9 results on '"Leandro Watanabe"'
Search Results
2. SBML Level 3: an extensible format for the exchange and reuse of biological models
- Author
-
Sarah M Keating, Dagmar Waltemath, Matthias König, Fengkai Zhang, Andreas Dräger, Claudine Chaouiya, Frank T Bergmann, Andrew Finney, Colin S Gillespie, Tomáš Helikar, Stefan Hoops, Rahuman S Malik‐Sheriff, Stuart L Moodie, Ion I Moraru, Chris J Myers, Aurélien Naldi, Brett G Olivier, Sven Sahle, James C Schaff, Lucian P Smith, Maciej J Swat, Denis Thieffry, Leandro Watanabe, Darren J Wilkinson, Michael L Blinov, Kimberly Begley, James R Faeder, Harold F Gómez, Thomas M Hamm, Yuichiro Inagaki, Wolfram Liebermeister, Allyson L Lister, Daniel Lucio, Eric Mjolsness, Carole J Proctor, Karthik Raman, Nicolas Rodriguez, Clifford A Shaffer, Bruce E Shapiro, Joerg Stelling, Neil Swainston, Naoki Tanimura, John Wagner, Martin Meier‐Schellersheim, Herbert M Sauro, Bernhard Palsson, Hamid Bolouri, Hiroaki Kitano, Akira Funahashi, Henning Hermjakob, John C Doyle, Michael Hucka, SBML Level 3 Community members, Richard R Adams, Nicholas A Allen, Bastian R Angermann, Marco Antoniotti, Gary D Bader, Jan Červený, Mélanie Courtot, Chris D Cox, Piero Dalle Pezze, Emek Demir, William S Denney, Harish Dharuri, Julien Dorier, Dirk Drasdo, Ali Ebrahim, Johannes Eichner, Johan Elf, Lukas Endler, Chris T Evelo, Christoph Flamm, Ronan MT Fleming, Martina Fröhlich, Mihai Glont, Emanuel Gonçalves, Martin Golebiewski, Hovakim Grabski, Alex Gutteridge, Damon Hachmeister, Leonard A Harris, Benjamin D Heavner, Ron Henkel, William S Hlavacek, Bin Hu, Daniel R Hyduke, Hidde de Jong, Nick Juty, Peter D Karp, Jonathan R Karr, Douglas B Kell, Roland Keller, Ilya Kiselev, Steffen Klamt, Edda Klipp, Christian Knüpfer, Fedor Kolpakov, Falko Krause, Martina Kutmon, Camille Laibe, Conor Lawless, Lu Li, Leslie M Loew, Rainer Machne, Yukiko Matsuoka, Pedro Mendes, Huaiyu Mi, Florian Mittag, Pedro T Monteiro, Kedar Nath Natarajan, Poul MF Nielsen, Tramy Nguyen, Alida Palmisano, Jean‐Baptiste Pettit, Thomas Pfau, Robert D Phair, Tomas Radivoyevitch, Johann M Rohwer, Oliver A Ruebenacker, Julio Saez‐Rodriguez, Martin Scharm, Henning Schmidt, Falk Schreiber, Michael Schubert, Roman Schulte, Stuart C Sealfon, Kieran Smallbone, Sylvain Soliman, Melanie I Stefan, Devin P Sullivan, Koichi Takahashi, Bas Teusink, David Tolnay, Ibrahim Vazirabad, Axel von Kamp, Ulrike Wittig, Clemens Wrzodek, Finja Wrzodek, Ioannis Xenarios, Anna Zhukova, and Jeremy Zucker
- Subjects
computational modeling ,file format ,interoperability ,reproducibility ,systems biology ,Biology (General) ,QH301-705.5 ,Medicine (General) ,R5-920 - Abstract
Abstract Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction‐based models and packages that extend the core with features suited to other model types including constraint‐based models, reaction‐diffusion models, logical network models, and rule‐based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single‐cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution.
