1. Processing and secretion of non-cognate bacteriocins by EnkT, an ABC transporter from a multiple-bacteriocin producer, Enterococcus faecium NKR-5-3.
- Author
-
Sushida H, Sakei M, Perez RH, Ishibashi N, Zendo T, Wilaipun P, Leelawatcharamas V, Nakayama J, and Sonomoto K
- Subjects
- Biological Transport, Fermentation, Protein Sorting Signals, ATP-Binding Cassette Transporters metabolism, Bacteriocins metabolism, Enterococcus faecium metabolism
- Abstract
EnkT is an ATP-binding cassette (ABC) transporter produced by Enterococcus faecium NKR-5-3, which is responsible for the secretion of multiple bacteriocins; enterocins NKR-5-3A, C, D, and Z (Ent53A, C, D, and Z). EnkT has been shown to possess a tolerant recognition mechanism that enables it to secrete the mature Ent53C from a chimeric precursor peptide containing the leader peptide moieties that are derived from different heterologous bacteriocins. In this study, to further characterize EnkT, we aimed to investigate the capacity of EnkT to recognize, process, and secrete non-cognate bacteriocins, which belong to different subclasses of class II. For this, the non-cognate bacteriocin precursor peptides, including enterocin A, pediocin PA-1, lactococcin Q, lactococcin A, and lacticin Q were co-expressed with EnkT, and thereafter, the production of the mature forms of these non-cognate bacteriocins was assessed. Our results revealed that EnkT could potentially recognize, process, and secrete the non-cognate bacteriocins with an exception of the leaderless bacteriocin, lacticin Q. Moreover, the processing and secretion efficiencies of these heterologous non-cognate bacteriocins by EnkT were further enhanced when the leader peptide moiety was replaced with the Ent53C leader peptide (derived from a native NKR-5-3 bacteriocin). The findings of this study describe the wide substrate tolerance of this ABC transporter, EnkT, that can be exploited in the future in establishing effective bacteriocin production systems adaptive to complex fermentation conditions common in many food systems., (Copyright © 2020 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF