Ali Mhanna, Lucie Chupin, Claire-Hélène Brachais, Gilles Boni, Laurence Lecamp, Laurent Plasseraud, Jean-Pierre Couvercelle, Denis Chaumont, Laurent Brachais, Institut de Chimie Moléculaire de l'Université de Bourgogne [Dijon] (ICMUB), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Recherche sur la Réactivité des Solides (LRRS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Université de Bourgogne (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB), Polymères Biopolymères Surfaces (PBS), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire de l'Université de Bourgogne [Dijon] ( ICMUB ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Interdisciplinaire Carnot de Bourgogne ( LICB ), Polymères Biopolymères Surfaces ( PBS ), Université de Rouen Normandie ( UNIROUEN ), Normandie Université ( NU ) -Normandie Université ( NU ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut national des sciences appliquées Rouen Normandie ( INSA Rouen Normandie ), and Normandie Université ( NU )
International audience; Solvent-free microwave-assisted synthesis was carried out to prepare 2,3-dihydroxypropyl decanoate, by esterification of decanoic acid in the presence of two distinct glycerol derivatives, glycidol, and glycerol carbonate, respectively. The process described is based on microwaves heating source with electrical power in the range of 200–400 W, involving stoichiometric proportions of decanoic acid and glycerol derivatives, and using catalytic amounts of TBAI used as organocatalyst. Conversion and selectivity rates of esterification reactions were monitored by 1H and 13C{1H} NMR spectroscopy. The predominantly formed ester, 2,3-dihydroxypropyl decanoate was fully characterized by infrared and NMR spectroscopy, mass spectrometry, and elemental analysis. Compared with the classical heating procedures, and whatever the glycerol derivatives used, total conversions were obtained with considerably reduced reaction times. Thus, under 300 W, esterification requires only 1 min exposure from glycidol and 5 min from glycerol carbonate. The use of heating with conventional oil bath conditions needs residence times of more than 1 h (even 24 h in the case of glycerol carbonate). The microwave-assisted synthesis also notably enhances the selectivity in 2,3-dihydroxypropyl decanoate (at 300 W, 90, and 50%, respectively), reinforcing the efficiency and the interest of the method.Practical applications: The results establish that microwave heating is well suited for the solvent-free synthesis of glycerol monodecanoate from decanoic acid and two glycerol derivatives, glycidol, and glycerol carbonate. Reaction times are drastically reduced, and in both cases, marked improvements of the conversion and selectivity are recorded. The target α-monoglyceride, 2,3-dihydroxypropyl decanoate, has various potential applications such as antimicrobial properties, bacterial inhibitory activity, or denture disinfectant.Solvent-free microwave heating conditions are applied to the synthesis of 2,3-dihydroxypropyl decanoate by esterification of decanoic acid in the presence of two glycerol derivatives, glycidol, and glycerol carbonate. In both cases, conversion and selectivity gains, as well as notable reductions of reaction times are record.