- Published
- 2020
- Full Text
- View/download PDF
3. Toward reproducible disease models using the Systems Biology Markup Language
- Author
-
Chris J. Myers, Jacob Barhak, and Leandro Watanabe
- Subjects
0301 basic medicine ,Markup language ,Computer science ,Systems biology ,Microsimulation ,02 engineering and technology ,Disease ,Markov model ,Computer Graphics and Computer-Aided Design ,Data science ,020202 computer hardware & architecture ,03 medical and health sciences ,030104 developmental biology ,Modeling and Simulation ,0202 electrical engineering, electronic engineering, information engineering ,SBML ,Software - Abstract
Disease modelers have been modeling progression of diseases for several decades using such tools as Markov models or microsimulation. However, they need to address a serious challenge; many models they create are not reproducible. Moreover, there is no proper practice that ensures reproducible models, since modelers rely on loose guidelines that change periodically, rather than well-defined machine-readable standards. The Systems Biology Markup Language (SBML) is one such standard that allows exchange of models between different software tools. Recently, the SBML Arrays package has been developed, which extends the standard to allow handling simulation of populations. This paper demonstrates through several abstract examples how microsimulation disease models can be encoded using the SBML Arrays package, enabling reproducible disease modeling.
- Published
- 2018
- Full Text
- View/download PDF
4. SBML Level 3: an extensible format for the exchange and reuse of biological models
- Author
-
Edda Klipp, Marco Antoniotti, Frank Bergmann, James C. Schaff, Peter D. Karp, Daniel Lucio, Kedar Nath Natarajan, Thomas M. Hamm, Leandro Watanabe, Henning Hermjakob, David Tolnay, John Wagner, Joerg Stelling, Alida Palmisano, Falk Schreiber, Yukiko Matsuoka, Harold F. Gómez, Huaiyu Mi, Carole J. Proctor, Ulrike Wittig, Neil Swainston, Jan Červený, Denis Thieffry, Piero Dalle Pezze, Julio Saez-Rodriguez, Maciej J. Swat, Bin Hu, Martina Kutmon, Thomas Pfau, Bas Teusink, Sarah M. Keating, Fedor A. Kolpakov, Andreas Dräger, Pedro Mendes, Martin Scharm, Emek Demir, Ioannis Xenarios, Christoph Flamm, Axel von Kamp, Darren J. Wilkinson, Nick Juty, Fengkai Zhang, Leonard A. Harris, Michael Schubert, Dagmar Waltemath, Lucian P. Smith, Steffen Klamt, Herbert M. Sauro, Ali Ebrahim, Wolfram Liebermeister, Christian Knüpfer, Nicolas Rodriguez, Tramy Nguyen, Naoki Tanimura, Christopher Cox, Stuart C. Sealfon, Nicholas Alexander Allen, Clemens Wrzodek, Bastian R. Angermann, Martin Meier-Schellersheim, Anna Zhukova, Jean-Baptiste Pettit, Hovakim Grabski, Devin P. Sullivan, Claudine Chaouiya, Michael L. Blinov, John Doyle, Ilya Kiselev, Roman Schulte, Alex Gutteridge, Mélanie Courtot, Eric Mjolsness, Finja Wrzodek, Rahuman S Malik-Sheriff, Ronan M. T. Fleming, Bruce E. Shapiro, Kimberly Begley, Leslie M. Loew, Colin S. Gillespie, Ibrahim Vazirabad, Michael Hucka, Akira Funahashi, Bernhard O. Palsson, Hamid Bolouri, Tomáš Helikar, Camille Laibe, William S. Denney, Chris T. Evelo, Florian Mittag, William S. Hlavacek, Ron Henkel, Harish Dharuri, Julien Dorier, Karthik Raman, Martina Fröhlich, Conor Lawless, Rainer Machné, Falko Krause, Damon Hachmeister, Matthias König, Clifford A. Shaffer, Benjamin D. Heavner, Douglas B. Kell, Jonathan R. Karr, Mihai Glont, Lukas Endler, Melanie I. Stefan, Robert Phair, Lu Li, Henning Schmidt, Dirk Drasdo, Johan Elf, Allyson L. Lister, Hiroaki Kitano, Richard R. Adams, Oliver A. Ruebenacker, Roland Keller, Sven Sahle, Ion I. Moraru, Gary D. Bader, Poul M. F. Nielsen, Johann M. Rohwer, Johannes Eichner, Daniel R. Hyduke, James R. Faeder, Stefan Hoops, Emanuel Gonçalves, Yuichiro Inagaki, Aurélien Naldi, Koichi Takahashi, Sylvain Soliman, Brett G. Olivier, Kieran Smallbone, Stuart L. Moodie, Pedro T. Monteiro, Chris J. Myers, Martin Golebiewski, Tomas Radivoyevitch, Jeremy Zucker, Hidde de Jong, Andrew