17 results on '"Larbi Ben Hadj Slama"'
Search Results
2. Interference Management by Adaptive Beamforming Algorithm in Massive MIMO Networks.
- Author
-
Hosni Manai, Larbi Ben Hadj Slama, and Ridha Bouallegue
- Published
- 2019
- Full Text
- View/download PDF
3. Compute-and-forward on Gaussian interference relay channel.
- Author
-
Ammar Jlassi, Larbi Ben Hadj Slama, Abdellatif Zaidi, and Sofiane Cherif
- Published
- 2017
- Full Text
- View/download PDF
4. Compute-and-forward on Compound Multiple Access Relay Channel.
- Author
-
Ammar Jlassi, Larbi Ben Hadj Slama, Abdellatif Zaidi, and Sofiane Cherif
- Published
- 2015
- Full Text
- View/download PDF
5. Anticipation of ETX Metric to Manage Mobility in Ad Hoc Wireless Networks.
- Author
-
Sabrine Naimi, Anthony Busson, Véronique Vèque, Larbi Ben Hadj Slama, and Ridha Bouallegue
- Published
- 2014
- Full Text
- View/download PDF
6. Mobility management in ad hoc networks using routing metrics.
- Author
-
Sabrine Naimi, Anthony Busson, Véronique Vèque, Larbi Ben Hadj Slama, and Ridha Bouallegue
- Published
- 2014
- Full Text
- View/download PDF
7. A new optimization of group shuffled LDPC decoding.
- Author
-
Nassib Laouini, Larbi Ben Hadj Slama, and Ammar Bouallegue
- Published
- 2014
- Full Text
- View/download PDF
8. An optimized min-sum variable node layering for LDPC decoding.
- Author
-
Nassib Laouini, Larbi Ben Hadj Slama, and Ammar Bouallegue
- Published
- 2014
- Full Text
- View/download PDF
9. Multi-pulse/single-pulse design for maximizing SIR in partially equalized OFDM systems over highly dispersive channels.
- Author
-
Mahmoud Bellili, Larbi Ben Hadj Slama, and Mohamed Siala 0001
- Published
- 2009
- Full Text
- View/download PDF
10. Pulse design for maximizing SIR in partially equalized OFDM/BFDM systems.
- Author
-
Mahmoud Bellili, Mohamed Siala 0001, and Larbi Ben Hadj Slama
- Published
- 2008
- Full Text
- View/download PDF
11. Optimisation of the CSIT Allocation Size for Interference Alignment Technique in Massive MIMO Networks
- Author
-
Ridha Bouallegue, Larbi Ben Hadj Slama, and Hosni Manai
- Subjects
021103 operations research ,Computer science ,ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS ,MIMO ,Transmitter ,0211 other engineering and technologies ,020206 networking & telecommunications ,Data_CODINGANDINFORMATIONTHEORY ,02 engineering and technology ,Interference (wave propagation) ,Transmission (telecommunications) ,Channel state information ,0202 electrical engineering, electronic engineering, information engineering ,Electronic engineering ,Antenna (radio) ,5G ,Interference alignment ,Computer Science::Information Theory ,Communication channel - Abstract
Massive multiple-input multiple-output systems use a nearly infinite number of high-quality antennas at the transmitter/receiver are anticipated to play a key role in “5G” systems. However, the large number of antenna elements in massive MIMO also posed interference a major deficiency for successful communication in wireless systems. This work deals with Interference Alignment (IA) technique for mitigating the interference, although massive-antennas ‘based’ transmitters coordinated transmission where each transmission creates interference at the unintended receivers, such that the interference signal lies in a reduced dimensional subspace at each receiver. Recent works deal with the feasibility of IA in terms of the numbers of antennas and assume full channel state information at the transmitter (CSIT) is defined by the perfect knowledge of the global channel matrix. In this paper, we develop an algorithm, which ensures IA with incomplete CSIT, which uses the antennas ensured by Massive MIMO to further minimize the size of the CSIT allocation provided that the feasibility of the interference alignment is conserved and make transmitter cooperation more practical. Where the size of the CIST allocation defined as the total of complex numbers transmitted to the transmitter.
