1. Phase dynamics near a parity-breaking instability
- Author
-
Wouter-Jan Rappel, Laurent Fourtune, Marc Rabaud, Laboratoire de Physique Statistique de l'ENS (LPS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Viscous fingering ,Amplitude ,Condensed matter physics ,Phase dynamics ,Wavenumber ,Regular array ,Parity (physics) ,[NLIN]Nonlinear Sciences [physics] ,Instability ,Bifurcation - Abstract
In a directional viscous fingering experiment, a phase diffusion behavior of the regular array of cells is demonstrated. At constant wave number, the evolution of the phase diffusion coefficient D with the parameter of the instability \ensuremath{\epsilon} is reported. This coefficient D is found to decrease at low \ensuremath{\epsilon} values in agreement with the presence of an Eckhaus instability, but to increase strongly at large \ensuremath{\epsilon} values. This unusual increase of D is also present in the analytical and numerical study of two coupled amplitude equations for the modes k and 2k. The phase diffusion coefficient is found to diverge at the threshold of the parity-breaking bifurcation.
- Published
- 1994
- Full Text
- View/download PDF