Finney, Keating, S, Waltemath, D, König, M, Zhang, F, Dräger, A, Chaouiya, C, Bergmann, F, Finney, A, Gillespie, C, Helikar, T, Hoops, S, Malik-Sheriff, R, Moodie, S, Moraru, I, Myers, C, Naldi, A, Olivier, B, Sahle, S, Schaff, J, Smith, L, Swat, M, Thieffry, D, Watanabe, L, Wilkinson, D, Blinov, M, Begley, K, Faeder, J, Gómez, H, Hamm, T, Inagaki, Y, Liebermeister, W, Lister, A, Lucio, D, Mjolsness, E, Proctor, C, Raman, K, Rodriguez, N, Shaffer, C, Shapiro, B, Stelling, J, Swainston, N, Tanimura, N, Wagner, J, Meier-Schellersheim, M, Sauro, H, Palsson, B, Bolouri, H, Kitano, H, Funahashi, A, Hermjakob, H, Doyle, J, Hucka, M, Adams, R, Allen, N, Angermann, B, Antoniotti, M, Bader, G, Červený, J, Courtot, M, Cox, C, Dalle Pezze, P, Demir, E, Denney, W, Dharuri, H, Dorier, J, Drasdo, D, Ebrahim, A, Eichner, J, Elf, J, Endler, L, Evelo, C, Flamm, C, Fleming, R, Fröhlich, M, Glont, M, Gonçalves, E, Golebiewski, M, Grabski, H, Gutteridge, A, Hachmeister, D, Harris, L, Heavner, B, Henkel, R, Hlavacek, W, Hu, B, Hyduke, D, Jong, H, Juty, N, Karp, P, Karr, J, Kell, D, Keller, R, Kiselev, I, Klamt, S, Klipp, E, Knüpfer, C, Kolpakov, F, Krause, F, Kutmon, M, Laibe, C, Lawless, C, Li, L, Loew, L, Machne, R, Matsuoka, Y, Mendes, P, Mi, H, Mittag, F, Monteiro, P, Natarajan, K, Nielsen, P, Nguyen, T, Palmisano, A, Jean-Baptiste, P, Pfau, T, Phair, R, Radivoyevitch, T, Rohwer, J, Ruebenacker, O, Saez-Rodriguez, J, Scharm, M, Schmidt, H, Schreiber, F, Schubert, M, Schulte, R, Sealfon, S, Smallbone, K, Soliman, S, Stefan, M, Sullivan, D, Takahashi, K, Teusink, B, Tolnay, D, Vazirabad, I, Kamp, A, Wittig, U, Wrzodek, C, Wrzodek, F, Xenarios, I, Zhukova, A, Zucker, J, European Bioinformatics Institute [Hinxton] (EMBL-EBI), EMBL Heidelberg, Heidelberg University Hospital [Heidelberg], Swiss Institute of Bioinformatics [Lausanne] (SIB), Université de Lausanne = University of Lausanne (UNIL), European Molecular Biology Laboratory (EMBL), University of Connecticut (UCONN), National Institutes of Health [Bethesda] (NIH), Chercheur indépendant, Amazon Web Services [Seattle] (AWS), Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB), University of Toronto, Masaryk University [Brno] (MUNI), Terry Fox Laboratory, BC Cancer Agency (BCCRC)-British Columbia Cancer Agency Research Centre, The University of Tennessee [Knoxville], The Babraham Institute [Cambridge, UK], Oregon Health and Science University [Portland] (OHSU), Human Predictions LLC, Illumina, Swiss-Prot Group, Swiss Institute of Bioinformatics [Genève] (SIB), Modelling and Analysis for Medical and Biological Applications (MAMBA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), University of California [San Diego] (UC San Diego), University of California (UC), Center for Bioinformatics (ZBIT), Eberhard Karls Universität Tübingen = Eberhard Karls University of Tuebingen, Uppsala University, Institut für Populationsgenetik [Vienna], Veterinärmedizinische Universität Wien, Maastricht University [Maastricht], Alpen-Adria-Universität Klagenfurt [Klagenfurt, Austria], Medizinische Universität Wien = Medical University of Vienna, German Cancer Research Center - Deutsches Krebsforschungszentrum [Heidelberg] (DKFZ), Heidelberg Institute for Theoretical Studies (HITS ), Russian-Armenian University (RAU), GlaxoSmithKline [Stevenage, UK] (GSK), GlaxoSmithKline [Headquarters, London, UK] (GSK), Microsoft Technology Licensing (MTL), Microsoft Corporation [Redmond, Wash.], Vanderbilt University School of Medicine [Nashville], University of Washington [Seattle], University of Rostock, Los Alamos National Laboratory (LANL), Lorentz Institute, Universiteit Leiden, Tegmine Therapeutics, Modeling, simulation, measurement, and control of bacterial regulatory networks (IBIS), Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Jean Roget, SRI International [Menlo Park] (SRI), Icahn School of Medicine at Mount Sinai [New York] (MSSM), University of Liverpool, Universitätsklinikum Tübingen - University Hospital of Tübingen, Institute of Information and Computational Technologies (IICT), Max Planck Institute for Dynamics of Complex Technical Systems, Max-Planck-Gesellschaft, Max-Planck-Institut für Molekulare Genetik (MPIMG), Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany], Humboldt