1. Recent advances on the physiological and pathophysiological roles of polyunsaturated fatty acids and their biosynthetic pathway.
- Author
-
Lee-Okada HC, Xue C, and Yokomizo T
- Subjects
- Humans, Animals, Delta-5 Fatty Acid Desaturase, Fatty Acids, Unsaturated metabolism, Fatty Acids, Unsaturated biosynthesis, Fatty Acid Desaturases metabolism, Fatty Acid Desaturases genetics, Fatty Acid Elongases metabolism, Fatty Acid Elongases genetics, Biosynthetic Pathways
- Abstract
Polyunsaturated fatty acids (PUFAs)-fatty acids containing multiple double bonds within their carbon chain-are an indispensable component of the cell membrane. PUFAs, including the omega-6 PUFA arachidonic acid (ARA; C20:4n-6) and the omega-3 PUFAs eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3), have been implicated in various (patho)physiological events. These PUFAs are either obtained from the diet or biosynthesized from the essential fatty acids linoleic acid (LA; C18:2n-6) and α-linolenic acid (ALA; C18:3n-3) via enzymatic reactions that are catalyzed by fatty acid elongases (ELOVL2 and ELOVL5) and fatty acid desaturases (FADS1 and FADS2). In this review, we summarize the recent literature studying the role of PUFAs, placing a special emphasis on the newly discovered functions of PUFAs and their biosynthetic pathway as revealed by studies using animal models targeting the PUFA biosynthetic pathway and genetic approaches including genome-wide association studies., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF