1. Sub-threshold states in $^{19}$Ne relevant to $^{18}$F(p,$\alpha$)$^{15}$O
- Author
-
Riley, J. E., Laird, A. M., de Séréville, N., Parikh, A., Fox, S. P., Hammache, F., Stefan, I., Adsley, P., Assié, M., Bastin, B., Boulay, F., Coc, A., Franchoo, S., Garg, R., Gillespie, S. A., Guimaraes, V., Hamadache, C., Hubbard, N., Kiener, J., Lefebvre-Schuhl, A., Santos, F. de Oliveira, Remadi, A., Perrot, L., Suzuki, D., Verde, G., Tatischeff, V., and Williams, M.
- Subjects
Nuclear Experiment ,Astrophysics - Solar and Stellar Astrophysics - Abstract
Classical novae result from thermonuclear explosions producing several $\gamma$-ray emitters which are prime targets for satellites observing in the MeV range. The early 511 keV gamma-ray emission depends critically on the $^{18}$F(p,$\alpha$)$^{15}$O reaction rate which, despite many experimental and theoretical efforts, still remains uncertain. One of the main uncertainties in the $^{18}$F(p,$\alpha$)$^{15}$O reaction rate is the contribution in the Gamow window of interference between sub-threshold $^{19}$Ne states and known broad states at higher energies. Therefore the goal of this work is to clarify the existence and the nature of these sub-threshold states. States in the $^{19}$Ne compound nucleus were studied at the Tandem-ALTO facility using the $^{19}$F($^3$He,t)$^{19}$Ne charge exchange reaction. Tritons were detected with an Enge Split-pole spectrometer while decaying protons or $\alpha$-particles from unbound $^{19}$Ne states were collected, in coincidence, with a double-sided silicon strip detector array. Angular correlations were extracted and constraints on the spin and parity of decaying states established. The coincidence yield at $E_x$ = 6.29 MeV was observed to be high spin, supporting the conclusion that it is indeed a doublet consisting of high spin and low spin components. Evidence for a broad, low spin state was observed around 6 MeV. Branching ratios were extracted for several states above the proton threshold and were found to be consistent with the literature. R-matrix calculations show the relative contribution of sub-threshold states to the astrophysically important energy region above the proton threshold. The levels schemes of $^{19}$Ne and $^{19}$F are still not sufficiently well known and further studies of the analogue assignments are needed. The tentative broad state at 6 MeV may only play a role if the reduced proton width is large.
- Published
- 2020
- Full Text
- View/download PDF