- Published
- 2020
- Full Text
- View/download PDF
12. Interference Management by Adaptive Beamforming Algorithm in Massive MIMO Networks
- Author
-
Larbi Ben Hadj Slama, Ridha Bouallegue, and Hosni Manai
- Subjects
021103 operations research ,Computer science ,ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS ,MIMO ,0211 other engineering and technologies ,020206 networking & telecommunications ,02 engineering and technology ,Interference (wave propagation) ,Communications system ,Base station ,Interference (communication) ,0202 electrical engineering, electronic engineering, information engineering ,Electronic engineering ,Antenna (radio) ,Adaptive beamformer ,5G ,Computer Science::Information Theory ,Coherence (physics) - Abstract
Wireless communications systems are the most prosperous technologies of this decade. Driven by newfangled innovative applications such as internet of things and augmented reality, this trend certainly continues exponentially. Massive MIMO technique use almost infinite number of antennas at the base station are expected to play a key role in future communication systems as part of horizon 2020 project. However, the large number of antenna elements in massive MIMO also pose a major challenge, due to the interference is the main impairment to successful communication. In this paper, we propose an original massive MIMO system. Adaptive Beamforming algorithm’s used since it is a promising solution in order to avoid interference problems where conventional beamformers are susceptible to interference signals on the contrary the algorithm can account for interference signals, the simulate results evaluate the interference inter-beams by giving the coherence between the different beams which each beam is appropriate to a specific terminal in communication system and demonstrates the effectiveness of our solution to mitigate interference, thereby contributing to the increase of network capacity. Our research affords a suitable solution for the design of next-generation wireless communication systems.
- Published
- 2019
- Full Text
- View/download PDF
13. Anticipation of ETX Metric to manage Mobility in Ad Hoc Wireless Networks
- Author
-
Anthony Busson, Larbi Ben Hadj Slama, Sabrine Naimi, Veronique Veque, Ridha Bouallegue, Laboratoire des signaux et systèmes (L2S), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Dynamic Networks : Temporal and Structural Capture Approach (DANTE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut Rhône-Alpin des systèmes complexes (IXXI), École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Innov'COM Laboratory, Higher School of Communication, École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and École normale supérieure - Lyon (ENS Lyon)-Université Lumière - Lyon 2 (UL2)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Jean Moulin - Lyon 3 (UJML)
- Subjects
Routing protocol ,Dynamic Source Routing ,Adaptive quality of service multi-hop routing ,business.industry ,Computer science ,ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS ,Wireless Routing Protocol ,Ad hoc wireless distribution service ,[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,Optimized Link State Routing Protocol ,Expected transmission count ,Destination-Sequenced Distance Vector routing ,business ,Computer network - Abstract
International audience; When a node is moving in a wireless network, the routing metrics associated to its wireless links may reflect link quality degrada- tions and help the routing process to adapt its routes. Unfortunately, an important delay between the metric estimation and its inclusion in the routing process makes this approach inefficient. In this paper, we intro- duce an algorithm that predicts metric values a few seconds in advance, in order to compensate the delay involved by the link quality measurement and their dissemination by the routing protocol. We consider classical metrics, in particular ETX (Expected Transmission Count) and ETT (Expected Transmission Time), but we combine their computations to our prediction algorithm. Extensive simulations show the route enhance- ment as the Packet Delivery Ratio (PDR) is close to 1 in presence of mobility.
- Published
- 2014
- Full Text
- View/download PDF
14. An optimized min-sum variable node layering for LDPC decoding
- Author
-
Larbi Ben Hadj Slama, Ammar Bouallegue, and Nassib Laouini
- Subjects
Offset (computer science) ,Computer science ,Ldpc decoding ,List decoding ,Data_CODINGANDINFORMATIONTHEORY ,Sequential decoding ,Layering ,Low-density parity-check code ,Belief propagation ,Algorithm ,Decoding methods - Abstract
Layered decoding is well appreciated in Low-Density Parity-Check (LDPC) decoder implementation since it provides efficient and high-throughput implementation of LDPC decoders. Variable-Node Layered Belief Propagation (VL-BP) algorithm and their reduced-complexity derivatives for LDPC codes are presented. The VL-BP algorithm is a modification of Belief Propagation algorithm (BP), where the variable nodes are divided in subgroups called layers and each iteration is broken into multiple sub-iterations. Some simplifications can also be made to lower the complexity of both BP and CL-BP algorithms, and particularly the complexity of the check node update rule. In this paper, we consider Variable Node Layered BP (VL-BP) algorithm and propose an optimized min-sum VL-BP (MS VL-BP) algorithm for decoding LDPC code which has better performance not only from MS VL-BP algorithm but also from BP algorithm. In this decoding method, unlike other layered algorithms, we consider for the first layer a set of variable nodes that has a low value of the intrinsic information. Simulation results show that good performance can be achieved, and which can even be improved by the addition of either a normalization term or an additive offset term.