University Of Berlin, Newcastle University [Newcastle], École polytechnique (X), Heinrich Heine Universität Düsseldorf = Heinrich Heine University [Düsseldorf], The Systems Biology Institute [Tokyo] (SBI), Centro de Quimica Estrutural (CQE), Instituto Superior Técnico, Universidade Técnica de Lisboa (IST), University of Southern California (USC), Instituto Gulbenkian de Ciência [Oeiras] (IGC), Fundação Calouste Gulbenkian, University of Southern Denmark (SDU), University of Auckland [Auckland], University of Utah, Virginia Tech [Blacksburg], University of Luxembourg [Luxembourg], Integrative Bioinformatics Inc [Mountain View], Cleveland Clinic, Stellenbosch University, Broad Institute of MIT and Harvard (BROAD INSTITUTE), Harvard Medical School [Boston] (HMS)-Massachusetts Institute of Technology (MIT)-Massachusetts General Hospital [Boston], Universität Heidelberg [Heidelberg] = Heidelberg University, Leibniz Institute of Plant Genetics and Crop Plant Research [Gatersleben] (IPK-Gatersleben), Laboratoire de Biologie du Développement de Villefranche sur mer (LBDV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Mount Sinai School of Medicine, Department of Psychiatry-Icahn School of Medicine at Mount Sinai [New York] (MSSM), University of Manchester [Manchester], Computational systems biology and optimization (Lifeware), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), California Institute of Technology (CALTECH), Encodia Inc [San Diego], Shinshu University [Nagano], University of Amsterdam [Amsterdam] (UvA), Versiti Blood Center of Wisconsin, Greifswald University Hospital, Bioinformatique évolutive - Evolutionary Bioinformatics, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Pacific Northwest National Laboratory (PNNL), National Institute of Allergy and Infectious Diseases [Bethesda] (NIAID-NIH), Department of Bioengineering, University of California (UC)-University of California (UC), ANSYS, Virginia Polytechnic Institute and State University [Blacksburg], Eight Pillars Ltd, Center for Integrative Genomics - Institute of Bioinformatics, Génopode (CIG), Université de Lausanne = University of Lausanne (UNIL)-Université de Lausanne = University of Lausanne (UNIL), Universität Heidelberg, Bioquant, Applied Biomathematics [New York], SimCYP Ltd, Institut de biologie de l'ENS Paris (IBENS), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), University of Utah School of Medicine [Salt Lake City], University of Pittsburgh School of Medicine, Pennsylvania Commonwealth System of Higher Education (PCSHE), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Mizuho Information and Research Institute, Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] (MaIAGE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Oxford, Computer Science (North Carolina State University), North Carolina State University [Raleigh] (NC State), University of North Carolina System (UNC)-University of North Carolina System (UNC), University of California [Irvine] (UC Irvine), Indian Institute of Technology Madras (IIT Madras), California State University [Northridge] (CSUN), Biotechnology and Biological Sciences Research Council (BBSRC), IBM Research [Melbourne], Benaroya Research Institute [Seattle] (BRI), Okinawa Institute of Science and Technology Graduate University, Keio University, Department of Computing and Mathematical sciences, members, SBML Level 3 Community, Université de Lausanne (UNIL), Università degli Studi di Milano-Bicocca [Milano] (UNIMIB), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), University of California, Universiteit Leiden [Leiden], Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Inria Grenoble - Rhône-Alpes, Humboldt University of Berlin, Universität Heidelberg [Heidelberg], Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Humboldt-Universität zu Berlin, University of California-University of California, Université de Lausanne (UNIL)-Université de Lausanne (UNIL), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), University of Oxford [Oxford], University of California [Irvine] (UCI), Biotechnology and Biological Sciences Research Council, Computer Science, Institut de biologie de l'ENS Paris (UMR 8197/1024) (IBENS), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
