276 results on '"Larmande, Pierre"'
Search Results
2. Revealing Genotype–Phenotype Interactions: The AgroLD Experience and Challenges
- Author
-
Larmande, Pierre, Todorov, Konstantin, Chen, Ming, editor, and Hofestädt, Ralf, editor
- Published
- 2022
- Full Text
- View/download PDF
3. Transcriptomic and metabolomic reveal OsCOI2 as the jasmonate-receptor master switch in rice root.
- Author
-
Cheaib, Mohamad, Nguyen, Hieu Trang, Couderc, Marie, Serret, Julien, Soriano, Alexandre, Larmande, Pierre, Richter, Chris, Junker, Björn H., Raorane, Manish L., Petitot, Anne-Sophie, and Champion, Antony
- Subjects
SECONDARY metabolism ,METABOLISM ,ROOT development ,JASMONATE ,PLANT development - Abstract
Jasmonate is an essential phytohormone involved in plant development and stress responses. Its perception occurs through the CORONATINE INSENSITIVE (COI) nuclear receptor allowing to target the Jasmonate-ZIM domain (JAZ) repressors for degradation by the 26S proteasome. Consequently, repressed transcription factors are released and expression of jasmonate responsive genes is induced. In rice, three OsCOI genes have been identified, OsCOI1a and the closely related OsCOI1b homolog, and OsCOI2. While the roles of OsCOI1a and OsCOI1b in plant defense and leaf senescence are well-established, the significance of OsCOI2 in plant development and jasmonate signaling has only emerged recently. To unravel the role of OsCOI2 in regulating jasmonate signaling, we examined the transcriptomic and metabolomic responses of jasmonate-treated rice lines mutated in both the OsCOI1a and OsCOI1b genes or OsCOI2. RNA-seq data highlight OsCOI2 as the primary driver of the extensive transcriptional reprogramming observed after a jasmonate challenge in rice roots. A series of transcription factors exhibiting an OsCOI2-dependent expression were identified, including those involved in root development or stress responses. OsCOI2-dependent expression was also observed for genes involved in specific processes or pathways such as cell-growth and secondary metabolite biosynthesis (phenylpropanoids and diterpene phytoalexins). Although functional redundancy exists between OsCOI1a/b and OsCOI2 in regulating some genes, oscoi2 plants generally exhibit a weaker response compared to oscoi1ab plants. Metabolic data revealed a shift from the primary metabolism to the secondary metabolism primarily governed by OsCOI2. Additionally, differential accumulation of oryzalexins was also observed in oscoi1ab and oscoi2 lines. These findings underscore the pivotal role of OsCOI2 in jasmonate signaling and suggest its involvement in the control of the growth-defense trade-off in rice. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. AgroLD: A Knowledge Graph for the Plant Sciences
- Author
-
Larmande, Pierre, Todorov, Konstantin, Goos, Gerhard, Founding Editor, Hartmanis, Juris, Founding Editor, Bertino, Elisa, Editorial Board Member, Gao, Wen, Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Woeginger, Gerhard, Editorial Board Member, Yung, Moti, Editorial Board Member, Hotho, Andreas, editor, Blomqvist, Eva, editor, Dietze, Stefan, editor, Fokoue, Achille, editor, Ding, Ying, editor, Barnaghi, Payam, editor, Haller, Armin, editor, Dragoni, Mauro, editor, and Alani, Harith, editor
- Published
- 2021
- Full Text
- View/download PDF
5. AgBioData consortium recommendations for sustainable genomics and genetics databases for agriculture
- Author
-
Harper, Lisa, Campbell, Jacqueline, Cannon, Ethalinda KS, Jung, Sook, Poelchau, Monica, Walls, Ramona, Andorf, Carson, Arnaud, Elizabeth, Berardini, Tanya Z, Birkett, Clayton, Cannon, Steve, Carson, James, Condon, Bradford, Cooper, Laurel, Dunn, Nathan, Elsik, Christine G, Farmer, Andrew, Ficklin, Stephen P, Grant, David, Grau, Emily, Herndon, Nic, Hu, Zhi-Liang, Humann, Jodi, Jaiswal, Pankaj, Jonquet, Clement, Laporte, Marie-Angélique, Larmande, Pierre, Lazo, Gerard, McCarthy, Fiona, Menda, Naama, Mungall, Christopher J, Munoz-Torres, Monica C, Naithani, Sushma, Nelson, Rex, Nesdill, Daureen, Park, Carissa, Reecy, James, Reiser, Leonore, Sanderson, Lacey-Anne, Sen, Taner Z, Staton, Margaret, Subramaniam, Sabarinath, Tello-Ruiz, Marcela Karey, Unda, Victor, Unni, Deepak, Wang, Liya, Ware, Doreen, Wegrzyn, Jill, Williams, Jason, Woodhouse, Margaret, Yu, Jing, and Main, Doreen
- Subjects
Information and Computing Sciences ,Biological Sciences ,Library and Information Studies ,Zero Hunger ,Agriculture ,Breeding ,Databases ,Genetic ,Gene Ontology ,Genomics ,Metadata ,Surveys and Questionnaires ,Data Format ,Bioinformatics and computational biology ,Data management and data science - Abstract
The future of agricultural research depends on data. The sheer volume of agricultural biological data being produced today makes excellent data management essential. Governmental agencies, publishers and science funders require data management plans for publicly funded research. Furthermore, the value of data increases exponentially when they are properly stored, described, integrated and shared, so that they can be easily utilized in future analyses. AgBioData (https://www.agbiodata.org) is a consortium of people working at agricultural biological databases, data archives and knowledgbases who strive to identify common issues in database development, curation and management, with the goal of creating database products that are more Findable, Accessible, Interoperable and Reusable. We strive to promote authentic, detailed, accurate and explicit communication between all parties involved in scientific data. As a step toward this goal, we present the current state of biocuration, ontologies, metadata and persistence, database platforms, programmatic (machine) access to data, communication and sustainability with regard to data curation. Each section describes challenges and opportunities for these topics, along with recommendations and best practices.
