In a previous paper [1] Chang and the present author presented a system of infinite valued predicate logic, the truth values being the closed interval [0, 1] of real numbers. That paper was the result of an investigation attempting to establish the completeness of the system using the real number 1 as the sole designated value. In fact, we fell short of our mark and proved a weakened form of completeness utilizing positive segments, [0, a], of linearly ordered abelian groups as admissible truth values. A result of Scarpellini [8], however, showing that the set of well-formed formulas of infinite valued logic valid (with respect to the sole designated real number 1) is not recursively enumerable indicates the above mentioned result is the best possible.