, Helena, additional, Hoffrén, Raúl, additional, Hylander, Kristoffer, additional, Jiménez‐Alfaro, Borja, additional, Jucker, Tommaso, additional, Klinges, David, additional, Kolstela, Joonas, additional, Kopecký, Martin, additional, Kovács, Bence, additional, Maeda, Eduardo Eiji, additional, Máliš, František, additional, Man, Matěj, additional, Mathiak, Corrie, additional, Meineri, Eric, additional, Naujokaitis‐Lewis, Ilona, additional, Nijs, Ivan, additional, Normand, Signe, additional, Nuñez, Martin, additional, Orczewska, Anna, additional, Peña‐Aguilera, Pablo, additional, Pincebourde, Sylvain, additional, Plichta, Roman, additional, Quick, Susan, additional, Renault, David, additional, Ricci, Lorenzo, additional, Rissanen, Tuuli, additional, Segura‐Hernández, Laura, additional, Selvi, Federico, additional, Serra‐Diaz, Josep M., additional, Soifer, Lydia, additional, Spicher, Fabien, additional, Svenning, Jens‐Christian, additional, Tamian, Anouch, additional, Thomaes, Arno, additional, Thoonen, Marijke, additional, Trew, Brittany, additional, Van de Vondel, Stijn, additional, van den Brink, Liesbeth, additional, Vangansbeke, Pieter, additional, Verdonck, Sanne, additional, Vitkova, Michaela, additional, Vives‐Ingla, Maria, additional, von Schmalensee, Loke, additional, Wang, Runxi, additional, Wild, Jan, additional, Williamson, Joseph, additional, Zellweger, Florian, additional, Zhou, Xiaqu, additional, Zuza, Emmanuel Junior, additional, and De Frenne, Pieter, additional
- Published
- 2024
- Full Text
- View/download PDF
25. Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges
- Author
-
Géron, Charly, Lembrechts, Jonas J., Borgelt, Jan, Lenoir, Jonathan, Hamdi, Rafiq, Mahy, Grégory, Nijs, Ivan, and Monty, Arnaud
- Published
- 2021
- Full Text
- View/download PDF
26. Historic disturbance events overruled climatic factors as drivers of ruderal species distributions in the Scandinavian mountains
- Author
-
Wiegmans, Dymphna, Larson, Keith, Clavel, Jan, Hostens, Lore, Spreeuwers, Jasmine, Pirée, Amber, Nijs, Ivan, Lembrechts, Jonas J., Wiegmans, Dymphna, Larson, Keith, Clavel, Jan, Hostens, Lore, Spreeuwers, Jasmine, Pirée, Amber, Nijs, Ivan, and Lembrechts, Jonas J.
- Abstract
The contemporary interaction of climate and disturbance drives vegetation composition and species distribution shifts, making their respective roles difficult to disentangle. This study describes the long-term ruderal plant species distributions along the ‘Rallarvägen' in Abisko, subarctic Sweden. This trail currently serves as a hiking trail but was initially created as a construction road for a railroad from 1898 to 1903 and is paralleled by the E10 Highway since 1982. Using vegetation and climate data from 1903, 1913, 1983, and 2021, we found that warm-adapted ruderal plant species were common along the Rallarvägen shortly after railroad construction in the early 20th century. Interestingly, many of these native and non-native ruderals with relatively high temperature affinity that were present in 1903 and 1913 have since disappeared and have not reappeared, despite the substantial increase in regional temperature in recent decades. In addition, the historical disturbances have had long-lasting effects on the current spatial distribution of the ruderal vegetation. Most ruderals still reside close to the railroad tracks and are progressively filtered out with increasing distance from anthropogenically disturbed introductory points, such as train stations, where they peak in species richness – a process we term ‘horizontal directional ecological filtering', in parallel to the established concept of ‘directional ecological filtering' along elevational gradients. The historical record of ruderal plant species in the region, influenced by a century-old railroad construction, emphasizes the importance of knowing a system's disturbance history for understanding current vegetation dynamics and anticipating its future in a changing climate.
- Published
- 2024
- Full Text
- View/download PDF
27. Reading tea leaves worldwide : decoupled drivers of initial litter decomposition mass-loss rate and stabilization
- Author
-
Sarneel, Judith M., Hefting, Mariet M., Sandén, Taru, van den Hoogen, Johan, Routh, Devin, Adhikari, Bhupendra S., Alatalo, Juha M., Aleksanyan, Alla, Althuizen, Inge H. J., Alsafran, Mohammed H. S. A., Atkins, Jeff W., Augusto, Laurent, Aurela, Mika, Azarov, Aleksej V., Barrio, Isabel C., Beier, Claus, Bejarano, María D., Benham, Sue E., Berg, Björn, Bezler, Nadezhda V., Björnsdóttir, Katrín, Bolinder, Martin A., Carbognani, Michele, Cazzolla Gatti, Roberto, Chelli, Stefano, Chistotin, Maxim V., Christiansen, Casper T., Courtois, Pascal, Crowther, Thomas W., Dechoum, Michele S., Djukic, Ika, Duddigan, Sarah, Egerton-Warburton, Louise M., Fanin, Nicolas, Fantappiè, Maria, Fares, Silvano, Fernandes, Geraldo W., Filippova, Nina V., Fliessbach, Andreas, Fuentes, David, Godoy, Roberto, Grünwald, Thomas, Guzmán, Gema, Hawes, Joseph E., He, Yue, Hero, Jean-Marc, Hess, Laura L., Hogendoorn, Katja, Høye, Toke T., Jans, Wilma W. P., Jónsdóttir, Ingibjörg S., Keller, Sabina, Kepfer-Rojas, Sebastian, Kuz'menko, Natalya N., Larsen, Klaus S., Laudon, Hjalmar, Lembrechts, Jonas J., Li, Junhui, Limousin, Jean-Marc, Lukin, Sergey M., Marques, Renato, Marín, César, McDaniel, Marshall D., Meek, Qi, Merzlaya, Genrietta E., Michelsen, Anders, Montagnani, Leonardo, Mueller, Peter, Murugan, Rajasekaran, Myers-Smith, Isla H., Nolte, Stefanie, Ochoa-Hueso, Raúl, Okafor, Bernard N., Okorkov, Vladimir V., Onipchenko, Vladimir G., Orozco, María C., Parkhurst, Tina, Peres, Carlos A., Petit Bon, Matteo, Petraglia, Alessandro, Pingel, Martin, Rebmann, Corinna, Scheffers, Brett R., Schmidt, Inger, Scholes, Mary C., Sheffer, Efrat, Shevtsova, Lyudmila K., Smith, Stuart W., Sofo, Adriano, Stevenson, Pablo R., Strouhalová, Barbora, Sundsdal, Anders, Sühs, Rafael B., Tamene, Gebretsadik, Thomas, Haydn J. D., Tolunay, Duygu, Tomaselli, Marcello, Tresch, Simon, Tucker, Dominique L., Ulyshen, Michael D., Valdecantos, Alejandro, Vandvik, Vigdis, Vanguelova, Elena I., Verheyen, Kris, Wang, Xuhui, Yahdjian, Laura, Yumashev, Xaris S., Keuskamp, Joost A., Sarneel, Judith M., Hefting, Mariet M., Sandén, Taru, van den Hoogen, Johan, Routh, Devin, Adhikari, Bhupendra S., Alatalo, Juha M., Aleksanyan, Alla, Althuizen, Inge H. J., Alsafran, Mohammed H. S. A., Atkins, Jeff W., Augusto, Laurent, Aurela, Mika, Azarov, Aleksej V., Barrio, Isabel C., Beier, Claus, Bejarano, María D., Benham, Sue E., Berg, Björn, Bezler, Nadezhda V., Björnsdóttir, Katrín, Bolinder, Martin A., Carbognani, Michele, Cazzolla Gatti, Roberto, Chelli, Stefano, Chistotin, Maxim V., Christiansen, Casper T., Courtois, Pascal, Crowther, Thomas W., Dechoum, Michele S., Djukic, Ika, Duddigan, Sarah, Egerton-Warburton, Louise M., Fanin, Nicolas, Fantappiè, Maria, Fares, Silvano, Fernandes, Geraldo W., Filippova, Nina V., Fliessbach, Andreas, Fuentes, David, Godoy, Roberto, Grünwald, Thomas, Guzmán, Gema, Hawes, Joseph E., He, Yue, Hero, Jean-Marc, Hess, Laura L., Hogendoorn, Katja, Høye, Toke T., Jans, Wilma W. P., Jónsdóttir, Ingibjörg S., Keller, Sabina, Kepfer-Rojas, Sebastian, Kuz'menko, Natalya N., Larsen, Klaus S., Laudon, Hjalmar, Lembrechts, Jonas J., Li, Junhui, Limousin, Jean-Marc, Lukin, Sergey M., Marques, Renato, Marín, César, McDaniel, Marshall D., Meek, Qi, Merzlaya, Genrietta E., Michelsen, Anders, Montagnani, Leonardo, Mueller, Peter, Murugan, Rajasekaran, Myers-Smith, Isla H., Nolte, Stefanie, Ochoa-Hueso, Raúl, Okafor, Bernard N., Okorkov, Vladimir V., Onipchenko, Vladimir G., Orozco, María C., Parkhurst, Tina, Peres, Carlos A., Petit Bon, Matteo, Petraglia, Alessandro, Pingel, Martin, Rebmann, Corinna, Scheffers, Brett R., Schmidt, Inger, Scholes, Mary C., Sheffer, Efrat, Shevtsova, Lyudmila K., Smith, Stuart W., Sofo, Adriano, Stevenson, Pablo R., Strouhalová, Barbora, Sundsdal, Anders, Sühs, Rafael B., Tamene, Gebretsadik, Thomas, Haydn J. D., Tolunay, Duygu, Tomaselli, Marcello, Tresch, Simon, Tucker, Dominique L., Ulyshen, Michael D., Valdecantos, Alejandro, Vandvik, Vigdis, Vanguelova, Elena I., Verheyen, Kris, Wang, Xuhui, Yahdjian, Laura, Yumashev, Xaris S., and Keuskamp, Joost A.