- Published
- 2018
6. AgroLD: A Knowledge Graph Database for Plant Functional Genomics
- Author
-
Larmande, Pierre, primary, Tagny Ngompe, Gildas, additional, Venkatesan, Aravind, additional, and Ruiz, Manuel, additional
- Published
- 2022
- Full Text
- View/download PDF
7. Managing High-Density Genotyping Data with Gigwa
- Author
-
Sempéré, Guilhem, primary, Larmande, Pierre, additional, and Rouard, Mathieu, additional
- Published
- 2022
- Full Text
- View/download PDF
8. RicePilaf: a post-GWAS/QTL dashboard to integrate pangenomic, coexpression, regulatory, epigenomic, ontology, pathway, and text-mining information to provide functional insights into rice QTLs and GWAS loci
- Author
-
Shrestha, Anish M S, primary, Gonzales, Mark Edward M, additional, Ong, Phoebe Clare L, additional, Larmande, Pierre, additional, Lee, Hyun-Sook, additional, Jeung, Ji-Ung, additional, Kohli, Ajay, additional, Chebotarov, Dmytro, additional, Mauleon, Ramil P, additional, Lee, Jae-Sung, additional, and McNally, Kenneth L, additional
- Published
- 2024
- Full Text
- View/download PDF
9. Evaluating Named-Entity Recognition Approaches in Plant Molecular Biology
- Author
-
Do, Huy, Than, Khoat, Larmande, Pierre, Hutchison, David, Series Editor, Kanade, Takeo, Series Editor, Kittler, Josef, Series Editor, Kleinberg, Jon M., Series Editor, Mattern, Friedemann, Series Editor, Mitchell, John C., Series Editor, Naor, Moni, Series Editor, Pandu Rangan, C., Series Editor, Steffen, Bernhard, Series Editor, Terzopoulos, Demetri, Series Editor, Tygar, Doug, Series Editor, Weikum, Gerhard, Series Editor, Kaenampornpan, Manasawee, editor, Malaka, Rainer, editor, Nguyen, Duc Dung, editor, and Schwind, Nicolas, editor
- Published
- 2018
- Full Text
- View/download PDF
10. AgroLD: A Knowledge Graph for the Plant Sciences
- Author
-
Larmande, Pierre, primary and Todorov, Konstantin, additional
- Published
- 2021
- Full Text
- View/download PDF
11. The Rise and Fall of African Rice Cultivation Revealed by Analysis of 246 New Genomes
- Author
-
Cubry, Philippe, Tranchant-Dubreuil, Christine, Thuillet, Anne-Céline, Monat, Cécile, Ndjiondjop, Marie-Noelle, Labadie, Karine, Cruaud, Corinne, Engelen, Stefan, Scarcelli, Nora, Rhoné, Bénédicte, Burgarella, Concetta, Dupuy, Christian, Larmande, Pierre, Wincker, Patrick, François, Olivier, Sabot, François, and Vigouroux, Yves
- Published
- 2018
- Full Text
- View/download PDF
12. AgroPortal: A vocabulary and ontology repository for agronomy
- Author
-
Jonquet, Clément, Toulet, Anne, Arnaud, Elizabeth, Aubin, Sophie, Dzalé Yeumo, Esther, Emonet, Vincent, Graybeal, John, Laporte, Marie-Angélique, Musen, Mark A., Pesce, Valeria, and Larmande, Pierre
- Published
- 2018
- Full Text
- View/download PDF
13. Scientific workflows for computational reproducibility in the life sciences: Status, challenges and opportunities
- Author
-
Cohen-Boulakia, Sarah, Belhajjame, Khalid, Collin, Olivier, Chopard, Jérôme, Froidevaux, Christine, Gaignard, Alban, Hinsen, Konrad, Larmande, Pierre, Bras, Yvan Le, Lemoine, Frédéric, Mareuil, Fabien, Ménager, Hervé, Pradal, Christophe, and Blanchet, Christophe
- Published
- 2017
- Full Text
- View/download PDF
14. AgroLD: a Knowledge Graph for the Plant Sciences
- Author
-
Larmande, Pierre, Pitollat, Bertrand, Tando, Ndomassi, Pomie, Yann, Happi, Bill, Guignon, Valentin, Ruiz, Manuel, Diversité, adaptation, développement des plantes (UMR DIADE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM), WEB Architecture x Semantic WEB x WEB of Data (WEB3), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), The Alliance of Bioversity International and International Center for Tropical Agriculture (CIAT) [Hanoi], Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) [Rome] (Alliance), Consultative Group on International Agricultural Research [CGIAR] (CGIAR)-Consultative Group on International Agricultural Research [CGIAR] (CGIAR), and ANR-22-CE23-0012,DIG-AI,Decouverte des interactions genotype-phenotype à l'aide de graphe de connaissance et d'IA(2022)
- Subjects
FAIR data ,Knowledge Graph ,Bioinformatics ,Linked Data ,Plant Sciences ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] - Abstract
Démonstration; International audience; Recent advances in high-throughput technologies have revolutionized the analysis in the field of the plant sciences. However, there is an urgent need to effectively integrate and assimilate complementary information to understand the biological system in its entirety. We have developed AgroLD, a knowledge graph that exploits Semantic Web technologies to integrate data of interest for the plant science community e.g., rice, wheat, arabidopsis and in this way facilitate the formulation and validation of new scientific hypotheses. AgroLD contains around 900M triples created by annotating and integrating more than 100 datasets coming from 15 data sources. Our objective is to offer a domain specific knowledge platform to answer complex biological and plant sciences questions related to the implication of genes in, for instance, plant disease resistance or adaptative responses to climate change. In this demo, we present some results which currently focused on genomics, genetics and trait associations.
- Published
- 2023
15. DLinker Results for OAEI 2022
- Author
-
Bill Gates, Happi, Fokou Pelap, Géraud, Symeonidou, Danai, Larmande, Pierre, Diversité, adaptation, développement des plantes (UMR DIADE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM), University of Dschang, Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Shvaiko P., Euzenat J., Jimenez-Ruiz E., Hassanzadeh O., Trojahn C., and ANR-22-CE23-0012,DIG-AI,Decouverte des interactions genotype-phenotype à l'aide de graphe de connaissance et d'IA(2022)
- Subjects
Instance Matching ,Data Processing ,Synonyms ,[INFO]Computer Science [cs] ,Syntactic Similarity ,Data Linking Algorithm - Abstract
ISSN : 16130073; International audience; DLinker is a system for matching instances of two RDF data sources. Its performance is mainly based on the deep comparison of literals. The main comparison algorithm is based on the search for the longest common subsequence (LCS) present in the literals. The validation of the similarity between two literals is performed by a mathematical formula. This formula computes the confidence percentage of the similarity between the literals and compares it with a threshold provided as input among the expected hyperparameters. To validate the similar instances, our system validates only the instances that have reached the value of the acceptation threshold provided in the list of required hyperparameters. The current version focuses on the processing of strings on the spot without taking into account synonyms to make its decisions. This is DLinker's first participation in the OAEI campaign on two principal tracks (SPIMBENCH and SPATIAL) with 9 challenges. DLinker demonstrated its ability to process different data with good accuracy and in a very short time. Additionally, in the context of the SPATIAL challenge DLinker has outperformed the state of the art finishing first with the shortest time. Overall, DLinker exposes different strengths and weaknesses that are discussed in this work.
- Published
- 2022
16. The AgroLD project : A Knowledge Graph Database for plant functional genomics
- Author
-
Larmande, Pierre, Venkatesan, Aravind, Tagny, Gildas, Do, Quan, Pitollat, Bertrand, Tando, Ndomassi, Todorov, Konstantin, Pomie, Yann, Ruiz, Manuel, Diversité, adaptation, développement des plantes (UMR DIADE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM), European Bioinformatics Institute [Hinxton] (EMBL-EBI), EMBL Heidelberg, Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), WEB Architecture x Semantic WEB x WEB of Data (WEB3), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), and LIRMM
- Subjects
[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] - Abstract
National audience
- Published
- 2022
17. AgroLD: A Knowledge Graph Database for plant functional genomics
- Author
-
Pitollat, Bertrand, Tando, Ndomassi, Rouard, Mathieu, Droc, Gaetan, Venkatesan, Aravind, Tagny, Gildas, El Hassouni, Nordine, Chentli, Imene, Guignon, Valentin, Jonquet, Clement, Ruiz, Manuel, Larmande, Pierre, Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), SouthGreen Platform, Montpellier, SouthGreen Platform, Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Diversité, adaptation, développement des plantes (UMR DIADE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Bioversity International [Montpellier], Bioversity International [Rome], Consultative Group on International Agricultural Research [CGIAR] (CGIAR)-Consultative Group on International Agricultural Research [CGIAR] (CGIAR), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), and South Green Bioinformatics Platform [Montpellier]
- Subjects
[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] - Abstract
International audience; The Explore Relationships tool aids in exploring relationships between existing entities. Quick search is based on keyword search and aids in understanding the underlying knowledge.
- Published
- 2021
- Full Text
- View/download PDF
18. OryzaGP 2021 update: a rice gene and protein dataset for named-entity recognition
- Author
-
Larmande, Pierre, primary, Liu, Yusha, additional, Yao, Xinzhi, additional, and Xia, Jingbo, additional
- Published
- 2021
- Full Text
- View/download PDF
19. AgroLD: une base de connaissances pour l'étude du phénome des plantes cultivées
- Author
-
Larmande, Pierre, Gildas, Tagny, Ruiz, Manuel, Diversité, adaptation, développement des plantes (UMR DIADE), Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), WEB-CUBE, Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), ANR-19-DATA-0019,FooSIN,Participation française au GO FAIR Food Systems Implementation Network(2019), ANR-18-CE23-0017,D2KAB,Des Données aux Connaissances en Agronomie et Biodiversité(2018), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), WEB Architecture x Semantic WEB x WEB of Data (WEB3), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] ,[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,[INFO.INFO-WB]Computer Science [cs]/Web ,[INFO]Computer Science [cs] ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] - Abstract
International audience; Recent advances in high-throughput technologies have resulted in tremendous increase in the amount of data in the agronomic domain. There is an urgent need to effectively integrate complementary information to understand the biological system in its entirety. We have devel- oped AgroLD, a knowledge graph that exploits the Semantic Web technology and some of the relevant standard domain ontologies, to integrate information on plant species and in this way facilitating the formulation of new scientific hypotheses. We present some integration results of the project, which initially focused on genomics, proteomics and phenomics.; Les récents progrès des technologies à haut débit ont entraîné une explosion de la quantité de données dans le domaine agronomique. Il est urgent d'intégrer efficacement des informations complémentaires pour comprendre le système biologique dans sa globalité. Nous avons développé AgroLD, une base de connaissances qui exploite la technologie du Web sémantique et des ontologies du domaine biologique pertinentes, pour intégrer les informations sur les espèces végétales et faciliter ainsi la formulation de nouvelles hypothèses scientifiques. Nous présentons des résultats sur le processus d'intégration et sur la plateforme visualisation des données, qui était initialement axé sur la génomique, la protéomique et la phénomique.
