1. Gravitational-Wave Parameter Estimation in non-Gaussian noise using Score-Based Likelihood Characterization
- Author
-
Legin, Ronan, Isi, Maximiliano, Wong, Kaze W. K., Hezaveh, Yashar, and Perreault-Levasseur, Laurence
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,General Relativity and Quantum Cosmology - Abstract
Gravitational-wave (GW) parameter estimation typically assumes that instrumental noise is Gaussian and stationary. Obvious departures from this idealization are typically handled on a case-by-case basis, e.g., through bespoke procedures to ``clean'' non-Gaussian noise transients (glitches), as was famously the case for the GW170817 neutron-star binary. Although effective, manipulating the data in this way can introduce biases in the inference of key astrophysical properties, like binary precession, and compound in unpredictable ways when combining multiple observations; alternative procedures free of the same biases, like joint inference of noise and signal properties, have so far proved too computationally expensive to execute at scale. Here we take a different approach: rather than explicitly modeling individual non-Gaussianities to then apply the traditional GW likelihood, we seek to learn the true distribution of instrumental noise without presuming Gaussianity and stationarity in the first place. Assuming only noise additivity, we employ score-based diffusion models to learn an empirical noise distribution directly from detector data and then combine it with a deterministic waveform model to provide an unbiased estimate of the likelihood function. We validate the method by performing inference on a subset of GW parameters from 400 mock observations, containing real LIGO noise from either the Livingston or Hanford detectors. We show that the proposed method can recover the true parameters even in the presence of loud glitches, and that the inference is unbiased over a population of signals without applying any cleaning to the data. This work provides a promising avenue for extracting unbiased source properties in future GW observations over the coming decade., Comment: 10 pages, 3 figures
- Published
- 2024