- Abstract
The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
- Published
- 2024
- Full Text
- View/download PDF
28. Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass-loss rate and stabilization
- Author
-
Universidad de Alicante. Departamento de Ecología, Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Sarneel, Judith M., Hefting, Mariet, Sandén, Taru, van den Hoogen, Johan, Routh, Devin, Adhikari, Bhupendra S., Alatalo, Juha M., Aleksanyan, Alla, Althuizen, Inge H. J., Alsafran, Mohammed H. S. A., Atkins, Jeff W., Augusto, Laurent, Aurela, Mika, Azarov, Aleksej V., Barrio, Isabel C., Beier, Claus, Bejarano, María D., Benham, Sue E., Berg, Björn, Bezler, Nadezhda V., Björnsdóttir, Katrín, Bolinder, Martin A., Carbognani, Michele, Cazzolla Gatti, Roberto, Chelli, Stefano, Chistotin, Maxim V., Christiansen, Casper T., Courtois, Pascal, Crowther, Thomas W., Dechoum, Michele S., Djukic, Ika, Duddigan, Sarah, Egerton-Warburton, Louise M., Fanin, Nicolas, Fantappiè, Maria, Fares, Silvano, Fernandes, Geraldo W., Filippova, Nina V., Fliessbach, Andreas, Fuentes, David, Godoy, Roberto, Grünwald, Thomas, Guzmán, Gema, Hawes, Joseph E., He, Yue, Hero, Jean-Marc, Hess, Laura L., Hogendoorn, Katja, Høye, Toke T., Jans, Wilma W. P., Jónsdóttir, Ingibjörg S., Keller, Sabina, Kepfer-Rojas, Sebastian, Kuz'menko, Natalya N., Larsen, Klaus Steenberg, Laudon, Hjalmar, Lembrechts, Jonas J., Li, Junhui, Limousin, Jean-Marc, Lukin, Sergey M., Marques, Renato, Marín, César, McDaniel, Marshall D., Meek, Qi, Merzlaya, Genrietta E., Michelsen, Anders, Montagnani, Leonardo, Mueller, Peter, Murugan, Rajasekaran, Myers-Smith, Isla H., Nolte, Stefanie, Ochoa-Hueso, Raúl, Okafor, Bernard N., Okorkov, Vladimir V., Onipchenko, Vladimir G., Orozco, María C., Parkhurst, Tina, Peres, Carlos A., Petit Bon, Matteo, Petraglia, Alessandro, Pingel, Martin, Rebmann, Corinna, Scheffers, Brett R., Schmidt, Inger Kappel, Scholes, Mary C., Sheffer, Efrat, Shevtsova, Lyudmila K., Smith, Stuart W., Sofo, Adriano, Stevenson, Pablo R., Strouhalová, Barbora, Sundsdal, Anders, Sühs, Rafael B., Tamene, Gebretsadik, Thomas, Haydn J. D., Tolunay, Duygu, Tomaselli, Marcello, Tresch, Simon, Tucker, Dominique L., Ulyshen, Michael D., Valdecantos, Alejandro, Vandvik, Vigdis, Vanguelova, Elena I., Verheyen, Kris, Wang, Xuhui, Yahdjian, Laura, Yumashev, Xaris S., Keuskamp, Joost A., Universidad de Alicante. Departamento de Ecología, Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Sarneel, Judith M., Hefting, Mariet, Sandén, Taru, van den Hoogen, Johan, Routh, Devin, Adhikari, Bhupendra S., Alatalo, Juha M., Aleksanyan, Alla, Althuizen, Inge H. J., Alsafran, Mohammed H. S. A., Atkins, Jeff W., Augusto, Laurent, Aurela, Mika, Azarov, Aleksej V., Barrio, Isabel C., Beier, Claus, Bejarano, María D., Benham, Sue E., Berg, Björn, Bezler, Nadezhda V., Björnsdóttir, Katrín, Bolinder, Martin A., Carbognani, Michele, Cazzolla Gatti, Roberto, Chelli, Stefano, Chistotin, Maxim V., Christiansen, Casper T., Courtois, Pascal, Crowther, Thomas W., Dechoum, Michele S., Djukic, Ika, Duddigan, Sarah, Egerton-Warburton, Louise M., Fanin, Nicolas, Fantappiè, Maria, Fares, Silvano, Fernandes, Geraldo W., Filippova, Nina V., Fliessbach, Andreas, Fuentes, David, Godoy, Roberto, Grünwald, Thomas, Guzmán, Gema, Hawes, Joseph E., He, Yue, Hero, Jean-Marc, Hess, Laura L., Hogendoorn, Katja, Høye, Toke T., Jans, Wilma W. P., Jónsdóttir, Ingibjörg S., Keller, Sabina, Kepfer-Rojas, Sebastian, Kuz'menko, Natalya N., Larsen, Klaus Steenberg, Laudon, Hjalmar, Lembrechts, Jonas J., Li, Junhui, Limousin, Jean-Marc, Lukin, Sergey M., Marques, Renato, Marín, César, McDaniel, Marshall D., Meek, Qi, Merzlaya, Genrietta E., Michelsen, Anders, Montagnani, Leonardo, Mueller, Peter, Murugan, Rajasekaran, Myers-Smith, Isla H., Nolte, Stefanie, Ochoa-Hueso, Raúl, Okafor, Bernard N., Okorkov, Vladimir V., Onipchenko, Vladimir G., Orozco, María C., Parkhurst, Tina, Peres, Carlos A., Petit Bon, Matteo, Petraglia, Alessandro, Pingel, Martin, Rebmann, Corinna, Scheffers, Brett R., Schmidt, Inger Kappel, Scholes, Mary C., Sheffer, Efrat, Shevtsova, Lyudmila K., Smith, Stuart W., Sofo, Adriano, Stevenson, Pablo R., Strouhalová, Barbora, Sundsdal, Anders, Sühs, Rafael B., Tamene, Gebretsadik, Thomas, Haydn J. D., Tolunay, Duygu, Tomaselli, Marcello, Tresch, Simon, Tucker, Dominique L., Ulyshen, Michael D., Valdecantos, Alejandro, Vandvik, Vigdis, Vanguelova, Elena I., Verheyen, Kris, Wang, Xuhui, Yahdjian, Laura, Yumashev, Xaris S., and Keuskamp, Joost A.