- Published
- 2021
20. AgroLD: A Knowledge Graph Database for plant functional genomics
- Author
-
Larmande, Pierre, Tando, Ndomassi, Pitollat, Bertrand, Guignon, Valentin, Rouard, Mathieu, Droc, Gaëtan, Ruiz, Manuel, Larmande, Pierre, Tando, Ndomassi, Pitollat, Bertrand, Guignon, Valentin, Rouard, Mathieu, Droc, Gaëtan, and Ruiz, Manuel
- Abstract
Exploring the links between genetic and phenotypic traits is an important area of research in agronomy. One of the main objectives of this is to accelerate the development of important traits that can positively impact the agricultural economy. However, due to the existence of complex molecular interactions, to gain complete understanding will warrant data analyses performed at different molecular and environmental levels for a given (plant) subject. For instance, to understand how rice genes involved in metabolism or signaling of growth regulators control the rice panicle architecture. While high-throughput technologies have played a key role in accelerating and generating the much-needed data, these can only partially capture the dynamics in genotypephenotype relations. Consequently, our knowledge of the complex relationships between the different molecular actors responsible for the expression of the phenome in various plant systems remains fragmented. Hence, there is an urgent need to effectively integrate and assimilate complementary information to understand the biological system in its entirety. We have developed AgroLD [1] (www.agrold.org), a knowledge graph system that exploits the Semantic Web technology and FAIR principles [2], to integrate information to integrate data about plant species of high interest for the plant science community e.g., rice, wheat, Arabidopsis and in this way facilitating the formulation of new scientific hypotheses. We present some integration results of the project, which currently focused on genomics, proteomics and phenomics. AgroLD is now an RDF knowledge base of 900M triples created by annotating and integrating more than 100 datasets coming from 15 data sources –such as Ensembl plants [3], Gramene.org [4] and TropGeneDB [5]– with 15 ontologies –such as the Gene Ontology [6] and Plant Ontology [7]. Our objective is to offer a domain specific knowledge platform to solve complex biological and agronomical questions related to
- Published
- 2021
21. Intégration de données multi-échelles et extraction de connaissances en agronomie : exemples et perspectives
- Author
-
Larmande, Pierre, Institut de Recherche pour le Développement (IRD), Diversité, adaptation, développement des plantes (UMR DIADE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Universite Montpellier, Libourel Therese, Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Montpellier II, and Pas encore defini - Version deposé et non-validée par les rapporteurs
- Subjects
Bioinformatic ,[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] ,Agronomie ,Ontology ,Web Sémantique ,[INFO.INFO-WB]Computer Science [cs]/Web ,Ontologie ,Génomique Fonctionnelle ,Agronomy ,Functional Genomics ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Database ,Bioinformatique ,[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,Base de données ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,Semantic Web - Abstract
Version deposé et non-validée par les rapporteurs
- Published
- 2020
22. PyRice: a Python package for querying Oryza Sativa functional databases
- Author
-
Do, Quan, Hai, Ho Bich, and Larmande, Pierre
- Abstract
Summary Currently, gene information available for Oryza sativa species is located in various online heterogeneous data sources. Moreover, methods of access are also diverse, mostly web-based and sometimes query APIs, which might not always be straightforward for domain experts. The challenge is to collect information quickly from these applications and combine it logically, to facilitate scientific research. We developed a Python package named PyRice, a unified programming API to access all supported databases at the same time with consistent output. PyRice design is modular and implements a smart query system which fits the computing resources to optimize the query speed. As a result, PyRice is easy to use and produces intuitive results. Availability and implementation https://github.com/SouthGreenPlatform/PyRice Documentation https://pyrice.readthedocs.io Contact pierre.larmande@ird.fr Licence information MIT Supplementary information Supplementary data are available at Bioinformatics online.
- Published
- 2020
- Full Text
- View/download PDF
23. Candidate gene prioritization using graph embedding
- Author
-
DO, Quan, primary and LARMANDE, Pierre, additional
- Published
- 2020
- Full Text
- View/download PDF
24. COMOKIT: A Modeling Kit to Understand, Analyze, and Compare the Impacts of Mitigation Policies Against the COVID-19 Epidemic at the Scale of a City
- Author
-
Gaudou, Benoit, primary, Huynh, Nghi Quang, additional, Philippon, Damien, additional, Brugière, Arthur, additional, Chapuis, Kevin, additional, Taillandier, Patrick, additional, Larmande, Pierre, additional, and Drogoul, Alexis, additional
- Published
- 2020
- Full Text
- View/download PDF
25. PyRice: a Python package for querying Oryza sativa databases
- Author
-
Do, Quan, primary, Bich Hai, Ho, additional, and Larmande, Pierre, additional
- Published
- 2020
- Full Text
- View/download PDF
26. Enabling a fast annotation process with the Table2Annotation tool
- Author
-
Larmande, Pierre, primary and Jibril, Kazim Muhammed, additional
- Published
- 2020
- Full Text
- View/download PDF
27. Enabling Fast Annotation Process With Table2Annotation Tool
- Author
-
Larmande, Pierre, primary and Jibril, Kazim Muhammed, additional
- Published
- 2020
- Full Text
- View/download PDF
28. OryGenesDB 2008 update: database interoperability for functional genomics of rice
- Author
-
Droc, Gaëtan, Périn, Christophe, Fromentin, Sébastien, and Larmande, Pierre
- Published
- 2009
29. Oryza Tag Line, a phenotypic mutant database for the Génoplante rice insertion line library
- Author
-
Larmande, Pierre, Gay, Céline, Lorieux, Mathias, Périn, Christophe, Bouniol, Matthieu, Droc, Gaëtan, Sallaud, Christophe, Perez, Pascual, Barnola, Isabelle, Biderre-Petit, Corinne, Martin, Jérôme, Morel, Jean Benoît, Johnson, Alexander A. T., Bourgis, Fabienne, Ghesquière, Alain, Ruiz, Manuel, Courtois, Brigitte, and Guiderdoni, Emmanuel
- Published
- 2008
30. Multi-scale Data Integration and Knowledge Extraction in Agronomy: Examples and Prospects
- Author
-
Larmande, Pierre, Institut de Recherche pour le Développement (IRD), Diversité, adaptation, développement des plantes (UMR DIADE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Montpellier II, and Pas encore defini - Version deposé et non-validée par les rapporteurs
- Subjects
Bioinformatic ,[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] ,Agronomie ,Ontology ,Web Sémantique ,[INFO.INFO-WB]Computer Science [cs]/Web ,Ontologie ,Génomique Fonctionnelle ,Agronomy ,Functional Genomics ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Database ,Bioinformatique ,[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,Base de données ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,Semantic Web - Abstract
Version deposé et non-validée par les rapporteurs
- Published
- 2019
31. Intégration de données multi-échelles et extraction de connaissances en agronomie : exemples et perspectives
- Author
-
Larmande, Pierre, Institut de Recherche pour le Développement (IRD), Diversité, adaptation, développement des plantes (UMR DIADE), Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Montpellier II, Pas encore defini - Version deposé et non-validée par les rapporteurs, Universite Montpellier, and Libourel Therese
- Subjects
Agronomie ,Web Sémantique ,Ontologie ,INTELLIGENCE ARTIFICIELLE ,PHENOTYPE ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Database ,Bioinformatique ,ALGORITHME ,BIOINFORMATIQUE ,AGRONOMIE ,ANALYSE SYSTEMIQUE ,Semantic Web ,Bioinformatic ,[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] ,INFORMATIQUE SCIENTIFIQUE ,AMELIORATION GENETIQUE ,Ontology ,ONTOLOGIE ,[INFO.INFO-WB]Computer Science [cs]/Web ,BASE DE DONNEES ,BIOLOGIE MOLECULAIRE ,WEB SEMANTIQUE ,Génomique Fonctionnelle ,MODELISATION ,Agronomy ,GENOTYPE ,Functional Genomics ,GENOMIQUE FONCTIONNELLE ,[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,Base de données ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] - Abstract
