1. Redshifting the Study of Cold Brown Dwarfs and Exoplanets: the Mid-Infrared Wavelength Region as an Indicator of Surface Gravity and Mass
- Author
-
Leggett, S. K. and Tremblin, Pascal
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
JWST is opening many avenues for exploration. For cold brown dwarfs and exoplanets, JWST has opened the door to the mid-infrared wavelength region, where such objects emit significant energy. For the first time, astronomers have access to mid-infrared spectroscopy for objects colder than 600 K. The first spectra appear to validate the model suite known as ATMO 2020++: atmospheres which include disequilibrium chemistry and have a non-adiabatic pressure-temperature relationship. Preliminary fits to JWST spectroscopy of Y dwarfs show that the slope of the energy distribution from lambda = 4.5 um to lambda = 10 um is very sensitive to gravity. We explore this phenomenon using PH3-free ATMO 2020++ models and updated WISE W2 - W3 colors. We find that an absolute 4.5 um flux measurement constrains temperature, and the ratio of the 4.5 um flux to the 10 - 15 um flux is sensitive to gravity and less sensitive to metallicity. We identify 10 T dwarfs with red W2 - W3 colors which are likely to be very low gravity, young, few-Jupiter-mass objects; one of these is the previously known COCONUTS-2b. The unusual Y dwarf WISEPA J182831.08+265037.8 is blue in W2 - W3 and we find that the 4 to 18 um JWST spectrum is well reproduced if the system is a pair of high gravity 400 K dwarfs. Recently published JWST colors and luminosity-based effective temperatures for late-T and Y dwarfs further corroborate the ATMO 2020++ models, demonstrating the potential for significant improvement in our understanding of cold very low-mass bodies in the solar neighborhood., Comment: Accepted for publication in ApJ, 4 November 2024
- Published
- 2024