1. Crystallographic, Optical, and Electronic Properties of the Cs2AgBi1-xInxBr6 Double Perovskite: Understanding the Fundamental Photovoltaic Efficiency Challenges
- Author
-
Dharmalingam Prabhakaran, Markus Lenz, Suhas Mahesh, Sameer Vajjala Kesava, Marios Zacharias, Bernard Wenger, Felix Schmidt, Henry J. Snaith, Mojtaba Abdi-Jalebi, Paolo G. Radaelli, Giulia Longo, George Volonakis, Laura Schade, Feliciano Giustino, University of Oxford [Oxford], Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Cyprus University of Technology, University of Applied Sciences Northwestern Switzerland (FHNW), University College of London [London] (UCL), University of Cambridge [UK] (CAM), University of Texas at Austin [Austin], University of Northumbria at Newcastle [United Kingdom], Engineering and Physical Sciences Research Council (EPSRC) UKUK Research and Innovation (UKRI) Engineering and Physical Sciences Research Council (EPSRC) [EP/S004947/1], UK Engineering and Physical Sciences Research Council (EPSRC)UK Research and Innovation (UKRI) Engineering and Physical Sciences Research Council (EPSRC), Balliol college at Oxford University, Chaire de Recherche Rennes Metropole project, Robert A. Welch Foundation The Welch Foundation [F-1990-20190330], Cambridge Materials Limited, Wolfson College, University of Cambridge University of Cambridge, Royal Society Royal Society of London European Commission, EPSRC (WAFT)UK Research and Innovation (UKRI) Engineering and Physical Sciences Research Council (EPSRC) [EP/M015173/1], Rhodes Scholarships, University of Oxford, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,H600 ,Cesium compounds ,F200 ,Energy Engineering and Power Technology ,chemistry.chemical_element ,Efficiency ,02 engineering and technology ,Perovskite ,010402 general chemistry ,Indium ,01 natural sciences ,7. Clean energy ,Condensed Matter::Materials Science ,Electrical resistivity and conductivity ,Lattice (order) ,Materials Chemistry ,[CHIM]Chemical Sciences ,Electronic properties ,Perovskite solar cells ,Renewable Energy, Sustainability and the Environment ,Photovoltaic system ,021001 nanoscience & nanotechnology ,Energy gap ,0104 chemical sciences ,Characterization (materials science) ,Crystallography ,Fuel Technology ,chemistry ,Phase transitions ,Chemistry (miscellaneous) ,Chemical Sciences ,Double perovskite ,Silver compounds ,Calculations ,Natural Sciences ,0210 nano-technology ,Bromine compounds ,Bismuth compounds - Abstract
International audience; We present a crystallographic and optoelectronic study of the double perovskite Cs2AgBi1-xInxBr6. From structural characterization we determine that the indium cation shrinks the lattice and shifts the cubic-to-tetragonal phase transition point to lower temperatures. The absorption onset is shifted to shorter wavelengths upon increasing the indium content, leading to wider band gaps, which we rationalize through first-principles band structure calculations. Despite the unfavorable band gap shift, we observe an enhancement in the steadystate photoluminescence intensity, and n-i-p photovoltaic devices present short-circuit current greater than that of neat Cs2AgBiBr6 devices. In order to evaluate the prospects of this material as a solar absorber, we combine accurate absorption measurements with thermodynamic modeling and identify the fundamental limitations of this system. Provided radiative efficiency can be increased and the choice of charge extraction layers are specifically improved, this material could prove to be a useful wide band gap solar absorber.
- Published
- 2021