La compréhension des relations génotype-phénotype est un des axes les plus important de la recherche en agronomie. Or les interactions génotype-phénotype sont complexes à identifier car elles s'expriment à différentes échelles moléculaires dans la plante et subissent de fortes influences de la part des facteurs environnementaux. Les technologies d'analyses haut-débit ne permettent de capturer que partiellement cette dynamique. Même si ces technologies permettent d'aller toujours plus loin dans l'obtention de nouvelles données, notre connaissance reste encore parcelLaire pour élucider les mécanismes moléculaires qui régissent l'expression des caractères phénotypiques complexes. Les nouveaux défis consistent à comprendre les relations complexes existant entre les différents éléments moléculaires responsables de l'expression du phénome. Cet objectif ne peut être atteint qu'en intégrant des informations de différents niveaux dans un modèle intégrateur utilisant une approche systémique afin de comprendre le fonctionnement réel d'un système biologique. Mon projet de recherche aborde le problème suivant : Comment structurer et gérer la complexité des données biologiques afin d'en extraire de la connaissance permettant d'identifier les mécanismes moléculaires contrôlant l'expression de phénotypes chez les plantes. L'objectif de ce projet sera de déterminer si la représentation d'information sous forme de graphes de connaissances est adaptée pour formuler des hypothèses de recherche permettant de lier le génotype au phénotype. En prenant le riz comme modèle, l'objectif sera de construire des réseaux d'interaction moléculaires à partir de données éparses afin d'identifier les gènes clés pour l'amélioration des plantes. Plusieurs approches de recherche sont envisagées : intégration des données, enrichissement des connaissances, applications sur les graphes de connaissances. Dans ce processus, une première voie consistera à transformer et intégrer dynamiquement ces données dans la base de connaissance AgroLD pour les rendre plus facilement utilisables en terme algorithmique. Une deuxième voie consistera à proposer de nouvelles méthodes d'enrichissement des connaissances. Dans un premier temps, en se focalisant sur des méthodes d'annotation sémantique. Puis, afin d'enrichir les liens entre les différents graphes générés et ainsi produire un réseau d'interaction qui permettra la découverte de nouvelles connaissances, de nouvelles méthodes de liage de données seront développées. Enfin, afin de permettre une recherche d'information efficace, plusieurs méthodes et algorithmes de priorisation de gènes candidats seront évaluées et proposées.
- Published
- 2019
32. D2KAB project taking off: Data to Knowledge in Agronomy and Biodiversity
- Author
-
Aubin, Sophie, Adam-Blondon, Anne-Francoise, Alaux, Michael, Ba, Mouhamadou, Bernard, Stéphan, Bisquert, Pierre, Bossy, Robert, Brun, François, Buche, Patrice, Castelltort, Arnaud, Corby, Olivier, Cufi, Julien, David, Romain, Deleger, Louise, Dzale Yeumo, Esther, Faron Zucker, Catherine, Eric, Garnier, Graybeal, John, Haezebrouck, Théo-Paul, Larmande, Pierre, Menut, Luc, Michel, Franck, Musen, Mark, Nédellec, Claire, Pichot, Christian, Pinet, François, Pommier, Cyril, Roumet, Catherine, Roussey, Catherine, Todorov, Konstantin, Toulet, Anne, Jonquet, Clement, DIST Délégation Information Scientifique et Technique (DV-IST), Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] (MaIAGE), Technologies et systèmes d'information pour les agrosystèmes (UR TSCF), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Ingénierie des Agro-polymères et Technologies Émergentes (UMR IATE), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA), Association de Coordination Technique Agricole (ACTA), Fuzziness, Alignments, Data & Ontologies (FADO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Web-Instrumented Man-Machine Interactions, Communities and Semantics (WIMMICS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA), Université Côte d'Azur (UCA), Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry - Montpellier 3 (UM3)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Stanford Center for BioMedical Informatics Research (BMIR), Stanford University [Stanford], API-AGRO, Diversité, adaptation, développement des plantes (UMR DIADE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS), Ecologie des Forêts Méditerranéennes [Avignon] (URFM 629), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Research Data Alliance, D2KAB, ANR-18-CE23-0017,D2KAB,DATA TO KNOWLEDGE IN AGRICULTURE AND BIODIVERSITY(2018), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA), WEB-CUBE, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Université Paul-Valéry - Montpellier 3 (UPVM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut de Recherche pour le Développement (IRD [France-Sud]), Stanford University, Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Ecologie des Forêts Méditerranéennes (URFM), Délégation à l’information scientifique et technique (Cirad -Dgdrs-DIST), Direction Générale Déléguée à la Recherche et à la Stratégie (Cirad-Dgdrs), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), ANR-18-CE23-0017,D2KAB,Des Données aux Connaissances en Agronomie et Biodiversité(2018), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Les instituts techniques agricoles (Acta), WEB Architecture x Semantic WEB x WEB of Data (WEB3), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Université Paul-Valéry - Montpellier 3 (UPVM)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École Pratique des Hautes Études (EPHE), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- Subjects
2. Zero hunger ,Ontology alignment ,[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] ,Text mining ,[INFO.INFO-WB]Computer Science [cs]/Web ,[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/Agronomy ,Agriculture ,Biodiversity ,15. Life on land ,Agronomy ,12. Responsible consumption ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Ontology repository ,13. Climate action ,Knowledge graphs ,Ontologies ,Data integration ,Linked open data ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Semantic Web, Ontologies, Ontology repository, Ontology alignment, Linked open data, Knowledge graphs, Data integration, Text mining, Agronomy, Agriculture, Biodiversity, Ecosystem ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,Ecosystem ,Semantic Web - Abstract
Agronomy/agriculture and biodiversity (ag & biodiv) communities face several major societal, economic, and environmental challenges that data science approaches will help address. To achieve their goals, researchers of these communities must be able to rapidly discover, aggregate, integrate, and analyse different types of data and information sources. Semantic technologies, combined to open, FAIR data and services, is one of the answers to fully knowledge-driven, and transparent science and innovation. The D2KAB project (www.d2kab.org) aims to create a framework to turn agronomy and biodiversity data into knowledge – semantically described, interoperable, actionable, open – and investigate the scientific methods and tools to exploit this knowledge for applications in agriculture and biodiversity sciences. This project, funded by French ANR (2019-2023), will provide the means –ontologies and linked open data– for ag & biodiv to embrace semantic Web technologies in order to produce and exploit FAIR data and services. To do so, D2KAB will develop new original methods and algorithms in the following areas: data integration, text mining, semantic annotation, ontology alignment and linked data exploitation and visualization. D2KAB project brings together a unique multidisciplinary consortium of 12 partners to achieve this objective: 2 informatics research units (LIRMM, I3S); 6 INRA/IRSTEA/IRD research units at the interface of computer science and ag & biodiv (URGI, MaIAGE, IATE, DIST, TSCF, DIADE) specialized in agronomy or agriculture; 2 labs in biodiversity and ecosystem research (CEFE, URFM); 1 association of agriculture stakeholders (ACTA); and 1 partnership with Stanford BMIR department. Three main goals drive D2KAB’s roadmap: To develop state-of-the-art methods and technologies for ontology lifecycle and alignment. To build the agronomy, agriculture and biodiversity Linked Open Data cloud. To enable new semantically driven agronomy and biodiversity science. The work is starting from the recommendations of several RDA WG and IG already published or in progress (e.g. Agrisemantic WG, Vocabulary Services IG, Wheat and Rice Data Interoperability WGs, Agricultural Data IG, SHARC IG). Some of the key technological building blocks of D2KAB are AgroPortal, a reference repository for ontologies and vocabularies in agronomy; AgroLD, a semantic Web knowledge base that integrates agronomic data from public databases including GO associations, Gramene, UniprotKB, and OryGenesDB ; Corese, a semantic Web factory that implements the W3C standards RDF, RDFS, OWL-RL and SPARQL, and LDScript, a Linked Data Script Language, and STTL, the SPARQL Template Transformation Language for RDF; and Alvis, a text mining for semantic normalisation of free text by ontologies. D2KAB will allow the valorization of ag & biodiv data into real world applications leading to economic impact, smart agriculture and ecological preservation. Five driving scenarios are planned: development of an ontology-based expert system to select food packaging solutions; creation of an augmented semantic reader for Plant Health Bulletins; advanced integration of textual and experimental data on wheat phenotypes; development of new ontologies on plant root traits and extension of the Thesaurus Of Plant Characteristics; integration of plant functional biogeography data related to the Mediterranean Basin. Each of the project scenarios will have a significant impact and produce concrete outcomes for ag & biodiv scientific communities and socio-economic stakeholders in agriculture.