- Subjects
computational modeling ,Medicine (General) ,Markup language ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,INFORMATION ,Interoperability ,interoperability ,Review ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,ANNOTATION ,0302 clinical medicine ,Software ,file forma ,Models ,Biology (General) ,0303 health sciences ,Computational model ,Applied Mathematics ,Systems Biology ,systems biology ,File format ,3. Good health ,Networking and Information Technology R&D ,Networking and Information Technology R&D (NITRD) ,Computational Theory and Mathematics ,SIMULATION ,General Agricultural and Biological Sciences ,STANDARDS ,REPOSITORY ,Information Systems ,QH301-705.5 ,Bioinformatics ,Systems biology ,Software ecosystem ,Reviews ,Bioengineering ,Methods & Resources ,Biology ,MARKUP LANGUAGE ,Models, Biological ,SBML Level 3 Community members ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,R5-920 ,Animals ,Humans ,SBML ,reproducibility ,030304 developmental biology ,ENVIRONMENT ,General Immunology and Microbiology ,file format ,business.industry ,Computational Biology ,Biological ,ONTOLOGY ,Metabolism ,Logistic Models ,Biochemistry and Cell Biology ,Other Biological Sciences ,Software engineering ,business ,030217 neurology & neurosurgery - Abstract
Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction‐based models and packages that extend the core with features suited to other model types including constraint‐based models, reaction‐diffusion models, logical network models, and rule‐based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single‐cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution., Over the past two decades, scientists from different fields have been developing SBML, a standard format for encoding computational models in biology and medicine. This article summarizes recent progress and gives perspectives on emerging challenges.
- Published
- 2020
- Full Text
- View/download PDF
5. SBML Level 3: an extensible format for the exchange and reuse of biological models
- Author
-
Sarah M, Keating, Dagmar, Waltemath, Matthias, König, Fengkai, Zhang, Andreas, Dräger, Claudine, Chaouiya, Frank T, Bergmann, Andrew, Finney, Colin S, Gillespie, Tomáš, Helikar, Stefan, Hoops, Rahuman S, Malik‐Sheriff, Stuart L, Moodie, Ion I, Moraru, Chris J, Myers, Aurélien, Naldi, Brett G, Olivier, Sven, Sahle, James C, Schaff, Lucian P, Smith, Maciej J, Swat, Denis, Thieffry, Leandro, Watanabe, Darren J, Wilkinson, Michael L, Blinov, Kimberly, Begley, James R, Faeder, Harold F, Gómez, Thomas M, Hamm, Yuichiro, Inagaki, Wolfram, Liebermeister, Allyson L, Lister, Daniel, Lucio, Eric, Mjolsness, Carole J, Proctor, Karthik, Raman, Nicolas, Rodriguez, Clifford A, Shaffer, Bruce E, Shapiro, Joerg, Stelling, Neil, Swainston, Naoki, Tanimura, John, Wagner, Martin, Meier‐Schellersheim, Herbert M, Sauro, Bernhard, Palsson, Hamid, Bolouri, Hiroaki, Kitano, Akira, Funahashi, Henning, Hermjakob, John C, Doyle, Michael, Hucka, Richard R, Adams, Nicholas A, Allen, Bastian R, Angermann, Marco, Antoniotti, Gary D, Bader, Jan, Červený, Mélanie, Courtot, Chris D, Cox, Piero, Dalle Pezze, Emek, Demir, William S, Denney, Harish, Dharuri, Julien, Dorier, Dirk, Drasdo, Ali, Ebrahim, Johannes, Eichner, Johan, Elf, Lukas, Endler, Chris T, Evelo, Christoph, Flamm, Ronan MT, Fleming, Martina, Fröhlich, Mihai, Glont, Emanuel, Gonçalves, Martin, Golebiewski, Hovakim, Grabski, Alex, Gutteridge, Damon, Hachmeister, Leonard A, Harris, Benjamin D, Heavner, Ron, Henkel, William S, Hlavacek, Bin, Hu, Daniel R, Hyduke, Hidde, Jong, Nick, Juty, Peter D, Karp, Jonathan R, Karr, Douglas B, Kell, Roland, Keller, Ilya, Kiselev, Steffen, Klamt, Edda, Klipp, Christian, Knüpfer, Fedor, Kolpakov, Falko, Krause, Martina, Kutmon, Camille, Laibe, Conor, Lawless, Lu, Li, Leslie M, Loew, Rainer, Machne, Yukiko, Matsuoka, Pedro, Mendes, Huaiyu, Mi, Florian, Mittag, Pedro T, Monteiro, Kedar Nath, Natarajan, Poul