- Published
- 2014
- Full Text
- View/download PDF
15. Mobility management in ad hoc networks using routing metrics
- Author
-
Veronique Veque, Larbi Ben Hadj Slama, Anthony Busson, Ridha Bouallegue, Sabrine Naimi, Laboratoire des signaux et systèmes (L2S), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Dynamic Networks : Temporal and Structural Capture Approach (DANTE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut Rhône-Alpin des systèmes complexes (IXXI), École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Innov'COM Laboratory, Higher School of Communication, École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and École normale supérieure - Lyon (ENS Lyon)-Université Lumière - Lyon 2 (UL2)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Jean Moulin - Lyon 3 (UJML)
- Subjects
Routing protocol ,Mobility model ,Dynamic Source Routing ,Computer science ,Wireless ad hoc network ,Distributed computing ,mobile ad hoc networks mobility management (mobile radio) routing protocols ,Wireless Routing Protocol ,Throughput ,Geographic routing ,02 engineering and technology ,Network simulation ,[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,0202 electrical engineering, electronic engineering, information engineering ,Wireless ,Destination-Sequenced Distance Vector routing ,Mobility management ,Triangular routing ,Static routing ,Zone Routing Protocol ,Vehicular ad hoc network ,Adaptive quality of service multi-hop routing ,business.industry ,Network packet ,ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS ,020206 networking & telecommunications ,Mobile ad hoc network ,Ad hoc wireless distribution service ,Optimized Link State Routing Protocol ,Link-state routing protocol ,Geocast ,020201 artificial intelligence & image processing ,Hazy Sighted Link State Routing Protocol ,business ,Computer network - Abstract
International audience; In wireless mobile ad hoc networks, routing protocols use metrics to select the best routes. Metrics may reflect the quality of the wireless link and help to manage mobility. But, there is a delay between link quality measurements performed by the routing protocol and their instantaneous values. To compensate this delay, the idea is to anticipate the value of the metric a few seconds in advance. The purpose of this paper is to propose a new technique to compute ETX metric, that is sensitive to mobility and which optimizes throughput at the same time. We show through simulations performed with NS-3 (Network Simulator version 3) that our approach leads to Packet Delivery Ratio (PDR) close to 1 in presence of mobility.
- Published
- 2014
- Full Text
- View/download PDF
16. Fast decoding of low density parity check codes
- Author
-
Ammar Bouallegue, Larbi Ben Hadj Slama, and Nassib Laouini
- Subjects
Bit error rate ,List decoding ,Node (circuits) ,Data_CODINGANDINFORMATIONTHEORY ,Sequential decoding ,Layering ,Low-density parity-check code ,Belief propagation ,Algorithm ,Decoding methods ,Computer Science::Information Theory ,Mathematics - Abstract
The Layered Belief Propagation L-BP algorithm is is a modified Belief Propagation BP algorithm, where the check nodes are divided in subgroups called layers and each iteration is broken into multiple sub-iterations. In this paper, we consider layered belief propagation decoding and propose an efficient variable node layering for decoding LDPC codes that performs well. We compare the performance of the first introduced LDPC decoding algorithm BP and Layered BP using check node layering with Layered BP using variable node layering in terms of bit error rate (BER). We show that the convergence for decoding LDPC codes is increasing by using a simple and efficient layering strategy.
- Published
- 2012
- Full Text
- View/download PDF
17. Multi-pulse/single-pulse design for maximizing SIR in partially equalized OFDM systems over highly dispersive channels
- Author
-
Larbi Ben Hadj Slama, Mohamed Siala, and Mahmoud Bellili
- Subjects
Physics ,Transmission (telecommunications) ,Orthogonal frequency-division multiplexing ,Modulation ,Electronic engineering ,Equalization (audio) ,Interference (wave propagation) ,Pulse-width modulation ,Computer Science::Information Theory ,Time–frequency analysis ,Pulse (physics) - Abstract
Signal transmission over mobile channels undergoes interferences coming from neighboring symbols in time and frequency. In this paper, we consider a mobile transmission by the OFDM/BFDM technique. Single pulse modulation (SPM) or multi pulse modulation (MPM) combined with a partial equalization of few neighboring pulses (for SPM) or co-located pulses (for MPM) at the receiver can be suited efficiently in the time-frequency lattice structure to optimize the overall system performance.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.