- Published
- 2019
- Full Text
- View/download PDF
33. AgroLD: un graphe de connaissances pour la caractérisation des mécanismes moléculaires complexes impactant le phénome des plantes
- Author
-
Larmande, Pierre, Tagny Ngompé, Gildas, Manuel Ruiz, Diversité, adaptation, développement des plantes (UMR DIADE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Institut de Biologie Computationnelle (IBC), Institut National de la Recherche Agronomique (INRA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), AFIA, Nathalie Hernandez, Hernandez, Nathalie, Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), and Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,Phénome ,Agronomie ,Base de connaissances ,Web sémantique ,Génomique fonctionnelle ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
National audience; La compréhension des interactions génotype-phénotype est un des axes les plus importants de la recherche en agronomie dont l'un des objectifs est d'accélérer la reproduction des caractères importants pour la production agricole. Or ces interactions sont complexes à identifier car elles s'expriment à différentes échelles moléculaires dans la plante et subissent de fortes influences de la part des facteurs environnemen-taux. Les technologies d'analyse haut-débit ne permettent de capturer que partiellement cette dynamique. Même si ces technologies sont de plus en plus performantes dans l'acquisition de données, notre connais-sance du système reste encore parcellaire pour pouvoir comprendre les relations complexes existant entre les différents éléments moléculaires responsables de l'expression du phénome-ensemble des phénotypes observés pour un individu-. Cet objectif ne peut être atteint qu'en intégrant des informations de différents niveaux dans un modèle intégrateur utilisant une approche systémique afin de comprendre le fonctionnement réel d'un système biologique. Aujourd'hui, le Web sémantique propose des technologies pour l'intégration de données hétérogènes et leur transformation en connaissances explicites grâce aux ontologies. Nous avons développé AgroLD (Venkatesan et al., 2018) (Agronomic Linked Data-www.agrold.org), une base de connaissances reposant sur les technologies du Web sémantique et exploitant des ontologies du domaine biologique, afin d'intégrer des données issues de plusieurs espèces de plantes présentant un intérêt important pour la communauté scientifique, comme par exemple le riz, le blé et arabidopsis. Nous présentons les résultats du projet, qui portait initialement sur la génomique, la protéomique et la phénomique. AgroLD est aujourd'hui une base de plus de 100 millions de triplets créée à partir de plus de 50 jeux de données provenant d'une dizaine de sources de données, telles que Gramene (Tello-Ruiz et al., 2018) et TropGeneDB (Hamelin et al., 2012). Par ailleurs, nous avons utilisé une dizaine d'ontologies du domaine biologique, telles que Gene Ontology (The Gene Ontology Consortium, 2014) et Plant Ontology (Plant & Consortium, 2002) pour annoter et intégrer ces ressources. Pour cette phase, chaque jeu de données a été transformé à partir de sources sélectionnées et annotées sémantiquement en réutilisant les champs textuels correspondant avec des termes d'ontologies lorsqu'ils ont été fournis par la source d'origine. De plus, nous avons utilisé les services Web d'AgroPortal (Jonquet et al., 2018) pour annoter sémantiquement des éléments supplémentaires tels que par exemple, les URIs correspondant à la taxonomie des espèces ou des éléments d'anatomie. Dans ces cas, nous avons généré des propriétés supplémentaires à partir des ontologies correspondantes, ajoutant ainsi 22% de triplets supplémentaires qui ont été validés manuellement. L'objectif d'AgroLD est d'offrir une plate-forme de connaissances spécifiques du domaine agronomique afin de répondre à des questions biologiques complexes. De telles questions peuvent concerner le rôle de gènes spécifiques dans les mécanismes de résistance aux maladies des plantes ou de caractères de production identifiés à partir des analyses GWAS. Afin de rendre AgroLD accessible par un plus grand nombre d'uti-lisateurs, nous avons également développé une application Web proposant plusieurs interfaces de requêtes. Tout d'abord une interface simple qui permet aux utilisateurs de rechercher par mots-clés sur l'ensemble des valeurs de la base et ainsi de parcourir le contenu d'AgroLD. Puis une interface de recherche avancée qui permet de combiner du texte libre et des filtres à facettes ainsi que des services Web externes proposant ainsi une interface d'agrégation de données distribuées. AgroLD possède également une interface de visualisation des graphes qu'il est possible de configurer pour mettre en valeur certains types de relations. Finalement, un éditeur SPARQL propose un environnement interactif pour formuler des requêtes et manipuler des ré-sultats. Actuellement, de nouveaux jeux de données sont en cours d'intégration. Ils portent sur les réseaux d'interaction protéine-protéine, les facteurs de transcription et réseaux de co-expression afin d'étendre les connaissances sur les mécanismes moléculaires. De nombreux développements sont également réalisés au niveau des interfaces de requêtes, notamment au niveau de la visualisation des graphes afin de fournir des outils plus dynamiques, interactifs et contextualisés. Enfin, une attention particulière est portée sur la qualité des données intégrées. Des méthodes de liage et de machine learning sont développées pour rechercher des liens et des ressources similaires dans la base de connaissances ou dans des ressources externes.
- Published
- 2019
34. Gigwa v2—Extended and improved genotype investigator
- Author
-
Sempéré, Guilhem, Pétel, Adrien, Rouard, Mathieu, Frouin, Julien, Hueber, Yann, De Bellis, Fabien, Larmande, Pierre, Interactions hôtes-vecteurs-parasites-environnement dans les maladies tropicales négligées dues aux trypanosomatides (UMR INTERTRYP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université de Bordeaux (UB), Institut National de la Recherche Agronomique (INRA), Université de Montpellier (UM), CGIAR, Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), French National Research Agency (ANR) : ANR-16-IDEX-0006, and ANR-16-IDEX-0006,MUSE,MUSE(2016)
- Subjects
Genotype ,SNP ,interoperability ,Logiciel ,Polymorphism, Single Nucleotide ,web ,F30 - Génétique et amélioration des plantes ,génomique ,HapMap ,User-Computer Interface ,Variation génétique ,MongoDB ,Databases, Genetic ,Technical Note ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,PLINK ,Humans ,Traitement des données ,Internet ,Vegetal Biology ,genomic variations ,VCF ,NoSQL ,indel ,REST ,BrAPI ,GA4GH ,Computational Biology ,Genetic Variation ,High-Throughput Nucleotide Sequencing ,Genomics ,L10 - Génétique et amélioration des animaux ,interopérabilité ,U30 - Méthodes de recherche ,Biologie végétale ,Génotype ,Software - Abstract
International audience; Background: The study of genetic variations is the basis of many research domains in biology. From genome structure to population dynamics, many applications involve the use of genetic variants. The advent of next-generation sequencing technologies led to such a flood of data that the daily work of scientists is often more focused on data management than data analysis. This mass of genotyping data poses several computational challenges in terms of storage, search, sharing, analysis, and visualization. While existing tools try to solve these challenges, few of them offer a comprehensive and scalable solution. Results: Gigwa v2 is an easy-to-use, species-agnostic web application for managing and exploring high-density genotyping data. It can handle multiple databases and may be installed on a local computer or deployed as an online data portal. It supports various standard import and export formats, provides advanced filtering options, and offers means to visualize density charts or push selected data into various stand-alone or online tools. It implements 2 standard RESTful application programming interfaces, GA4GH, which is health-oriented, and BrAPI, which is breeding-oriented, thus offering wide possibilities of interaction with third-party applications. The project home page provides a list of live instances allowing users to test the system on public data (or reasonably sized user-provided data). Conclusions: This new version of Gigwa provides a more intuitive and more powerful way to explore large amounts of genotyping data by offering a scalable solution to search for genotype patterns, functional annotations, or more complex filtering. Furthermore, its user-friendliness and interoperability make it widely accessible to the life science community.
