15 results on '"Lanzrath, Marian"'
Search Results
2. Vulnerability of Smart Grid-enabled Protection Relays to IEMI
- Author
-
Arduini, Fernando, Lanzrath, Marian, Ghosalkar, Samikshya, Nateghi, Arash, Fisahn, Sven, Schaarschmidt, Martin, Arduini, Fernando, Lanzrath, Marian, Ghosalkar, Samikshya, Nateghi, Arash, Fisahn, Sven, and Schaarschmidt, Martin
- Abstract
The electricity sector has been undergoing transformations towards the smart grid concept, which aims to improve the robustness, efficiency, and flexibility of the power system. This transition has been achieved by the introduction of smart electronic devices (SEDs) and advanced automatic control and communication systems. Despite the benefits of such modernization, safety issues have emerged with significant concern by experts and entities worldwide. One of these issues is known as Intentional Electromagnetic Interference (IEMI), where offenders employ high-power electromagnetic sources to maliciously disrupt or damage electronic devices. One of the possible gateways for IEMI attacks targeting the smart grids is the microprocessor-based protection relays. On the one hand, the malfunctioning of these devices can lead to equipment damage, including high-voltage equipment (e.g., power transformers), which represent one of the most high-cost items of energy infrastructure. On the other hand, a possible misleading triggering of these devices could cause cascading effects along the various nodes of the power system, resulting in widespread blackouts. Thus, this study presents the possible recurring effects of IEMI exposure of a typical protection relay used in smart grid substations as part of the SCADA (Supervisory Control and Data Acquisition) system. For this purpose, a test setup containing a smart grid protective unit, a monitoring box, and the device's wiring harness is exposed to radiated IEMI threats with high-power narrowband signals using a TEM waveguide and horn antennas. The effects during the test campaigns are observed by means of an IEMI-hardened camera system and a software developed to real-time monitor the device's fibre optic communication link, which is established according to the IEC 60870-5-105 protocol. The results revealed failures ranging from display deviation to various types of protection relay shutdown. Moreover, the consequences of the iden
- Published
- 2023
3. IEMI Vulnerability Analysis for Different Smart Grid-enabled Devices
- Author
-
Garbe, Heyno, Aduini, Fernando, Nateghi, Arash, Schaarschmidt, Martin, Lanzrath, Marian, Suhrke, Michael, Garbe, Heyno, Aduini, Fernando, Nateghi, Arash, Schaarschmidt, Martin, Lanzrath, Marian, and Suhrke, Michael
- Abstract
The smart grid concept aims to improve power systems’ robustness, efficiency, and reliability. The transition from conventional power grids to smart grids has been achieved mainly by integrating Smart Electronic Devices (SEDs) and advanced automatic control and communication systems. On the one hand, electronic devices have been integrated to make the system more decentralised from the national electrical grid. On the other hand, from the point of view of protection and control equipment, there is a growing tendency to replace arrays of analog devices with single digital units that perform multiple functions in a more integrated and efficient way. Despite the perceived benefits of such modernisation, security issues have arisen with substantial concern as electronic devices can be susceptible to Intentional Electromagnetic Interference (IEMI) [2]. The number of IEMI sources has grown significantly in recent decades. In 2014, 76 different types were reported, in which 21 sources were conducted, and 55 were irradiated. From a technical perspective, they can present different features, including band type, average / centre frequency, peak voltage (for conducted sources), or peak field (for irradiated sources) [4]. These sources also differ in technology level, associated cost, and mobility in approaching the target system. Therefore, they can be characterized by the easiness of occurrence in a given scenario and the increased probability of successful attacks on a target system. Under this perspective, a self-built jammer built with off-the-shelf components is more likely to be employed by an offender than a High-Power Electromagnetic (HPEM) source. On the other hand, despite being less probable on account of higher technological level, cost and mobility, a HPEM source may have a higher success rate to affect the target system than the self-built jammer. Coupled with this, based on the different characteristics of the IEMI sources, the electronic devices may present di
- Published
- 2022
4. IEMI Vulnerability Analysis for Different Smart Grid-enabled Devices
- Author
-
Aduini, Fernando, Nateghi, Arash, Schaarschmidt, Martin, Lanzrath, Marian, Suhrke, Michael, and Garbe, Heyno