- Abstract
The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
- Published
- 2024
29. Microclimate, an important part of ecology and biogeography
- Author
-
Kemppinen, Julia, Lembrechts, Jonas J., Van Meerbeek, Koenraad, Carnicer, Jofre, Chardon, Nathalie Isabelle, Kardol, Paul, Lenoir, Jonathan, Liu, Daijun, Maclean, Ilya, Pergl, Jan, Saccone, Patrick, Senior, Rebecca A., Shen, Ting, Słowińska, Sandra, Vandvik, Vigdis, von Oppen, Jonathan, Aalto, Juha, Ayalew, Biruk, Bates, Olivia, Bertelsmeier, Cleo, Bertrand, Romain, Beugnon, Rémy, Borderieux, Jeremy, Brůna, Josef, Buckley, Lauren, Bujan, Jelena, Casanova-Katny, Angelica, Christiansen, Ditte Marie, Collart, Flavien, De Lombaerde, Emiel, De Pauw, Karen, Depauw, Leen, Di Musciano, Michele, Díaz Borrego, Raquel, Díaz-Calafat, Joan, Ellis-Soto, Diego, Esteban, Raquel, de Jong, Geerte Fälthammar, Gallois, Elise, Garcia, Maria Begoña, Gillerot, Loïc, Greiser, Caroline, Gril, Eva, Haesen, Stef, Hampe, Arndt, Hedwall, Per Ola, Hes, Gabriel, Hespanhol, Helena, Hoffrén, Raúl, Hylander, Kristoffer, Jiménez-Alfaro, Borja, Jucker, Tommaso, Klinges, David, Kolstela, Joonas, Kopecký, Martin, Kovács, Bence, Maeda, Eduardo Eiji, Máliš, František, Man, Matěj, Mathiak, Corrie, Meineri, Eric, Naujokaitis-Lewis, Ilona, Nijs, Ivan, Normand, Signe, Nuñez, Martin, Orczewska, Anna, Peña-Aguilera, Pablo, Pincebourde, Sylvain, Plichta, Roman, Quick, Susan, Renault, David, Ricci, Lorenzo, Rissanen, Tuuli, Segura-Hernández, Laura, Selvi, Federico, Serra-Diaz, Josep M., Soifer, Lydia, Spicher, Fabien, Svenning, Jens Christian, Tamian, Anouch, Thomaes, Arno, Thoonen, Marijke, Trew, Brittany, Van de Vondel, Stijn, van den Brink, Liesbeth, Vangansbeke, Pieter, Verdonck, Sanne, Vitkova, Michaela, Vives-Ingla, Maria, von Schmalensee, Loke, Wang, Runxi, Wild, Jan, Williamson, Joseph, Zellweger, Florian, Zhou, Xiaqu, Zuza, Emmanuel Junior, De Frenne, Pieter, Kemppinen, Julia, Lembrechts, Jonas J., Van Meerbeek, Koenraad, Carnicer, Jofre, Chardon, Nathalie Isabelle, Kardol, Paul, Lenoir, Jonathan, Liu, Daijun, Maclean, Ilya, Pergl, Jan, Saccone, Patrick, Senior, Rebecca A., Shen, Ting, Słowińska, Sandra, Vandvik, Vigdis, von Oppen, Jonathan, Aalto, Juha, Ayalew, Biruk, Bates, Olivia, Bertelsmeier, Cleo, Bertrand, Romain, Beugnon, Rémy, Borderieux, Jeremy, Brůna, Josef, Buckley, Lauren, Bujan, Jelena, Casanova-Katny, Angelica, Christiansen, Ditte Marie, Collart, Flavien, De Lombaerde, Emiel, De Pauw, Karen, Depauw, Leen, Di Musciano, Michele, Díaz Borrego, Raquel, Díaz-Calafat, Joan, Ellis-Soto, Diego, Esteban, Raquel, de Jong, Geerte Fälthammar, Gallois, Elise, Garcia, Maria Begoña, Gillerot, Loïc, Greiser, Caroline, Gril, Eva, Haesen, Stef, Hampe, Arndt, Hedwall, Per Ola, Hes, Gabriel, Hespanhol, Helena, Hoffrén, Raúl, Hylander, Kristoffer, Jiménez-Alfaro, Borja, Jucker, Tommaso, Klinges, David, Kolstela, Joonas, Kopecký, Martin, Kovács, Bence, Maeda, Eduardo Eiji, Máliš, František, Man, Matěj, Mathiak, Corrie, Meineri, Eric, Naujokaitis-Lewis, Ilona, Nijs, Ivan, Normand, Signe, Nuñez, Martin, Orczewska, Anna, Peña-Aguilera, Pablo, Pincebourde, Sylvain, Plichta, Roman, Quick, Susan, Renault, David, Ricci, Lorenzo, Rissanen, Tuuli, Segura-Hernández, Laura, Selvi, Federico, Serra-Diaz, Josep M., Soifer, Lydia, Spicher, Fabien, Svenning, Jens Christian, Tamian, Anouch, Thomaes, Arno, Thoonen, Marijke, Trew, Brittany, Van de Vondel, Stijn, van den Brink, Liesbeth, Vangansbeke, Pieter, Verdonck, Sanne, Vitkova, Michaela, Vives-Ingla, Maria, von Schmalensee, Loke, Wang, Runxi, Wild, Jan, Williamson, Joseph, Zellweger, Florian, Zhou, Xiaqu, Zuza, Emmanuel Junior, and De Frenne, Pieter
- Abstract
Brief introduction: What are microclimates and why are they important?: Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next. Microclimate investigations in ecology and biogeography: We highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles. Microclimate applications in ecosystem management: Microclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity. Methods for microclimate science: We showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field. What's next?: We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
- Published
- 2024
30. Reading tea leaves worldwide:Decoupled drivers of initial litter decomposition mass-loss rate and stabilization
- Author
-
Sarneel, Judith M., Hefting, Mariet M., Sandén, Taru, van den Hoogen, Johan, Routh, Devin, Adhikari, Bhupendra S., Alatalo, Juha M., Aleksanyan, Alla, Althuizen, Inge H.J., Alsafran, Mohammed H.S.A., Atkins, Jeff W., Augusto, Laurent, Aurela, Mika, Azarov, Aleksej V., Barrio, Isabel C., Beier, Claus, Bejarano, María D., Benham, Sue E., Berg, Björn, Bezler, Nadezhda V., Björnsdóttir, Katrín, Bolinder, Martin A., Carbognani, Michele, Cazzolla Gatti, Roberto, Chelli, Stefano, Chistotin, Maxim V., Christiansen, Casper T., Courtois, Pascal, Crowther, Thomas W., Dechoum, Michele S., Djukic, Ika, Duddigan, Sarah, Egerton-Warburton, Louise M., Fanin, Nicolas, Fantappiè, Maria, Fares, Silvano, Fernandes, Geraldo W., Filippova, Nina V., Fliessbach, Andreas, Fuentes, David, Godoy, Roberto, Grünwald, Thomas, Guzmán, Gema, Hawes, Joseph E., He, Yue, Hero, Jean Marc, Hess, Laura L., Hogendoorn, Katja, Høye, Toke T., Jans, Wilma W.P., Jónsdóttir, Ingibjörg S., Keller, Sabina, Kepfer-Rojas, Sebastian, Kuz'menko, Natalya N., Larsen, Klaus S., Laudon, Hjalmar, Lembrechts, Jonas J., Li, Junhui, Limousin, Jean Marc, Lukin, Sergey M., Marques, Renato, Marín, César, McDaniel, Marshall D., Meek, Qi, Merzlaya, Genrietta E., Michelsen, Anders, Montagnani, Leonardo, Mueller, Peter, Murugan, Rajasekaran, Myers-Smith, Isla H., Nolte, Stefanie, Ochoa-Hueso, Raúl, Okafor, Bernard N., Okorkov, Vladimir V., Onipchenko, Vladimir G., Orozco, María C., Parkhurst, Tina, Peres, Carlos A., Petit Bon, Matteo, Petraglia, Alessandro, Pingel, Martin, Rebmann, Corinna, Scheffers, Brett R., Schmidt, Inger, Scholes, Mary C., Sheffer, Efrat, Shevtsova, Lyudmila K., Smith, Stuart W., Sofo, Adriano, Stevenson, Pablo R., Strouhalová, Barbora, Sundsdal, Anders, Sühs, Rafael B., Tamene, Gebretsadik, Thomas, Haydn J. D., Tolunay, Duygu, Tomaselli, Marcello, Tresch, Simon, Tucker, Dominique L., Ulyshen, Michael D., Valdecantos, Alejandro, Vandvik, Vigdis, Vanguelova, Elena