- Published
- 2019
- Full Text
- View/download PDF
35. Managing and exploring large genotyping data with Gigwa
- Author
-
Sempere, Guilhem, Petel, Adrien, Rouard, Mathieu, Larmande, Pierre, Hueber, Yann, Frouin, Julien, and De Bellis, Fabien
- Abstract
With the decreasing cost of genome sequencing, many laboratories are increasingly adopting genotyping technologies as a routine component of their analytical workflows, generating large datasets (e.g. VCF files) of genotyping information. Nevertheless, manipulating such large datasets remains a challenge for many scientists. In this context, we developed Gigwa (Genotype Investigator for Genome-Wide Analyses) with the aim of providing a user-friendly system to meet the requirements of scientists who need to filter large datasets and export them into various formats for subsequent analyses. Gigwa is species-agnostic, cross-platform, scalable and easy to deploy. It can be configured to run on a local computer or setup across servers to act as a data portal. It may be used to share data with collaborators while providing means to seek variants of interest based on location, functional annotations or genotype patterns. Based on NoSQL technology, it supports very large datasets (up to tens of millions of genotypes) when configured on suitable hardware. Its most attractive features are: ergonomic interface including user management, numerous import and export formats, powerful filtering engine, interoperability via REST APIs and connection to online or standalone tools. Gigwa now in version 2 (http://gigwa.southgreen.fr), is developed within the scope of South Green bioinformatics, a cross-institute platform and community dedicated to genetics and genomics of tropical and Mediterranean plants, based in Montpellier, France.
- Published
- 2019
36. AgroLD: a Linked Data platform to understand plant genotype-phenotype interactions
- Author
-
Larmande, Pierre, Tagny Ngompé, Gildas, and Ruiz, Manuel
- Abstract
Genotype-phenotype interactions play an important role in agronomy. However, these interactions are complex to identify because expressed at different molecular scales and are strongly influenced by environmental factors. Although high-throughput technologies generate more comprehensive insights, our knowledge remains fragmentary to elucidate the molecular mechanisms that govern the expression of complex traits. This objective can be achieved by integrating information from different levels into an integrative model in order to understand the functioning of the whole biological system. Today, the Semantic Web offers technologies for the integration of heterogeneous data and their transformation into explicit knowledge. We have developed AgroLD (www.agrold.org) relying on Semantic Web technologies and exploiting standard domain ontologies, to integrate data about plant species of high interest for the plant science community. AgroLD is now an RDF (Resource Description Format) knowledge base of 130M triples created by annotating and integrating more than 55 datasets with 10 ontologies. AgroLD's objective is to offer a domain-specific knowledge platform to solve complex biological questions related to the implication of genes/proteins in, for instances, plant disease resistance or high yield traits. Thus, the AgroLD platform provides several entry points, in order to allow a large number of users accessing it.
- Published
- 2019
37. GOBii, a scalable genomics data management system with rapid data extract times and integration with downstream genomic selection analysis pipelines
- Author
-
Nti-Addae, Yaw, Ulat, Victor Jun, Matthews, Dave, Sempere, Guilhem, Guignon, Valentin, Larmande, Pierre, Renner, Jon, Petel, Adrien, Jones, Elizabeth, and Robbins, Kelly
- Subjects
ComputingMethodologies_PATTERNRECOGNITION ,Data_FILES - Abstract
The Genomic Open-Source Breeding informatics initiative (GOBii) has built a genomics data management system that is highly scalable and has focused on data extract performance for large genomics data files. We have benchmarked several SQL and noSQL open-source data management systems with a view to managing large scale genomics data, and have determined that the HDF5 file system outperformed other data management systems both in loading and extract times. In order to also accommodate metadata management, we have designed and developed a hybrid system based on Postgres for sample and marker metadata management and HDF5 for the large genomics files. The HDF5 genomics files are stored in two different orientations to enable rapid extract in either sample or marker-fast formats. The system is flexible enough to be used across different crops and with diverse marker and sequence-based platforms. We are now working to integrate the genomics data extracts with downstream genomic selection applications in Galaxy.
- Published
- 2019
38. Benchmarking database systems for Genomic Selection implementation
- Author
-
Nti-Addae, Yaw, Matthews, Dave, Ulat, Victor Jun, Syed, Raza, Sempere, Guilhem, Petel, Adrien, Renner, Jon, Larmande, Pierre, Guignon, Valentin, Jones, Elizabeth, Robbins, Kelly, Nti-Addae, Yaw, Matthews, Dave, Ulat, Victor Jun, Syed, Raza, Sempere, Guilhem, Petel, Adrien, Renner, Jon, Larmande, Pierre, Guignon, Valentin, Jones, Elizabeth, and Robbins, Kelly
- Abstract
Motivation: With high-throughput genotyping systems now available, it has become feasible to fully integrate genotyping information into breeding programs. To make use of this information effectively requires DNA extraction facilities and marker production facilities that can efficiently deploy the desired set of markers across samples with a rapid turnaround time that allows for selection before crosses needed to be made. In reality, breeders often have a short window of time to make decisions by the time they are able to collect all their phenotyping data and receive corresponding genotyping data. This presents a challenge to organize information and utilize it in downstream analyses to support decisions made by breeders. In order to implement genomic selection routinely as part of breeding programs, one would need an efficient genotyping data storage system. We selected and benchmarked six popular open-source data storage systems, including relational database management and columnar storage systems. Results: We found that data extract times are greatly influenced by the orientation in which genotype data is stored in a system. HDF5 consistently performed best, in part because it can more efficiently work with both orientations of the allele matrix.
- Published
- 2019
39. BrAPI—an application programming interface for plant breeding applications
- Author
-
Selby, Peter, Abbeloos, Rafael, Backlund, Jan Erik, Basterrechea Salido, Martin, Bauchet, Guillaume, Benites-Alfaro, Omar E., Birkett, Clay, Calaminos, Viana C., Carceller, Pierre, Cornut, Guillaume, Vasques Costa, Bruno, Edwards, Jeremy D., Finkers, Richard, Yanxin Gao, Star, Ghaffar, Mehmood, Glaser, Philip, Guignon, Valentin, Hok, Puthick, Kilian, Andrzej, König, Patrick, Lagare, Jack Elendil B., Lange, Matthias, Laporte, Marie-Angélique, Larmande, Pierre, LeBauer, David S., Lyon, David A., Marshall, David S., Matthews, Dave, Milne, Iain, Mistry, Naymesh, Morales, Nicolas, Mueller, Lukas, Neveu, Pascal, Papoutsoglou, Evangelia, Pearce, Brian, Perez-Masias, Ivan, Pommier, Cyril, Ramírez-González, Ricardo H., Rathore, Abhishek, Raquel, Angel Manica, Raubach, Sebastian, Rife, Trevor, Robbins, Kelly, Rouard, Mathieu, Sarma, Chaitanya, Scholz, Uwe, Sempere, Guilhem, et al., Selby, Peter, Abbeloos, Rafael, Backlund, Jan Erik, Basterrechea Salido, Martin, Bauchet, Guillaume, Benites-Alfaro, Omar E., Birkett, Clay, Calaminos, Viana C., Carceller, Pierre, Cornut, Guillaume, Vasques Costa, Bruno, Edwards, Jeremy D., Finkers, Richard, Yanxin Gao, Star, Ghaffar, Mehmood, Glaser, Philip, Guignon, Valentin, Hok, Puthick, Kilian, Andrzej, König, Patrick, Lagare, Jack Elendil B., Lange, Matthias, Laporte, Marie-Angélique, Larmande, Pierre, LeBauer, David S., Lyon, David A., Marshall, David S., Matthews, Dave, Milne, Iain, Mistry, Naymesh, Morales, Nicolas, Mueller, Lukas, Neveu, Pascal, Papoutsoglou, Evangelia, Pearce, Brian, Perez-Masias, Ivan, Pommier, Cyril, Ramírez-González, Ricardo H., Rathore, Abhishek, Raquel, Angel Manica, Raubach, Sebastian, Rife, Trevor, Robbins, Kelly, Rouard, Mathieu, Sarma, Chaitanya, Scholz, Uwe, Sempere, Guilhem, and et al.