MF, Nielsen, Tramy, Nguyen, Alida, Palmisano, Jean‐Baptiste, Pettit, Thomas, Pfau, Robert D, Phair, Tomas, Radivoyevitch, Johann M, Rohwer, Oliver A, Ruebenacker, Julio, Saez‐Rodriguez, Martin, Scharm, Henning, Schmidt, Falk, Schreiber, Michael, Schubert, Roman, Schulte, Stuart C, Sealfon, Kieran, Smallbone, Sylvain, Soliman, Melanie I, Stefan, Devin P, Sullivan, Koichi, Takahashi, Bas, Teusink, David, Tolnay, Ibrahim, Vazirabad, Axel, Kamp, Ulrike, Wittig, Clemens, Wrzodek, Finja, Wrzodek, Ioannis, Xenarios, Takahiro G, Yamada, Anna, Zhukova, Jeremy, Zucker, Sarah M, Keating, Dagmar, Waltemath, Matthias, König, Fengkai, Zhang, Andreas, Dräger, Claudine, Chaouiya, Frank T, Bergmann, Andrew, Finney, Colin S, Gillespie, Tomáš, Helikar, Stefan, Hoops, Rahuman S, Malik‐Sheriff, Stuart L, Moodie, Ion I, Moraru, Chris J, Myers, Aurélien, Naldi, Brett G, Olivier, Sven, Sahle, James C, Schaff, Lucian P, Smith, Maciej J, Swat, Denis, Thieffry, Leandro, Watanabe, Darren J, Wilkinson, Michael L, Blinov, Kimberly, Begley, James R, Faeder, Harold F, Gómez, Thomas M, Hamm, Yuichiro, Inagaki, Wolfram, Liebermeister, Allyson L, Lister, Daniel, Lucio, Eric, Mjolsness, Carole J, Proctor, Karthik, Raman, Nicolas, Rodriguez, Clifford A, Shaffer, Bruce E, Shapiro, Joerg, Stelling, Neil, Swainston, Naoki, Tanimura, John, Wagner, Martin, Meier‐Schellersheim, Herbert M, Sauro, Bernhard, Palsson, Hamid, Bolouri, Hiroaki, Kitano, Akira, Funahashi, Henning, Hermjakob, John C, Doyle, Michael, Hucka, Richard R, Adams, Nicholas A, Allen, Bastian R, Angermann, Marco, Antoniotti, Gary D, Bader, Jan, Červený, Mélanie, Courtot, Chris D, Cox, Piero, Dalle Pezze, Emek, Demir, William S, Denney, Harish, Dharuri, Julien, Dorier, Dirk, Drasdo, Ali, Ebrahim, Johannes, Eichner, Johan, Elf, Lukas, Endler, Chris T, Evelo, Christoph, Flamm, Ronan MT, Fleming, Martina, Fröhlich, Mihai, Glont, Emanuel, Gonçalves, Martin, Golebiewski, Hovakim, Grabski, Alex, Gutteridge, Damon, Hachmeister, Leonard A, Harris, Benjamin D, Heavner, Ron, Henkel, William S, Hlavacek, Bin, Hu, Daniel R, Hyduke, Hidde, Jong, Nick, Juty, Peter D, Karp, Jonathan R, Karr, Douglas B, Kell, Roland, Keller, Ilya, Kiselev, Steffen, Klamt, Edda, Klipp, Christian, Knüpfer, Fedor, Kolpakov, Falko, Krause, Martina, Kutmon, Camille, Laibe, Conor, Lawless, Lu, Li, Leslie M, Loew, Rainer, Machne, Yukiko, Matsuoka, Pedro, Mendes, Huaiyu, Mi, Florian, Mittag, Pedro T, Monteiro, Kedar Nath, Natarajan, Poul MF, Nielsen, Tramy, Nguyen, Alida, Palmisano, Jean‐Baptiste, Pettit, Thomas, Pfau, Robert D, Phair, Tomas, Radivoyevitch, Johann M, Rohwer, Oliver A, Ruebenacker, Julio, Saez‐Rodriguez, Martin, Scharm, Henning, Schmidt, Falk, Schreiber, Michael, Schubert, Roman, Schulte, Stuart C, Sealfon, Kieran, Smallbone, Sylvain, Soliman, Melanie I, Stefan, Devin P, Sullivan, Koichi, Takahashi, Bas, Teusink, David, Tolnay, Ibrahim, Vazirabad, Axel, Kamp, Ulrike, Wittig, Clemens, Wrzodek, Finja, Wrzodek, Ioannis, Xenarios, Takahiro G, Yamada, Anna, Zhukova, and Jeremy, Zucker
- Abstract
Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution., source:https://www.embopress.org/doi/full/10.15252/msb.20199110
- Published
- 2020
6. Efficient Analysis of Systems Biology Markup Language Models of Cellular Populations Using Arrays
- Author
-
Chris J. Myers and Leandro Watanabe
- Subjects
0301 basic medicine ,Structure (mathematical logic) ,education.field_of_study ,Markup language ,Theoretical computer science ,Computer science ,Systems biology ,Systems Biology ,Population ,Biomedical Engineering ,02 engineering and technology ,General Medicine ,Biochemistry, Genetics and Molecular Biology (miscellaneous) ,Models, Biological ,020202 computer hardware & architecture ,Variety (cybernetics) ,03 medical and health sciences ,030104 developmental biology ,Chromosome (genetic algorithm) ,0202 electrical engineering, electronic engineering, information engineering ,Programming Languages ,SBML ,education ,Software - Abstract