I., Verheyen, Kris, Wang, Xuhui, Yahdjian, Laura, Yumashev, Xaris S., Keuskamp, Joost A., Sarneel, Judith M., Hefting, Mariet M., Sandén, Taru, van den Hoogen, Johan, Routh, Devin, Adhikari, Bhupendra S., Alatalo, Juha M., Aleksanyan, Alla, Althuizen, Inge H.J., Alsafran, Mohammed H.S.A., Atkins, Jeff W., Augusto, Laurent, Aurela, Mika, Azarov, Aleksej V., Barrio, Isabel C., Beier, Claus, Bejarano, María D., Benham, Sue E., Berg, Björn, Bezler, Nadezhda V., Björnsdóttir, Katrín, Bolinder, Martin A., Carbognani, Michele, Cazzolla Gatti, Roberto, Chelli, Stefano, Chistotin, Maxim V., Christiansen, Casper T., Courtois, Pascal, Crowther, Thomas W., Dechoum, Michele S., Djukic, Ika, Duddigan, Sarah, Egerton-Warburton, Louise M., Fanin, Nicolas, Fantappiè, Maria, Fares, Silvano, Fernandes, Geraldo W., Filippova, Nina V., Fliessbach, Andreas, Fuentes, David, Godoy, Roberto, Grünwald, Thomas, Guzmán, Gema, Hawes, Joseph E., He, Yue, Hero, Jean Marc, Hess, Laura L., Hogendoorn, Katja, Høye, Toke T., Jans, Wilma W.P., Jónsdóttir, Ingibjörg S., Keller, Sabina, Kepfer-Rojas, Sebastian, Kuz'menko, Natalya N., Larsen, Klaus S., Laudon, Hjalmar, Lembrechts, Jonas J., Li, Junhui, Limousin, Jean Marc, Lukin, Sergey M., Marques, Renato, Marín, César, McDaniel, Marshall D., Meek, Qi, Merzlaya, Genrietta E., Michelsen, Anders, Montagnani, Leonardo, Mueller, Peter, Murugan, Rajasekaran, Myers-Smith, Isla H., Nolte, Stefanie, Ochoa-Hueso, Raúl, Okafor, Bernard N., Okorkov, Vladimir V., Onipchenko, Vladimir G., Orozco, María C., Parkhurst, Tina, Peres, Carlos A., Petit Bon, Matteo, Petraglia, Alessandro, Pingel, Martin, Rebmann, Corinna, Scheffers, Brett R., Schmidt, Inger, Scholes, Mary C., Sheffer, Efrat, Shevtsova, Lyudmila K., Smith, Stuart W., Sofo, Adriano, Stevenson, Pablo R., Strouhalová, Barbora, Sundsdal, Anders, Sühs, Rafael B., Tamene, Gebretsadik, Thomas, Haydn J. D., Tolunay, Duygu, Tomaselli, Marcello, Tresch, Simon, Tucker, Dominique L., Ulyshen, Michael D., Valdecantos, Alejandro, Vandvik, Vigdis, Vanguelova, Elena I., Verheyen, Kris, Wang, Xuhui, Yahdjian, Laura, Yumashev, Xaris S., and Keuskamp, Joost A.
- Abstract
The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
- Published
- 2024
31. Hiking trails as conduits for the spread of non-native species in mountain areas
- Author
-
Liedtke, Rebecca, Barros, Agustina, Essl, Franz, Lembrechts, Jonas J., Wedegärtner, Ronja E. M., Pauchard, Aníbal, and Dullinger, Stefan
- Published
- 2020
- Full Text
- View/download PDF
32. Direct and higher‐order interactions in plant communities under increasing weather persistence.
- Author
-
Reynaert, Simon, Lembrechts, Jonas J., De Boeck, Hans J., Donnelly, Chase, Zi, Lin, Li, Lingjuan, and Nijs, Ivan
- Subjects
- *
PLANT communities , *PLANT performance , *PARSIMONIOUS models , *DROUGHTS , *BIOMASS , *CLIMATE change , *WEATHER - Abstract
Climate change is increasing the weather persistence in the mid‐latitudes, prolonging both dry and wet spells compared to historic averages. These newly emerging environmental conditions destabilize plant communities, but the role of species interactions in this process is unknown. Here, we tested how direct and higher‐order interactions (HOIs) between species may change in synthesized grassland communities along an experimental gradient of increasing persistence in precipitation regimes. Our results indicate that species interactions (including HOIs) are an important determinant of plant performance under increasing weather persistence. Out of the 12 most parsimonious models predicting species productivity, 75% contained significant direct interactions and 92% significant HOIs. Inclusion of direct interactions or HOIs respectively tripled or quadrupled the explained variance of target species biomass compared to null models only including the precipitation treatment. Drought was the main driver of plant responses, with longer droughts increasing direct competition but also HOI‐driven facilitation. Despite these counteracting changes, drought intensified net competition. Grasses were generally more involved in competitive interactions whereas legumes were more involved in facilitative interactions. Under longer drought, species affinity for nutrient rich or wet environments resulted in more negative direct interactions or HOIs, respectively. We conclude that HOIs, crucially depending on species identity, only partially stabilize community dynamics under increasing weather persistence. Keywords: drought, facilitation and competition, grasslands, higher‐order interactions, increasing weather persistence, species interactions [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
33. The drivers of dark diversity in the Scandinavian mountains are metric‐dependent
- Author
-
Hostens, Lore, primary, Van Meerbeek, Koenraad, additional, Wiegmans, Dymphna, additional, Larson, Keith, additional, Lenoir, Jonathan, additional, Clavel, Jan, additional, Wedegärtner, Ronja, additional, Pirée, Amber, additional, Nijs, Ivan, additional, and Lembrechts, Jonas J., additional
- Published
- 2023
- Full Text
- View/download PDF
34. USE it: Uniformly sampling pseudo‐absences within the environmental space for applications in habitat suitability models
- Author
-
Da Re, Daniele, primary, Tordoni, Enrico, additional, Lenoir, Jonathan, additional, Lembrechts, Jonas J., additional, Vanwambeke, Sophie O., additional, Rocchini, Duccio, additional, and Bazzichetto, Manuele, additional
- Published
- 2023
- Full Text
- View/download PDF
35. Microclimate reveals the true thermal niche of forest plant species
- Author
-
Haesen, Stef, primary, Lenoir, Jonathan, additional, Gril, Eva, additional, De Frenne, Pieter, additional, Lembrechts, Jonas J., additional, Kopecký, Martin, additional, Macek, Martin, additional, Man, Matěj, additional, Wild, Jan, additional, and Van Meerbeek, Koenraad, additional
- Published
- 2023
- Full Text
- View/download PDF
36. Drivers of the microbial metabolic quotient across global grasslands
- Author
-
Risch, Anita C., Zimmermann, Stephan, Schütz, Martin, Fay, Philip A., Borer, Elizabeth T., Broadbent, Arthur A. D., Caldeira, Maria C., Davies, Kendi F., Eisenhauer, Nico, Eskelinen, Anu, Hagedorn, Frank, Knops, Johannes M. H., Lembrechts, Jonas J., MacDougall, Andrew S., McCulley, Rebecca L., Melbourne, Brett A., Moore, Joslin L., Power, Sally A., Seabloom, Eric W., Silveira, Maria L., Virtanen, Risto, Yahdjian, Laura, and Ochoa-Hueso, Raul