- Abstract
Motivation: Modern genomic breeding methods rely heavily on very large amounts of phenotyping and genotyping data, presenting new challenges in effective data management and integration. Recently, the size and complexity of datasets have increased significantly, with the result that data are often stored on multiple systems. As analyses of interest increasingly require aggregation of datasets from diverse sources, data exchange between disparate systems becomes a challenge. Results: To facilitate interoperability among breeding applications, we present the public plant Breeding Application Programming Interface (BrAPI). BrAPI is a standardized web service API specification. The development of BrAPI is a collaborative, community-based initiative involving a growing global community of over a hundred participants representing several dozen institutions and companies. Development of such a standard is recognized as critical to a number of important large breeding system initiatives as a foundational technology. The focus of the first version of the API is on providing services for connecting systems and retrieving basic breeding data including germplasm, study, observation, and marker data. A number of BrAPI-enabled applications, termed BrAPPs, have been written, that take advantage of the emerging support of BrAPI by many databases.
- Published
- 2019
40. Rice Galaxy: An open resource for plant science
- Author
-
Juanillas, Venice, Dereeper, Alexis, Beaume, Nicolas, Droc, Gaëtan, Dizon, Joshua, Mendoza, John Robert, Perdon, Jon Peter, Mansueto, Locedie, Triplett, Lindsay, Lang, Jillian M., Zhou, Gabriel, Ratharanjan, Kunalan, Plale, Beth, Haga, Jason, Leach, Jan E., Ruiz, Manuel, Thomson, Michael J., Alexandrov, Nickolai, Larmande, Pierre, Kretzschmar, Tobias, Mauleon, Ramil P., Juanillas, Venice, Dereeper, Alexis, Beaume, Nicolas, Droc, Gaëtan, Dizon, Joshua, Mendoza, John Robert, Perdon, Jon Peter, Mansueto, Locedie, Triplett, Lindsay, Lang, Jillian M., Zhou, Gabriel, Ratharanjan, Kunalan, Plale, Beth, Haga, Jason, Leach, Jan E., Ruiz, Manuel, Thomson, Michael J., Alexandrov, Nickolai, Larmande, Pierre, Kretzschmar, Tobias, and Mauleon, Ramil P.
- Abstract
Background: Rice molecular genetics, breeding, genetic diversity, and allied research (such as rice-pathogen interaction) have adopted sequencing technologies and high-density genotyping platforms for genome variation analysis and gene discovery. Germplasm collections representing rice diversity, improved varieties, and elite breeding materials are accessible through rice gene banks for use in research and breeding, with many having genome sequences and high-density genotype data available. Combining phenotypic and genotypic information on these accessions enables genome-wide association analysis, which is driving quantitative trait loci discovery and molecular marker development. Comparative sequence analyses across quantitative trait loci regions facilitate the discovery of novel alleles. Analyses involving DNA sequences and large genotyping matrices for thousands of samples, however, pose a challenge to non−computer savvy rice researchers. Findings: The Rice Galaxy resource has shared datasets that include high-density genotypes from the 3,000 Rice Genomes project and sequences with corresponding annotations from 9 published rice genomes. The Rice Galaxy web server and deployment installer includes tools for designing single-nucleotide polymorphism assays, analyzing genome-wide association studies, population diversity, rice−bacterial pathogen diagnostics, and a suite of published genomic prediction methods. A prototype Rice Galaxy compliant to Open Access, Open Data, and Findable, Accessible, Interoperable, and Reproducible principles is also presented. Conclusions: Rice Galaxy is a freely available resource that empowers the plant research community to perform state-of-the-art analyses and utilize publicly available big datasets for both fundamental and applied science.
- Published
- 2019
41. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics
- Author
-
Sallaud, Christophe, Gay, Céline, Larmande, Pierre, Bès, Martine, Piffanelli, Pietro, Piégu, Benoit, Droc, Gaétan, Regad, Farid, Bourgeois, Emmanuelle, Meynard, Donaldo, Périn, Christophe, Sabau, Xavier, Ghesquière, Alain, Glaszmann, Jean Christophe, Delseny, Michel, and Guiderdoni, Emmanuel
- Published
- 2004
42. Agronomic Linked Data (AgroLD): A knowledge-based system to enable integrative biology in agronomy
- Author
-
Venkatesan, Aravind, Tagny Ngompe, Gildas, Hassouni, Nordine El, Chentli, Imène, Guignon, Valentin, Larmande, Pierre, Jonquet, Clement, Ruiz, Manuel, Institut de Biologie Computationnelle (IBC), Institut National de la Recherche Agronomique (INRA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Bioversity International, Consultative Group on International Agricultural Research [CGIAR], Fuzziness, Alignments, Data & Ontologies (FADO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and ANR-11-BINF-0002,IBC,Institut de Biologie Computationnelle de Montpellier(2011)
- Subjects
[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing ,[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] ,[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,[INFO.INFO-WB]Computer Science [cs]/Web ,[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/Agronomy ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] - Abstract
International audience; Recent advances in high-throughput technologies have resulted in a tremendous increase in the amount of omics data produced in plant science. This increase, in conjunction with the heterogeneity and variability of the data, presents a major challenge to adopt an integrative research approach. We are facing an urgent need to effectively integrate and assimilate complementary datasets to understand the biological system as a whole. The Semantic Web offers technologies for the integration of heterogeneous data and their transformation into explicit knowledge thanks to ontologies. We have developed the Agronomic Linked Data (AgroLD-www.agrold.org), a knowledge-based system relying on Semantic Web technologies and exploiting standard domain ontologies, to integrate data about plant species of high interest for the plant science community e.g., rice, wheat, arabidopsis. We present some integration results of the project, which initially focused on genomics, proteomics and phenomics. AgroLD is now an RDF (Resource Description Format) knowledge base of 100M triples created by annotating and integrating more than 50 datasets coming from 10 data sources-such as Gramene.org and TropGeneDB-with 10 ontologies-such as the Gene Ontology and Plant Trait Ontology. Our evaluation results show users appreciate the multiple query modes which support different use cases. AgroLD's objective is to offer a domain specific knowledge platform to solve complex biological and agronomical questions related to the implication of genes/proteins in, for instances, plant disease resistance or high yield traits. We expect the resolution of these questions to facilitate the formulation of new scientific hypotheses to be validated with a knowledge-oriented approach.
- Published
- 2018
- Full Text
- View/download PDF
43. Comparative study of Named-Entity Recognition methods in the agronomical domain
- Author
-
Do, Huy, Tran, Hanh, Khoat Than, Quang, Larmande, Pierre, University of sciences and technologies of hanoi (USTH), Hanoi University of Science and Technology (HUST), Institut de Biologie Computationnelle (IBC), Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), University of Science and Technology of Hanoi (USTH), and Institut National de la Recherche Agronomique (INRA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing ,ComputingMethodologies_PATTERNRECOGNITION ,Text mining ,Bioinformatics ,NER ,Plant Genomics ,LSTM-CRF ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; Text mining is becoming an important part of research topic in biology with the original purpose to extract biological entities such as genes, proteins and traits to extend the knowledge from scientific papers. However, few thorough studies on text mining and applications are developed for plant molecular biology data, especially rice, thus resulting a lack of datasets available to train models. Since there is no/rare benchmark for rice, we have to face various difficulties in exploiting advanced machine learning methods for accurate analysis of rice bibliography. In this article, we developed a new training datasets (Oryzabase) as the benchmark. Then, we evaluated the performance of several current approaches to find a methodology with the best results and assigned it as the state of the art method for our own technique in the future. We applied Name Entities Recognition (NER) tagger, which is built from a Long Short Term Memory model, and combined with Conditional Random Fields (LSTM-CRF) to extract information of plant genes and proteins. We analyzed the performance of LSTM-CRF when applying to the Oryzabase dataset and improved the results up to 89% in F1. We found that on average, the result from LSTM-CRF is more exploitable with the new benchmark.