The Systems Biology Markup Language (SBML) has been widely used for modeling biological systems. Although SBML has been successful in representing a wide variety of biochemical models, the core standard lacks the structure for representing large complex regular systems in a standard way, such as whole-cell and cellular population models. These models require a large number of variables to represent certain aspects of these types of models, such as the chromosome in the whole-cell model and the many identical cell models in a cellular population. While SBML core is not designed to handle these types of models efficiently, the proposed SBML arrays package can represent such regular structures more easily. However, in order to take full advantage of the package, analysis needs to be aware of the arrays structure. When expanding the array constructs within a model, some of the advantages of using arrays are lost. This paper describes a more efficient way to simulate arrayed models. To illustrate the proposed method, this paper uses a population of repressilator and genetic toggle switch circuits as examples. Results show that there are memory benefits using this approach with a modest cost in runtime.
- Published
- 2016
7. Toward community standards and software for whole-cell modeling
- Author
-
Vasundra Touré, Matteo Cantarelli, Argyris Zardilis, Bertrand Moreau, Arthur P. Goldberg, Milenko Tokic, Pınar Pir, Dagmar Waltemath, Kieran Smallbone, Jens Hahn, Kambiz Baghalian, Daewon Lee, Naveen K. Aranganathan, Vijayalakshmi Chelliah, Arne T. Bittig, Namrata Tomar, Anna Zhukova, Florian Wendland, Marcus Krantz, Yan Zhu, Mahesh C. Sharma, Wolfram Liebermeister, Frank Bergmann, Joseph Cursons, Rafael S. Costa, Matthias König, Leandro Watanabe, Pedro Mendes, Natalie J. Stanford, James T. Yurkovich, Falk Schreiber, Harold F. Gómez, J. Kyle Medley, Martin Scharm, Vincent Knight-Schrijver, Denis Kazakiewicz, Ilya Kiselev, Jannis Uhlendorf, Daniel Alejandro Priego-Espinosa, Chris J. Myers, Sucheendra K. Palaniappan, Hojjat Naderi-Meshkin, Michael Hucka, Thawfeek M. Varusai, Nikita Mandrik, Markus Wolfien, Begum Alaybeyoglu, Paulo E. Pinto Burke, Daniel Federico Hernandez Gardiol, Audald Lloret-Villas, Tom Theile, Tuure Hameri, Christian Knüpfer, Jonathan R. Karr, Je-Hoon Song, Yin Hoon Chew, and Tobias Czauderna
- Subjects
Male ,0301 basic medicine ,Standards ,Markup language ,Computer science ,Systems biology ,Cytological Techniques ,0206 medical engineering ,Biomedical Engineering ,02 engineering and technology ,Models, Biological ,Article ,Education ,Computational science ,03 medical and health sciences ,Whole-cell modeling ,Software ,Humans ,Computer Simulation ,Community standards ,business.industry ,Systems Biology ,Computational Biology ,3. Good health ,030104 developmental biology ,computational biology ,education ,simulation ,standards ,systems biology ,whole-cell (WC) modeling ,Female ,ddc:004 ,Whole cell ,Software engineering ,business ,Simulation ,020602 bioinformatics - Abstract
Objective: Whole-cell (WC) modeling is a promising tool for biological research, bioengineering, and medicine. However, substantial work remains to create accurate comprehensive models of complex cells. Methods: We organized the 2015 Whole-Cell Modeling Summer School to teach WC modeling and evaluate the need for new WC modeling standards and software by recoding a recently published WC model in the Systems Biology Markup Language. Results: Our analysis revealed several challenges to representing WC models using the current standards. Conclusion: We, therefore, propose several new WC modeling standards, software, and databases. Significance: We anticipate that these new standards and software will enable more comprehensive models. The Rostock and Utah meetings were supported by the Volkswagen Foundation (Grant 88495 to D. Waltemath and F. Schreiber). The work of J. R. Karr was supported by the James S. McDonnell Foundation Postdoctoral Fellowship Award in Studying Complex Systems and the National Science Foundation under Grant 1548123. The work of J. Cursons was supported by the Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology through Project CE140100036. Asterisk indicates corresponding authors.