- Subjects
CLIMATE ,Chemistry ,HERBIVORE EXCLUSION ,Global and Planetary Change ,MICROBIAL BIOMASS CARBON ,Ecology ,Economics ,MICROBIAL RESPIRATION ,SOIL PROPERTIES ,ANTHROPOGENIC MANAGEMENT ,NUTRIENT ADDITION ,Biology ,Ecology, Evolution, Behavior and Systematics - Abstract
This dataset contains all data on which the following publication below is based. Paper Citation: Risch Anita C., Zimmermann, Stefan, Schütz, Martin, Borer, Elizabeth T., Broadbent, Arthur A.D., Caldeira, Maria C., Davies, Kendi F., Eisenhauer, Nico, Eskelinen, Anu, Fay, Philip A., Hagedorn, Frank, Knops, Johannes M.H., Lembrechts, Jonas, J., MacDougall, Andrew S., McCulley, Rebecca L., Melbourne, Brett A., Moore, Joslin L., Power, Sally A., Seabloom, Eric W., Silveira, Maria L., Virtanen, Risto, Yahdjian, Laura, Ochoa-Hueso, Raul (accepted). Drivers of the microbial metabolic quotient across global grasslands. Global Ecology and Biogeography Please cite this paper together with the citation for the datafile. The microbial metabolic quotient (MMQ; mg CO2-C mg MBC-1 h-1), defined as the amount of microbial CO2 respired (MR; mg CO2-C kg soil-1 h-1) per unit of microbial biomass C (MBC; mg C kg soil-1), is a key parameter for understanding the microbial regulation of the carbon (C) cycle, including soil C sequestration. Here, we experimentally tested hypotheses about the individual and interactive effects of multiple nutrient addition (NPK+micronutrients) and herbivore exclusion on MR, MBC, and MMQ across 23 sites (5 continents). Our sites encompassed a wide range of edaphoclimatic conditions, thus we assessed which edaphoclimatic variables affected MMQ the most and how they interacted with our treatments. Soils were collected in plots with established experimental treatments. MR was assessed in a five-week laboratory incubation without glucose addition, MBC via substrate-induced respiration. MMQ was calculated as MR/MBC and corrected for soil temperatures (MMQsoil). Using LMMs and SEMs, we analysed how edaphoclimatic characteristics and treatments interactively affected MMQsoil. MMQsoil was higher in locations with higher mean annual temperature, lower water holding capacity, and soil organic C concentration, but did not respond to our treatments across sites as neither MR nor MBC changed. We attributed this relative homeostasis to our treatments to the modulating influence of edaphoclimatic variables. For example, herbivore exclusion, regardless of fertilization, led to greater MMQsoil only at sites with lower soil organic C (-1.7%). Our results pinpoint the main variables related to MMQsoil across grasslands and emphasize the importance of the local edaphoclimatic conditions in controlling the response of the C cycle to anthropogenic stressors. By testing hypotheses about MMQsoil across global edaphoclimatic gradients, this work also helps to align the conflicting results of prior studies.
- Published
- 2023
37. Disturbance is the key to plant invasions in cold environments
- Author
-
Lembrechts, Jonas J., Pauchard, Aníbal, Lenoir, Jonathan, Nuñez, Martín A., Geron, Charly, Ven, Arne, Bravo-Monasterio, Pablo, Teneb, Ernesto, Nijs, Ivan, and Milbau, Ann
- Published
- 2016
38. Unveil the unseen: Using LiDAR to capture time‐lag dynamics in the herbaceous layer of European temperate forests
- Author
-
Lenoir, Jonathan, Gril, Eva, Durrieu, Sylvie, Horen, Hélène, Laslier, Marianne, Lembrechts, Jonas J., Zellweger, Florian, Alleaume, Samuel, Brasseur, Boris, Buridant, Jérôme, Dayal, Karun, De Frenne, Pieter, Gallet‐Moron, Emilie, Marrec, Ronan, Meeussen, Camille, Rocchini, Duccio, Van Meerbeek, Koenraad, Decocq, Guillaume, Lenoir, Jonathan, Gril, Eva, Durrieu, Sylvie, Horen, Hélène, Laslier, Marianne, Lembrechts, Jonas J., Zellweger, Florian, Alleaume, Samuel, Brasseur, Bori, Buridant, Jérôme, Dayal, Karun, De Frenne, Pieter, Gallet‐Moron, Emilie, Marrec, Ronan, Meeussen, Camille, Rocchini, Duccio, Van Meerbeek, Koenraad, and Decocq, Guillaume
- Subjects
MEERDAAL FOREST ,climatic debt ,disequilibrium dynamics ,archaeology, biodiversity, climatic debt, disequilibrium dynamics, forest management, historical ecology, microclimate, remote sensing ,forest management ,DIVERSITY ,Environmental Sciences & Ecology ,Plant Science ,remote sensing ,PLANT-COMMUNITIES ,Biology ,Ecology, Evolution, Behavior and Systematics ,biodiversity ,Science & Technology ,historical ecology ,LAND-USE ,Ecology ,SKID TRAILS ,Plant Sciences ,SOIL COMPACTION ,archaeology ,CLIMATE ,Chemistry ,AIRBORNE LIDAR ,Earth and Environmental Sciences ,VEGETATION ,Life Sciences & Biomedicine ,microclimate ,RESPONSES - Abstract
1. To understand time-lag dynamics in the response of biodiversity to contem- porary environmental changes (e.g. macroclimate warming and atmospheric pollution), we need to consider former anthropogenic forcing factors such as past land uses and management practices that can have both compounding and confounding effects. This is especially true in European temperate forests, where legacies from past human activities have left strong imprints on today’s understorey plant species composition, generating long-term lagging effects which can be mistakenly attributed to more recent macro-environmental changes. 2. By combining the expertise of plant, soil and historical ecologists together with remote sensing scientists, we review the potential of light detection and ranging (LiDAR) to unveil ghosts from the past in terms of former land uses and manage- ment practices. 3. We show that imprints from past land uses and management practices can still be captured today through well-chosen LiDAR-derived variables describing, at sub-decimetre scale, the vertical and horizontal micro-variations of vegetation and terrain structure hidden below treetops. 4. Synthesis. We encourage plant and soil ecologists to use LiDAR data and to work with historians, archaeologists and remote sensing scientists in order to select meaningful LiDAR-derived variables to account for time-lagged biotic responses to long-term macro-environmental changes.