- Published
- 2018
44. AGROLD: A knowledge graph database for rice functional genomics
- Author
-
Larmande, Pierre, El Hassouni, Nordine, Venkatesan, Aravind, and Ruiz, Manuel
- Abstract
Recent advances in high-throughput technologies have resulted in tremendous increase in the amount of data in the agronomic domain. This data explosion in conjunction with its heterogeneity presents a major challenge in adopting an integrative approach towards research. There is an urgent need to effectively integrate and assimilate complementary information to understand the biological system in its entirety. To this end, the Semantic Web offers a stack of powerful technologies for the integration of information from diverse sources and make knowledge explicit thanks to ontologies. We have developed AgroLD (www.agrold.org), a knowledge based system that exploits the Semantic Web technology and some of the relevant standard domain ontologies, to integrate genome to phenome information on plant species widely studied by the plant science community. We present some integration results of the project, which initially focused on genomics, proteomics and phonemics. Currently, AgroLD contains hundreds millions of triples created by annotating more than 50 datasets coming from major rice databases with some relevant ontologies. Our objective is to offer a domain specific knowledge platform to solve complex biological and agronomical questions related to the implication of genes or proteins in, for instances, plant disease resistance or high yield traits. We expect the resolution of these questions to facilitate the formulation of new scientific hypotheses to be validated with a knowledge-oriented approach.
- Published
- 2018
45. The international rice informatics consortium bioinformatics resources
- Author
-
Mauleon, Ramil P., McNally, Kenneth L., Mansueto, Locedie, Chebotarov, Dmytro, Hendrix Barboza, Lord, Juanillas, Venice, Larmande, Pierre, Droc, Gaëtan, Ruiz, Manuel, Dereeper, Alexis, Sackville Hamilton, N. Ruaraidh, Alexandrov, Nickolai, Leung, Hei, and Wing, Rod A.
- Subjects
GeneralLiterature_MISCELLANEOUS - Abstract
The International Rice Informatics Consortium (IRIC), established in 2014, is coordinated by the International Rice Research Institute, and currently has 17 private & public sector member institutions. IRIC aims to 1-organize genotype and available phenotype and passport data for rice germplasm into a linked, consistent and reliable source of information for the global research community, 2-support the development of a user-friendly platform to browse, search and analyze rice data through a single Web portal, and 3-coordinate information sharing and provide a communication platform for public awareness and capacity building. To fulfill objectives 1-2, IRIC leads the development of the SNP-Seek database, a web resource that allows rapid searching of genotypes, varieties, and analyses results from the 3,000 Rice Genomes, High-Density Rice Array and various sequencing/ genotyping projects, and public rice genome information. IRIC also contributes to international initiatives for data standards (Crop Ontology, CGIAR Big Data & Genebank Platforms), data/database interoperability (Breeding API, Rice Data Interoperability Working Group), and reproducible analyses (Rice Galaxy, Excellence in Breeding). IRIC conducts outreach, training and collaboration with the rice research community through annual workshops at Plant Animal Genome conference and the International Symposium on Rice Functional Genomics, the IRIC website, and social media through Facebook and LinkedIn. In this talk the various bioinformatics resources of IRIC will be presented in greater detail.
- Published
- 2018
46. Data standards for plant phenotyping: MIAPPE and its implementations
- Author
-
Pommier, Cyril, Cornut, Guillaume, Letellier, Thomas, Michotey, Célia, Neveu, Pascal, Ruiz, Manuel, Larmande, Pierre, Kersey, Paul J., Cwiek Kupczynska, Hanna, Krajewski, Paweł, Coppens, Frederik, Finkers, Richard, Laporte, Marie-Angélique, Faria, Daniel, Miguel, Célia M., Chavez, Inês, Adam Blondon, Anne-Françoise, Costa, Bruno, Unité de Recherche Génomique Info (URGI), Institut National de la Recherche Agronomique (INRA), Université Paris Saclay (COmUE), Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA), Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut de Recherche pour le Développement (IRD), European Molecular Biology Laboratory European Bioinformatics Institute, Institute of Plant Genetics, Polska Akademia Nauk = Polish Academy of Sciences (PAN), Polish Academy of Sciences (PAN), Department of plant systems biology, Flanders Institute for Biotechnology, Plant Breeding, Wageningen University and Research [Wageningen] (WUR), Bioversity International [Montpellier], Bioversity International [Rome], Consultative Group on International Agricultural Research [CGIAR] (CGIAR)-Consultative Group on International Agricultural Research [CGIAR] (CGIAR), Instituto Gulbenkian de Ciência, Universidade Nova de Lisboa = NOVA University Lisbon (NOVA), Phenome Emphasis France, and European Project: 211601,EC:FP7:INFRA,FP7-INFRASTRUCTURES-2007-1,ELIXIR(2007)
- Subjects
[SDV]Life Sciences [q-bio] ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,[INFO]Computer Science [cs] ,[MATH]Mathematics [math] - Abstract
International audience; Plant Phenotyping data management following the FAIR (Findable, Accessible, Interoperable, Resusable) is highly challenging because of its heterogenity. Thus, simply integrating and consolidating data within a single dataset like a phenotyping network is already a complicated task which is even more complex when trying to link different datasets together. To adress this problem, the Minimal Information About Plant Phenotyping Experiment standard construction has been initiated four years ago, with the help of experts from European infrastructures and institutes like Elixir, Emphasis, INRA, WUR, iBet, IPK, EBI and IPG PAS. It adresses the need of data publication and reuse through a checklist that formalize and document the minimal metadata necessary to ensure long term FAIRness of field or greenhouse datasets, including high througputs phenotyping ones. This list has been implemented in several databases like GnpIS or eDale, in a file format, ISA Tab, in a web service, the Breeding API and an RDF implementation is under construction. We will review those implementations, show its current adoption state and detail the plans for the future evolutions of the standard.
- Published
- 2018
47. Gigwa - Genotype Investigator for Genome-Wide Analyses
- Author
-
Sempere, Guilhem, Petel, Adrien, Dereeper, Alexis, Manuel Ruiz, and Larmande, Pierre
- Published
- 2018
48. Data standards for plant phenotyping: MIAPPE and its implementations [W785]
- Author
-
Pommier, Cyril, Cornut, Guillaume, Letellier, Thomas, Michotey, Célia, Neveu, Pascal, Manuel Ruiz, Larmande, Pierre, Kersey, Paul J., Cwiek, Hanna, Krajewski, Pawel, Coppens, Frederik, Finkers, Richard, Laporte, Marie-Angélique, Faria, Daniel, Miguel, Célia M., Chavez, Ines, Adam-Blondon, Anne-Françoise, and Costa, Bruno
- Subjects
F30 - Génétique et amélioration des plantes - Abstract
Plant Phenotyping data management following the FAIR (Findable, Accessible, Interoperable, Resusable) is highly challenging because of its heterogenity. Thus, simply integrating and consolidating data within a single dataset like a phenotyping network is already a complicated task which is even more complex when trying to link different datasets together. To adress this problem, the Minimal Information About Plant Phenotyping Experiment standard construction has been initiated four years ago, with the help of experts from European infrastructures and institutes like Elixir, Emphasis, INRA, WUR, iBet, IPK, EBI and IPG PAS. It adresses the need of data publication and reuse through a checklist that formalize and document the minimal metadata necessary to ensure long term FAIRness of field or greenhouse datasets, including high througputs phenotyping ones. This list has been implemented in several databases like GnpIS or eDale, in a file format, ISA Tab, in a web service, the Breeding API and an RDF implementation is under construction. We will review those implementations, show its current adoption state and detail the plans for the future evolutions of the standard.
- Published
- 2018
49. Corrigendum to: Rice Galaxy: an open resource for plant science
- Author
-
Juanillas, Venice, primary, Dereeper, Alexis, additional, Beaume, Nicolas, additional, Droc, Gaetan, additional, Dizon, Joshua, additional, Mendoza, John Robert, additional, Perdon, Jon Peter, additional, Mansueto, Locedie, additional, Triplett, Lindsay, additional, Lang, Jillian, additional, Zhou, Gabriel, additional, Ratharanjan, Kunalan, additional, Plale, Beth, additional, Haga, Jason, additional, Leach, Jan E, additional, Ruiz, Manuel, additional, Thomson, Michael, additional, Alexandrov, Nickolai, additional, Larmande, Pierre, additional, Kretzschmar, Tobias, additional, and Mauleon, Ramil P, additional
- Published
- 2019
- Full Text
- View/download PDF
50. OryzaGP: rice gene and protein dataset for named-entity recognition
- Author
-
Larmande, Pierre, primary, Do, Huy, additional, and Wang, Yue, additional
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.