4 results on '"Lebet JP"'
Search Results
2. Effects of low energy emission therapy in chronic psychophysiological insomnia.
- Author
-
Pasche B, Erman M, Hayduk R, Mitler MM, Reite M, Higgs L, Kuster N, Rossel C, Dafni U, Amato D, Barbault A, and Lebet JP
- Subjects
- Adult, Female, Humans, Male, Sleep Stages, Sleep, REM, Electromagnetic Fields, Sleep Initiation and Maintenance Disorders therapy
- Abstract
The treatment of chronic psychophysiological insomnia presents a challenge that has not been met using currently available pharmacotherapy. Low energy emission therapy (LEET) has been developed as a potential alternative therapy for this disorder. LEET consists of amplitude-modulated electromagnetic fields delivered intrabuccally by means of an electrically conducting mouthpiece in direct contact with the oral mucosa. The effect of LEET on chronic psychophysiological insomnia was assessed with polysomnography (PSG) and sleep rating forms on a total of 106 patients at two different centers. Active or inactive LEET was administered for 20 minutes in late afternoon three times a week for a total of 12 treatments. Primary efficacy endpoints evaluating the results were changes from baseline in PSG-assessed total sleep time (TST) and sleep latency (SL). Secondary endpoints were changes in sleep efficiency (SE), sleep stages, and reports by the subjects of SL and TST. There was a significant increase in TST as assessed by PSG between baseline and post-treatment values for the active treatment group (76.0 +/- 11.1 minutes, p = 0.0001). The increase for the inactive treatment group was not statistically significant. The TST improvement was significantly greater for the active group when compared to the inactive group (adjusted for baseline TST; p = 0.020. R1 = 0.20). There was a significant decrease in SL as assessed by PSG between baseline and post-treatment values for the active treatment group (-21.6 +/- 5.9 minutes, p = 0.0006), whereas the decrease noted for the inactive treatment group was not statistically significant. The difference in SL decrease between the two treatment groups was marginally significant (adjusted for baseline SL and center, p = 0.068, R2 = 0.60). The number of sleep cycles per night increased by 30% after active treatment (p = 0.0001) but was unchanged following inactive treatment. Subjects did not experience rebound insomnia, and there were no significant side effects. The data presented in this report indicate that LEET administered for 20 minutes three times a week increased TST and reduced SL in chronic psychophysiological insomnia. LEET is safe and well tolerated and it effectively improved the sleep of chronic insomniacs given 12 treatments over a 4-week period by increasing the number of sleep cycles without altering the percentage of the various sleep stages during the night. The therapeutic action of LEET differs from that of currently available drug therapies in that the sleep pattern noted in insomniacs following LEET treatment more closely resembles nocturnal physiological sleep. This novel treatment may offer an attractive alternative therapy for chronic insomnia.
- Published
- 1996
- Full Text
- View/download PDF
3. Electroencephalographic changes following low energy emission therapy.
- Author
-
Lebet JP, Barbault A, Rossel C, Tomic Z, Reite M, Higgs L, Dafni U, Amato D, and Pasche B
- Subjects
- Adult, Aged, Brain physiology, Female, Humans, Male, Middle Aged, Electroencephalography, Electromagnetic Fields, Sleep physiology
- Abstract
Low energy emission therapy (LEET) is a novel approach to delivering low levels of amplitude-modulated electromagnetic fields to the human brain. The sleep electroencephalogram (EEG) effects of a 15-min LEET treatment were investigated in a double-find cross-over study to assess sleep induction. Fifty-two healthy volunteers were exposed to both active and inactive LEET treatment sessions, with a minimum interval of 1 week between the two sessions. Baseline EEGs were obtained, and 15-min posttreatment EEGs were recorded and analyzed according to the Loomis classification. A significant increase in the duration of stage B1 sleep (0.58 +/- 2.42 min [mean +/- SD], p = 0.046), decreased latency to the first 10 sec epoch of sleep (-1.23 +/- 5.32 min, p = 0.051) and decreased latency to sleep stage B2 (-1.21 +/- 5.25 min, p = 0.052) were observed after active treatment. Additionally, establishment of slow waves with progression from stages B to C was significantly more pronounced after active LEET treatment (p = 0.040). A combined analysis of these results with those of an identical study performed in Denver showed that LEET had a significant effect on afternoon sleep induction and maintenance with shorter sleep latencies (decreased latency to the first 10 sec epoch of sleep; -1.00 +/- 5.51 min, p = 0.033; decreased latency to sleep stage B2; -1.49 +/- 5.40 min, p = 0.003), an increased duration of stage B2 (0.67 +/- 2.50 min, p = 0.003), an increase in the total duration of sleep (0.69 +/- 4.21 min, p = 0.049), and a more prominent establishment of slow waves with progression to a deeper sleep stage (p = 0.006). It is concluded that the intermittent 42.7 HZ amplitude modulation of 27.12-MHz electromagnetic fields results in EEG changes consistent with shorter sleep latencies, longer sleep duration, and deeper sleep in healthy subjects.
- Published
- 1996
- Full Text
- View/download PDF
4. Sleep inducing effect of low energy emission therapy.
- Author
-
Reite M, Higgs L, Lebet JP, Barbault A, Rossel C, Kuster N, Dafni U, Amato D, and Pasche B
- Subjects
- Adolescent, Adult, Double-Blind Method, Female, Humans, Male, Middle Aged, Electromagnetic Fields, Equipment and Supplies, Sleep Initiation and Maintenance Disorders therapy
- Abstract
The sleep inducing effect of a 15 min treatment with either an active or an inactive Low Energy Emission Therapy (LEET) device emitting amplitude-modulated electromagnetic (EM) fields was investigated in a double-blind cross-over study performed on 52 healthy subjects. All subjects were exposed to both active and inactive LEET treatment sessions, with an interval of at least 1 week between the two sessions. LEET consists of 27.12 MHz amplitude-modulated (sine wave) EM fields emitted intrabuccally by means of an electrically conducting mouthpiece in direct contact with the oral mucosa. The estimated local peak SAR is less than 10 W/kg in the oral mucosa and 0.1 to 100 mW/kg in brain tissue. No appreciable sensation is experienced during treatment, and subjects are therefore unable to tell whether they are receiving an active or an inactive treatment. In this study the active treatment consisted of EM fields intermittently amplitude-modulated (sine wave) at 42.7 Hz for 3 s followed by a pause of 1 s during which no EM fields were emitted. During the inactive treatment no EM fields were emitted. Baseline EEGs were obtained and 15 min post-treatment EEGs were recorded and analyzed according to the Loomis classification. A significant decrease (paired t test) in sleep latency to stage B2 (-1.78 +/- 5.57 min, P = 0.013), and an increase in the total duration of stage B2 (1.15 +/- 2.47 min, P = 0.0008) were observed on active treatment as compared with inactive treatment.(ABSTRACT TRUNCATED AT 250 WORDS)
- Published
- 1994
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.