- Published
- 2022
39. Frontiers in soil ecology—Insights from the World Biodiversity Forum 2022
- Author
-
German Research Foundation, Saxon State Ministry of Science, Culture and Tourism, European Commission, Swedish Research Council for Sustainable Development, German Federal Environmental Foundation, Eisenhauer, Nico [0000-0002-0371-6720], Bender, S. Franz [0000-0003-0895-2228], Calderón‐Sanou, Irene [0000-0003-4608-1187], Vries, Franciska T. de [0000-0002-6822-8883], Lembrechts. Jonas J. [0000-0002-1933-0750], Thuiller, Wilfried [0000-0002-5388-5274], Wall, Diana H. [0000-0002-9466-5235], Zeiss. Romy [0000-0001-8862-9185], Beugnon, Rémy [0000-0003-2457-5688], Burton, Victoria [0000-0003-0122-3292], Crowther, Thomas Ward [0000-0001-5674-8913], Delgado-Baquerizo, Manuel [0000-0002-6499-576X], Geisen, Stefan [0000-0003-0734-727X], Kardol, Paul [0000-0001-7065-3435], Krashevska, Valentyna [0000-0002-9765-5833], Patoine, Guillaume [0000-0002-3748-6644], Siebert, Julia [0000-0003-0189-7377], Soudzilovskaia, Nadejda A. [0000-0002-9584-2109], Steinwandter, Michael [0000-0001-8545-6047], Sünnemann, Marie [0000-0001-5385-258X], van der Heijden, M.G.A. [0000-0001-7040-1924], Sun, Xin [0000-0002-3988-7847], Guerra, Carlos A. [0000-0003-4917-2105], Potapov, Anton [0000-0002-4456-1710], Eisenhauer, Nico, Bender, S. Franz, Calderón‐Sanou, Irene, Vries, Franciska T. de, Lembrechts. Jonas J., Thuiller, Wilfried, Wall, Diana H., Zeiss. Romy, Bahram, Mohammad, Beugnon, Rémy, Burton, Victoria, Crowther, Thomas Ward, Delgado-Baquerizo, Manuel, Geisen, Stefan, Kardol, Paul, Krashevska, Valentyna, Martínez‐Muñoz, Carlos A., Patoine, Guillaume, Siebert, Julia, Soudzilovskaia, Nadejda A., Steinwandter, Michael, Sünnemann, Marie, Sun, Xin, van der Heijden, Marcel G. A., Guerra, Carlos A., Potapov, Anton, German Research Foundation, Saxon State Ministry of Science, Culture and Tourism, European Commission, Swedish Research Council for Sustainable Development, German Federal Environmental Foundation, Eisenhauer, Nico [0000-0002-0371-6720], Bender, S. Franz [0000-0003-0895-2228], Calderón‐Sanou, Irene [0000-0003-4608-1187], Vries, Franciska T. de [0000-0002-6822-8883], Lembrechts. Jonas J. [0000-0002-1933-0750], Thuiller, Wilfried [0000-0002-5388-5274], Wall, Diana H. [0000-0002-9466-5235], Zeiss. Romy [0000-0001-8862-9185], Beugnon, Rémy [0000-0003-2457-5688], Burton, Victoria [0000-0003-0122-3292], Crowther, Thomas Ward [0000-0001-5674-8913], Delgado-Baquerizo, Manuel [0000-0002-6499-576X], Geisen, Stefan [0000-0003-0734-727X], Kardol, Paul [0000-0001-7065-3435], Krashevska, Valentyna [0000-0002-9765-5833], Patoine, Guillaume [0000-0002-3748-6644], Siebert, Julia [0000-0003-0189-7377], Soudzilovskaia, Nadejda A. [0000-0002-9584-2109], Steinwandter, Michael [0000-0001-8545-6047], Sünnemann, Marie [0000-0001-5385-258X], van der Heijden, M.G.A. [0000-0001-7040-1924], Sun, Xin [0000-0002-3988-7847], Guerra, Carlos A. [0000-0003-4917-2105], Potapov, Anton [0000-0002-4456-1710], Eisenhauer, Nico, Bender, S. Franz, Calderón‐Sanou, Irene, Vries, Franciska T. de, Lembrechts. Jonas J., Thuiller, Wilfried, Wall, Diana H., Zeiss. Romy, Bahram, Mohammad, Beugnon, Rémy, Burton, Victoria, Crowther, Thomas Ward, Delgado-Baquerizo, Manuel, Geisen, Stefan, Kardol, Paul, Krashevska, Valentyna, Martínez‐Muñoz, Carlos A., Patoine, Guillaume, Siebert, Julia, Soudzilovskaia, Nadejda A., Steinwandter, Michael, Sünnemann, Marie, Sun, Xin, van der Heijden, Marcel G. A., Guerra, Carlos A., and Potapov, Anton
- Abstract
Global change is affecting soil biodiversity and functioning across all terrestrial ecosystems. Still, much is unknown about how soil biodiversity and function will change in the future in response to simultaneous alterations in climate and land use, as well as other environmental drivers. It is crucial to understand the direct, indirect and interactive effects of global change drivers on soil communities and ecosystems across environmental contexts, not only today but also in the near future. This is particularly relevant for international efforts to tackle climate change like the Paris Agreement, and considering the failure to achieve the 2020 biodiversity targets, especially the target of halting soil degradation. Here, we outline the main frontiers related to soil ecology that were presented and discussed at the thematic sessions of the World Biodiversity Forum 2022 in Davos, Switzerland. We highlight multiple frontiers of knowledge associated with data integration, causal inference, soil biodiversity and function scenarios, critical soil biodiversity facets, underrepresented drivers, global collaboration, knowledge application and transdisciplinarity, as well as policy and public communication. These identified research priorities are not only of immediate interest to the scientific community but may also be considered in research priority programmes and calls for funding.
- Published
- 2022
40. ForestClim—Bioclimatic variables for microclimate temperatures of European forests
- Author
-
Haesen, Stef, primary, Lembrechts, Jonas J., additional, De Frenne, Pieter, additional, Lenoir, Jonathan, additional, Aalto, Juha, additional, Ashcroft, Michael B., additional, Kopecký, Martin, additional, Luoto, Miska, additional, Maclean, Ilya, additional, Nijs, Ivan, additional, Niittynen, Pekka, additional, van den Hoogen, Johan, additional, Arriga, Nicola, additional, Brůna, Josef, additional, Buchmann, Nina, additional, Čiliak, Marek, additional, Collalti, Alessio, additional, De Lombaerde, Emiel, additional, Descombes, Patrice, additional, Gharun, Mana, additional, Goded, Ignacio, additional, Govaert, Sanne, additional, Greiser, Caroline, additional, Grelle, Achim, additional, Gruening, Carsten, additional, Hederová, Lucia, additional, Hylander, Kristoffer, additional, Kreyling, Jürgen, additional, Kruijt, Bart, additional, Macek, Martin, additional, Máliš, František, additional, Man, Matěj, additional, Manca, Giovanni, additional, Matula, Radim, additional, Meeussen, Camille, additional, Merinero, Sonia, additional, Minerbi, Stefano, additional, Montagnani, Leonardo, additional, Muffler, Lena, additional, Ogaya, Romà, additional, Penuelas, Josep, additional, Plichta, Roman, additional, Portillo‐Estrada, Miguel, additional, Schmeddes, Jonas, additional, Shekhar, Ankit, additional, Spicher, Fabien, additional, Ujházyová, Mariana, additional, Vangansbeke, Pieter, additional, Weigel, Robert, additional, Wild, Jan, additional, Zellweger, Florian, additional, and Van Meerbeek, Koenraad, additional
- Published
- 2023
- Full Text
- View/download PDF
41. Plant traits poorly predict winner and loser shrub species in a warming tundra biome
- Author
-
