1. Bio-oil hydrodeoxygenation: Adsorption of phenolic compounds on sulfided (Co)Mo catalysts
- Author
-
Andrey G. Popov, Arnaud Travert, Elena Kondratieva, Françoise Maugé, Jean Michel Goupil, Jaafar El Fallah, Jean-Pierre Gilson, Laurence Mariey, Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire catalyse et spectrochimie (LCS), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Université de Caen Normandie (UNICAEN), and Normandie Université (NU)
- Subjects
Sulfide catalyst ,Sulfide ,Catalyst support ,Inorganic chemistry ,adsorption mode ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,HDO ,Catalysis ,chemistry.chemical_compound ,Adsorption ,phenol ,[CHIM]Chemical Sciences ,Phenol ,Organic chemistry ,Physical and Theoretical Chemistry ,guaiacol ,chemistry.chemical_classification ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,IR spectroscopy ,Guaiacol ,deactivation ,0210 nano-technology ,Pyrolysis ,Hydrodeoxygenation - Abstract
International audience; This paper reports the interaction of aromatic compounds (as phenol, ethylphenols, and guaiacol) representative of oxygenated functions of pyrolysis bio-oils, with sulfided (Co)Mo/Al2O3 catalyst in order to determine the origin of catalyst deactivation in hydrodeoxygenation (HDO) reaction. Infrared spectroscopy shows that all the studied phenolic compounds anchor on the alumina support as phenate-type species, whereas only the most basic ones (2(4)-ethylphenol and guaiacol) interact also with the sulfide phase. At 623 K (typical temperature of the HDO reactions), only phenate species on the support are formed that is confirmed by study of the catalyst tested in HDO reaction. Phenate-type species anchored on alumina hinder the accessibility of the sulfide edge sites. This shows that the nature of the oxygenated compound (basicity and nature of the substituent) as well as the surface properties of the catalyst support are crucial in the mode and extent of HDO active sites poisoning. (c) 2012 Elsevier Inc. All rights reserved.
- Published
- 2013