- Published
- 2016
8. JSBML 1.0: providing a smorgasbord of options to encode systems biology models
- Author
-
Sebastian Fröhlich, Andreas Dräger, Alex Thomas, Alexander Diamantikos, Clemens Wrzodek, Jakob Matthes, Bernhard O. Palsson, Roland Keller, Chris J. Myers, Nathan E. Lewis, Finja Wrzodek, Johannes Eichner, Eugen Netz, Michael Hucka, Harold F. Gómez, Leandro Watanabe, Florian Mittag, Jan Daniel Rudolph, Victor Kofia, Nicolas Rodriguez, Ibrahim Vazirabad, and Nicolas Le Novère
- Subjects
Statistics and Probability ,Source code ,Markup language ,Java ,Computer science ,Bioinformatics ,media_common.quotation_subject ,0206 medical engineering ,02 engineering and technology ,Models, Biological ,Biochemistry ,Mathematical Sciences ,World Wide Web ,03 medical and health sciences ,Software ,Documentation ,Models ,Information and Computing Sciences ,Systems Biology Ontology ,Computer Simulation ,SBML ,Molecular Biology ,030304 developmental biology ,computer.programming_language ,media_common ,0303 health sciences ,business.industry ,Systems Biology ,BioModels Database ,Biological Sciences ,Biological ,Applications Notes ,Computer Science Applications ,Computational Mathematics ,Networking and Information Technology R&D ,Computational Theory and Mathematics ,Programming Languages ,Software engineering ,business ,computer ,020602 bioinformatics - Abstract
Summary: JSBML, the official pure Java programming library for the Systems Biology Markup Language (SBML) format, has evolved with the advent of different modeling formalisms in systems biology and their ability to be exchanged and represented via extensions of SBML. JSBML has matured into a major, active open-source project with contributions from a growing, international team of developers who not only maintain compatibility with SBML, but also drive steady improvements to the Java interface and promote ease-of-use with end users. Availability and implementation: Source code, binaries and documentation for JSBML can be freely obtained under the terms of the LGPL 2.1 from the website http://sbml.org/Software/JSBML. More information about JSBML can be found in the user guide at http://sbml.org/Software/JSBML/docs/. Contact: jsbml-development@googlegroups.com or andraeger@eng.ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online.
- Published
- 2015
- Full Text
- View/download PDF
9. Hierarchical Stochastic Simulation Algorithm for SBML Models of Genetic Circuits
- Author
-
Leandro Watanabe and Chris J. Myers
- Subjects
Histology ,Computer science ,Process (engineering) ,lcsh:Biotechnology ,Population ,Biomedical Engineering ,Bioengineering ,Flattening ,SBML ,genetic circuits ,discrete-event simulation ,lcsh:TP248.13-248.65 ,Stochastic simulation ,Methods Article ,Discrete event simulation ,education ,Electronic circuit ,education.field_of_study ,Hierarchy (mathematics) ,Bioengineering and Biotechnology ,stochastic simulation ,hierarchical simulation ,Algorithm ,population modeling ,Biotechnology - Abstract
This paper describes a hierarchical stochastic simulation algorithm which has been implemented within iBioSim, a tool used to model, analyze, and visualize genetic circuits. Many biological analysis tools flatten out hierarchy before simulation, but there are many disadvantages associated with this approach. First, the memory required to represent the model can quickly expand in the process. Second, the flattening process is computationally expensive. Finally, when modeling a dynamic cellular population within iBioSim, inlining the hierarchy of the model is inefficient since models must grow dynamically over time. This paper discusses a new approach to handle hierarchy on the fly to make the tool faster and more memory-efficient. This approach yields significant performance improvements as compared to the former flat analysis method.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.