Young JS, Gogos AJ, Aabedi AA, Morshed RA, Pereira MP, Lashof-Regas S, Mansoori Z, Luks T, Hervey-Jumper SL, Villanueva-Meyer JE, and Berger MS
Objective: The supplementary motor area (SMA) is an eloquent region that is frequently a site for glioma, or the region is included in the resection trajectory to deeper lesions. Although the clinical relevance of SMA syndrome has been well described, it is still difficult to predict who will become symptomatic. The object of this study was to define which patients with SMA gliomas would go on to develop a postoperative SMA syndrome., Methods: The University of California, San Francisco, tumor registry was searched for patients who, between 2010 and 2019, had undergone resection for newly diagnosed supratentorial diffuse glioma (WHO grades II-IV) performed by the senior author and who had at least 3 months of follow-up. Pre- and postoperative MRI studies were reviewed to confirm the tumor was located in the SMA region, and the extent of SMA resection was determined by volumetric assessment. Patient, tumor, and outcome data were collected retrospectively from documents available in the electronic medical record. Tumors were registered to a standard brain atlas to create a frequency heatmap of tumor volumes and resection cavities., Results: During the study period, 56 patients (64.3% male, 35.7% female) underwent resection of a newly diagnosed glioma in the SMA region. Postoperatively, 60.7% developed an SMA syndrome. Although the volume of tumor within the SMA region did not correlate with the development of SMA syndrome, patients with the syndrome had larger resection cavities in the SMA region (25.4% vs 14.2% SMA resection, p = 0.039). The size of the resection cavity in the SMA region did not correlate with the severity of the SMA syndrome. Patients who developed the syndrome had cavities that were located more posteriorly in the SMA region and in the cingulate gyrus. When the frontal aslant tract (FAT) was preserved, 50% of patients developed the SMA syndrome postoperatively, whereas 100% of the patients with disruption of the FAT during surgery developed the SMA syndrome (p = 0.06). Patients with SMA syndrome had longer lengths of stay (5.6 vs 4.1 days, p = 0.027) and were more likely to be discharged to a rehabilitation facility (41.9% vs 0%, p < 0.001). There was no difference in overall survival for newly diagnosed glioblastoma patients with SMA syndrome compared to those without SMA syndrome (1.6 vs 3.0 years, p = 0.33)., Conclusions: For patients with SMA glioma, more extensive resections and resections involving the posterior SMA region and posterior cingulate gyrus increased the likelihood of a postoperative SMA syndrome. Although SMA syndrome occurred in all cases in which the FAT was resected, FAT preservation does not reliably avoid SMA syndrome postoperatively.