Sustainability Science and Education, Spatial Ecology and Global Change, Environmental Sciences, García Criado, Mariana, Myers-Smith, Isla H., Bjorkman, Anne D., Normand, Signe, Blach-Overgaard, Anne, Thomas, Haydn J. D., Eskelinen, Anu, Happonen, Konsta, Alatalo, Juha M., Anadon-Rosell, Alba, Aubin, Isabelle, te Beest, Mariska, Betway-May, Katlyn R., Blok, Daan, Buras, Allan, Cerabolini, Bruno E. L., Christie, Katherine, Cornelissen, J. Hans C., Forbes, Bruce C., Frei, Esther R., Grogan, Paul, Hermanutz, Luise, Hollister, Robert D., Hudson, James, Iturrate-Garcia, Maitane, Kaarlejärvi, Elina, Kleyer, Michael, Lamarque, Laurent J., Lembrechts, Jonas J., Lévesque, Esther, Luoto, Miska, Macek, Petr, May, Jeremy L., Prevéy, Janet S., Schaepman-Strub, Gabriela, Sheremetiev, Serge N., Siegwart Collier, Laura, Soudzilovskaia, Nadejda A., Trant, Andrew, Venn, Susanna E., Virkkala, Anna-Maria, Sustainability Science and Education, Spatial Ecology and Global Change, Environmental Sciences, García Criado, Mariana, Myers-Smith, Isla H., Bjorkman, Anne D., Normand, Signe, Blach-Overgaard, Anne, Thomas, Haydn J. D., Eskelinen, Anu, Happonen, Konsta, Alatalo, Juha M., Anadon-Rosell, Alba, Aubin, Isabelle, te Beest, Mariska, Betway-May, Katlyn R., Blok, Daan, Buras, Allan, Cerabolini, Bruno E. L., Christie, Katherine, Cornelissen, J. Hans C., Forbes, Bruce C., Frei, Esther R., Grogan, Paul, Hermanutz, Luise, Hollister, Robert D., Hudson, James, Iturrate-Garcia, Maitane, Kaarlejärvi, Elina, Kleyer, Michael, Lamarque, Laurent J., Lembrechts, Jonas J., Lévesque, Esther, Luoto, Miska, Macek, Petr, May, Jeremy L., Prevéy, Janet S., Schaepman-Strub, Gabriela, Sheremetiev, Serge N., Siegwart Collier, Laura, Soudzilovskaia, Nadejda A., Trant, Andrew, Venn, Susanna E., and Virkkala, Anna-Maria
- Published
- 2023
42. ForestClim : Bioclimatic variables for microclimate temperatures of European forests
- Author
-
Haesen, Stef, Lembrechts, Jonas J., De Frenne, Pieter, Lenoir, Jonathan, Aalto, Juha, Ashcroft, Michael B., Kopecky, Martin, Luoto, Miska, Maclean, Ilya, Nijs, Ivan, Niittynen, Pekka, van den Hoogen, Johan, Arriga, Nicola, Bruna, Josef, Buchmann, Nina, Ciliak, Marek, Collalti, Alessio, De Lombaerde, Emiel, Descombes, Patrice, Gharun, Mana, Goded, Ignacio, Govaert, Sanne, Greiser, Caroline, Grelle, Achim, Gruening, Carsten, Hederova, Lucia, Hylander, Kristoffer, Kreyling, Juergen, Kruijt, Bart, Macek, Martin, Malis, Frantisek, Man, Matej, Manca, Giovanni, Matula, Radim, Meeussen, Camille, Merinero, Sonia, Minerbi, Stefano, Montagnani, Leonardo, Muffler, Lena, Ogaya, Roma, Penuelas, Josep, Plichta, Roman, Portillo-Estrada, Miguel, Schmeddes, Jonas, Shekhar, Ankit, Spicher, Fabien, Ujhazyova, Mariana, Vangansbeke, Pieter, Weigel, Robert, Wild, Jan, Zellweger, Florian, Van Meerbeek, Koenraad, Haesen, Stef, Lembrechts, Jonas J., De Frenne, Pieter, Lenoir, Jonathan, Aalto, Juha, Ashcroft, Michael B., Kopecky, Martin, Luoto, Miska, Maclean, Ilya, Nijs, Ivan, Niittynen, Pekka, van den Hoogen, Johan, Arriga, Nicola, Bruna, Josef, Buchmann, Nina, Ciliak, Marek, Collalti, Alessio, De Lombaerde, Emiel, Descombes, Patrice, Gharun, Mana, Goded, Ignacio, Govaert, Sanne, Greiser, Caroline, Grelle, Achim, Gruening, Carsten, Hederova, Lucia, Hylander, Kristoffer, Kreyling, Juergen, Kruijt, Bart, Macek, Martin, Malis, Frantisek, Man, Matej, Manca, Giovanni, Matula, Radim, Meeussen, Camille, Merinero, Sonia, Minerbi, Stefano, Montagnani, Leonardo, Muffler, Lena, Ogaya, Roma, Penuelas, Josep, Plichta, Roman, Portillo-Estrada, Miguel, Schmeddes, Jonas, Shekhar, Ankit, Spicher, Fabien, Ujhazyova, Mariana, Vangansbeke, Pieter, Weigel, Robert, Wild, Jan, Zellweger, Florian, and Van Meerbeek, Koenraad
- Abstract
Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 x 25 m2 resolution.
- Published
- 2023
- Full Text
- View/download PDF
43. Plant traits poorly predict winner and loser shrub species in a warming tundra biome
- Author
-
García Criado, Mariana; https://orcid.org/0000-0001-7480-6144, Myers-Smith, Isla H; https://orcid.org/0000-0002-8417-6112, Bjorkman, Anne D; https://orcid.org/0000-0003-2174-7800, Normand, Signe, Blach-Overgaard, Anne, Thomas, Haydn J D; https://orcid.org/0000-0001-9099-6304, Eskelinen, Anu; https://orcid.org/0000-0003-1707-5263, Happonen, Konsta, Alatalo, Juha M; https://orcid.org/0000-0001-5084-850X, Anadon-Rosell, Alba; https://orcid.org/0000-0002-9447-7795, Aubin, Isabelle; https://orcid.org/0000-0002-5953-1012, te Beest, Mariska; https://orcid.org/0000-0003-3673-4105, Betway-May, Katlyn R; https://orcid.org/0000-0001-5594-3047, Blok, Daan; https://orcid.org/0000-0003-2703-9303, Buras, Allan; https://orcid.org/0000-0003-2179-0681, Cerabolini, Bruno E L; https://orcid.org/0000-0002-3793-0733, Christie, Katherine; https://orcid.org/0000-0002-4124-0700, Cornelissen, J Hans C; https://orcid.org/0000-0002-2346-1585, Forbes, Bruce C; https://orcid.org/0000-0002-4593-5083, Frei, Esther R; https://orcid.org/0000-0003-1910-7900, Grogan, Paul; https://orcid.org/0000-0002-7379-875X, Hermanutz, Luise; https://orcid.org/0000-0003-0706-7067, Hollister, Robert D; https://orcid.org/0000-0002-4764-7691, Hudson, James, Iturrate-Garcia, Maitane, Kaarlejärvi, Elina; https://orcid.org/0000-0003-0014-0073, Kleyer, Michael, Lamarque, Laurent J; https://orcid.org/0000-0002-1430-5193, Lembrechts, Jonas J, Lévesque, Esther; https://orcid.org/0000-0002-1119-6032, et al, García Criado, Mariana; https://orcid.org/0000-0001-7480-6144, Myers-Smith, Isla H; https://orcid.org/0000-0002-8417-6112, Bjorkman, Anne D; https://orcid.org/0000-0003-2174-7800, Normand, Signe, Blach-Overgaard, Anne, Thomas, Haydn J D; https://orcid.org/0000-0001-9099-6304, Eskelinen, Anu; https://orcid.org/0000-0003-1707-5263, Happonen, Konsta, Alatalo, Juha M; https://orcid.org/0000-0001-5084-850X, Anadon-Rosell, Alba; https://orcid.org/0000-0002-9447-7795, Aubin, Isabelle; https://orcid.org/0000-0002-5953-1012, te Beest, Mariska; https://orcid.org/0000-0003-3673-4105, Betway-May, Katlyn R; https://orcid.org/0000-0001-5594-3047, Blok, Daan; https://orcid.org/0000-0003-2703-9303, Buras, Allan; https://orcid.org/0000-0003-2179-0681, Cerabolini, Bruno E L; https://orcid.org/0000-0002-3793-0733, Christie, Katherine; https://orcid.org/0000-0002-4124-0700, Cornelissen, J Hans C; https://orcid.org/0000-0002-2346-1585, Forbes, Bruce C; https://orcid.org/0000-0002-4593-5083, Frei, Esther R; https://orcid.org/0000-0003-1910-7900, Grogan, Paul; https://orcid.org/0000-0002-7379-875X, Hermanutz, Luise; https://orcid.org/0000-0003-0706-7067, Hollister, Robert D; https://orcid.org/0000-0002-4764-7691, Hudson, James, Iturrate-Garcia, Maitane, Kaarlejärvi, Elina; https://orcid.org/0000-0003-0014-0073, Kleyer, Michael, Lamarque, Laurent J; https://orcid.org/0000-0002-1430-5193, Lembrechts, Jonas J, Lévesque, Esther; https://orcid.org/0000-0002-1119-6032, and et al
- Abstract
Climate change is leading to species redistributions. In the tundra biome, shrubs are generally expanding, but not all tundra shrub species will benefit from warming. Winner and loser species, and the characteristics that may determine success or failure, have not yet been fully identified. Here, we investigate whether past abundance changes, current range sizes and projected range shifts derived from species distribution models are related to plant trait values and intraspecific trait variation. We combined 17,921 trait records with observed past and modelled future distributions from 62 tundra shrub species across three continents. We found that species with greater variation in seed mass and specific leaf area had larger projected range shifts, and projected winner species had greater seed mass values. However, trait values and variation were not consistently related to current and projected ranges, nor to past abundance change. Overall, our findings indicate that abundance change and range shifts will not lead to directional modifications in shrub trait composition, since winner and loser species share relatively similar trait spaces.
- Published
- 2023
44. Microclimate, an inseparable part of ecology and biogeography
- Author
-
Kemppinen, Julia, Lembrechts, Jonas J, Van Meerbeek, Koenraad, Carnicer, Jofre, Chardon, Nathalie Isabelle, Kardol, Paul, Lenoir, Jonathan, Liu, Daijun, Maclean, Ilya, Pergl, Jan, Saccone, Patrick, Senior, Rebecca A., Shen, Ting, Słowińska, Sandra, Vandvik, Vigdis, von Oppen, Jonathan, Aalto, Juha, Ayalew, Biruk, Bates, Olivia, Bertelsmeier, Cleo, Bertrand, Romain, Beugnon, Rémy, Borderieux, Jeremy, Brůna, Josef, Buckley, Lauren, Bujan, Jelena, Casanova-Katny, Angelica, Christiansen, Ditte Marie, Collart, Flavien, De Lombaerde, Emiel, De Pauw, Karen, Depauw, Leen, Di Musciano, Michele, Díaz Borrego, Raquel, Díaz-Calafat, Joan, Ellis-Soto, Diego, Esteban, Raquel, Fälthammar de Jong, Geerte, Gallois, Elise, Garcia, Maria Begoña, Gillerot, Loïc, Greiser, Caroline, Gril, Eva, Haesen, Stef, Hampe, Arndt, Hedwall, Per-Ola, Hes, Gabriel, Hespanhol, Helena, Hoffrén, Raúl, Hylander, Kristoffer, Jiménez-Alfaro, Borja, Jucker, Tommaso, Klinges, David, Kolstela, Joonas, Kopecký, Martin, Kovács, Bence, Maeda, Eduardo Eiji, Máliš, František, Man, Matěj, Mathiak, Corrie, Meineri, Eric, Naujokaitis-Lewis, Ilona, Nijs, Ivan, Normand, Signe, Nuñez, Martin, Orczewska, Anna, Peña-Aguilera, Pablo, Pincebourde, Sylvain, Plichta, Roman, Quick, Susan, Renault, David, Ricci, Lorenzo, Rissanen, Tuuli, Segura-Hernández, Laura, Selvi, Federico, Serra-Diaz, Josep M, Soifer, Lydia, Spicher, Fabien, Svenning, Jens-Christian, Tamian, Anouch, Thomaes, Arno, Thoonen, Marijke, Trew, Brittany, Van de Vondel, Stijn, van den Brink, Liesbeth, Vangansbeke, Pieter, Verdonck, Sanne, Vitkova, Michaela, Vives-Ingla, Maria, von Schmalensee, Loke, Wang, Runxi, Wild, Jan, Williamson, Joseph, Zellweger, Florian, Zhou, Xiaqu, Zuza, Emmanuel Junior, and De Frenne, Pieter
- Abstract
Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography, and where this field is heading next. We showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping, and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling, and solutions for computational challenges that have pushed the state-of-the-art of the field. We highlight the latest research on interactions between microclimate and organisms, including how microclimate influences individuals, and through them populations, communities, and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimate from the tropics to the poles. Microclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry, and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity. We identify major knowledge gaps that need to be filled for further advancing microclimate methods, investigations, and applications. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management. Biosketch The authors are participants of the Microclimate Ecology and Biogeography conference held in Antwerp, Belgium in 2022. Together they collaboratively wrote this perspective paper that brings together 97 experts and their views on the recent advancements and knowledge gaps in terrestrial microclimate. The paper was coordinated by Julia Kemppinen, Jonas Lembrechts, Koenraad Van Meerbeek, and Pieter De Frenne, and writing different sections was led by Jofre Carnicer, Nathalie Chardon, Paul Kardol, Jonathan Lenoir, Daijun Liu, Ilya Maclean, Jan Pergl, Patrick Saccone, Rebecca Senior, Ting Shen, Sandra Słowińska, Vigdis Vandvik, and Jonathan von Oppen. For more details on authors statistics and how the work was organised, please see Supplementary information Figures S1-3.
- Published
- 2023
- Full Text
- View/download PDF
45. Pinus contorta Alters Microenvironmental Conditions and Reduces Plant Diversity in Patagonian Ecosystems
- Author
-
García, Rafael A., primary, Fuentes-Lillo, Eduardo, additional, Cavieres, Lohengrin, additional, Cóbar-Carranza, Ana J., additional, Davis, Kimberley T., additional, Naour, Matías, additional, Núñez, Martín A., additional, Maxwell, Bruce D., additional, Lembrechts, Jonas J., additional, and Pauchard, Aníbal, additional
- Published
- 2023
- Full Text
- View/download PDF
46. Functional Niche Partitioning Occurs over Body Size but Not Nutrient Reserves nor Melanism in a Polar Carabid Beetle along an Altitudinal Gradient
- Author
-
Espel, Diane, primary, Coux, Camille, additional, Pertierra, Luis R., additional, Eymar-Dauphin, Pauline, additional, Lembrechts, Jonas J., additional, and Renault, David, additional
- Published
- 2023
- Full Text
- View/download PDF
47. The drivers of dark diversity in the Scandinavian tundra are metric-dependent
- Author
-
Lore Hostens, Koenraad Van Meerbeek, Dymphna Wiegmans, Keith Larson, Jonathan Lenoir, Jan Clavel, Ronja Wedegärtner, Amber Pirée, Ivan Nijs, and Lembrechts Jonas J.
- Abstract
AimDark diversity refers to the set of species that are not observed in an area but could potentially occur based on suitable local environmental conditions. In this paper, we applied both niche-based and co-occurrence-based methods to estimate the dark diversity of vascular plant species in the subarctic tundra. We then aimed to unravel the drivers explaining (1) why some locations were missing relatively more suitable species than others, and (2) why certain plant species were more often absent from suitable locations than others.LocationThe Scandinavian tundra around Abisko, northern Sweden.MethodsWe calculated the dark diversity in 107 plots spread out across four mountain trails using four different methods. Two niche-based (Beals’ index and hypergeometric method) and two co-occurrences-based (climatic niche model and climatic niche model followed by species-specific threshold) methods. This was then followed by multiple generalized linear mixed models and general linear models to determine which habitat characteristics and species traits contributed most to the dark diversity.ResultsThe study showed a notable divergence in the predicted drivers of dark diversity depending on the method used. Nevertheless, we can conclude that plot-level dark diversity was generally 18% higher in areas at low elevations and 30% and 10% higher in areas with a low species richness or low levels of habitat disturbance, respectively.ConclusionOur findings call for caution when interpreting statistical findings of dark diversity estimates. Even so, all analyses point towards an important role for natural processes such as competitive dominance as main driver of the spatial patterns found in dark diversity in the northern Scandes.
- Published
- 2023
48. Frontiers in soil ecology—Insights from the World Biodiversity Forum 2022
- Author
-
Eisenhauer, Nico, primary, Bender, S. Franz, additional, Calderón‐Sanou, Irene, additional, de Vries, Franciska T., additional, Lembrechts, Jonas J., additional, Thuiller, Wilfried, additional, Wall, Diana H., additional, Zeiss, Romy, additional, Bahram, Mohammad, additional, Beugnon, Rémy, additional, Burton, Victoria J., additional, Crowther, Thomas W., additional, Delgado‐Baquerizo, Manuel, additional, Geisen, Stefan, additional, Kardol, Paul, additional, Krashevska, Valentyna, additional, Martínez‐Muñoz, Carlos A., additional, Patoine, Guillaume, additional, Seeber, Julia, additional, Soudzilovskaia, Nadejda A., additional, Steinwandter, Michael, additional, Sünnemann, Marie, additional, Sun, Xin, additional, van der Heijden, Marcel G. A., additional, Guerra, Carlos A., additional, and Potapov, Anton, additional
- Published
- 2022
- Full Text
- View/download PDF
49. Effects of species evenness can be derived from species richness – ecosystem functioning relationships
- Author
-
Lembrechts, Jonas J., De Boeck, Hans J., Liao, Jinbao, Milbau, Ann, and Nijs, Ivan
- Published
- 2018
- Full Text
- View/download PDF
50. Plant invasions into mountains and alpine ecosystems: current status and future challenges
- Author
-
Alexander, Jake M., Lembrechts, Jonas J., Cavieres, Lohengrin A., Daehler, Curtis, Haider, Sylvia, Kueffer, Christoph, Liu, Gang, McDougall, Keith, Milbau, Ann, Pauchard, Aníbal, Rew, Lisa J., and Seipel, Tim
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.