- Subjects
EMV ,Verträglichkeit ,Elektromagnetik ,ddc:621,3 ,Dewey Decimal Classification::600 | Technik::620 | Ingenieurwissenschaften und Maschinenbau::621 | Angewandte Physik::621,3 | Elektrotechnik, Elektronik ,ddc:600 ,Dewey Decimal Classification::600 | Technik ,Konferenzschrift - Abstract
The smart grid concept aims to improve power systems’ robustness, efficiency, and reliability. The transition from conventional power grids to smart grids has been achieved mainly by integrating Smart Electronic Devices (SEDs) and advanced automatic control and communication systems. On the one hand, electronic devices have been integrated to make the system more decentralised from the national electrical grid. On the other hand, from the point of view of protection and control equipment, there is a growing tendency to replace arrays of analog devices with single digital units that perform multiple functions in a more integrated and efficient way. Despite the perceived benefits of such modernisation, security issues have arisen with substantial concern as electronic devices can be susceptible to Intentional Electromagnetic Interference (IEMI) [2]. The number of IEMI sources has grown significantly in recent decades. In 2014, 76 different types were reported, in which 21 sources were conducted, and 55 were irradiated. From a technical perspective, they can present different features, including band type, average / centre frequency, peak voltage (for conducted sources), or peak field (for irradiated sources) [4]. These sources also differ in technology level, associated cost, and mobility in approaching the target system. Therefore, they can be characterized by the easiness of occurrence in a given scenario and the increased probability of successful attacks on a target system. Under this perspective, a self-built jammer built with off-the-shelf components is more likely to be employed by an offender than a High-Power Electromagnetic (HPEM) source. On the other hand, despite being less probable on account of higher technological level, cost and mobility, a HPEM source may have a higher success rate to affect the target system than the self-built jammer. Coupled with this, based on the different characteristics of the IEMI sources, the electronic devices may present distinct effects, which may trigger severe impacts on a smart grid at a higher level [8]. Therefore, this study compares the IEMI vulnerability of three devices used in smart grid applications. The first device is a Wi-Fi-based smart home meter. It can read voltage and current signals of consumer units and remotely display real power, reactive power, and power factor. These measurements can be used in-house or transmitted to a Supervisory Control and Data Acquisition (SCADA) system from Distribution System Operators (DSOs). The second device is a Power Line Communication (PLC) unit, which enables data to be carried over conductors intended primarily for electrical power transmission. This technology is used in buildings to reduce the communication network’s material and installation costs and provide flexibility and faster data communication. The final device considered is a digital protection relay designed to trip circuit breakers when faults are detected. The latest digital relay units feature many protection functionalities, including overload and under-voltage/over-voltage protection, temperature monitoring, fault location, self-reclosure, among others. The three devices are subjected to self-built low-power jamming signals. As an extension, the protection relay is also subjected to a narrowband High Power Electromagnetic (HPEM) source.
- Published
- 2022
- Full Text
- View/download PDF
5. Vulnerability of smart grid-enabled protection relays to IEMI
- Author
-
Arduini, Fernando R., Ghosalkar, Samikshya, Nateghi, Arash, Lanzrath, Marian, Fisahn, Sven, and Schaarschmidt, Martin
- Published
- 2021
- Full Text
- View/download PDF
6. A Methodology for Estimating the Criticality of Energy Infrastructures in the Context of IEMI
- Author
-
Arduini, Fernando R., primary, Lanzrath, Marian, additional, Pusch, Thorsten, additional, Suhrke, Michael, additional, and Garbe, Heyno, additional
- Published
- 2021
- Full Text
- View/download PDF
7. HPEM Vulnerability of Smart Grids
- Author
-
Lanzrath, Marian, Hirsch, Holger, and Hirsch, Holger (Akademische Betreuung)
- Subjects
IEMI -- HPEM -- Smart Grid -- Risk Assessment ,ddc:621.3 ,Fakultät für Ingenieurwissenschaften » Elektrotechnik und Informationstechnik » Energietransport und -speicherung ,IEMI ,HPEM ,Smart Grid ,Risk Assessment ,Elektrotechnik - Abstract
Die unterbrechungsfreie Versorgung mit Strom zählt in der heutigen Gesellschaft als eines der wichtigsten Güter, von deren ordnungsgemäßer Verfügbarkeit eine Vielzahl von alltäglichen, industriellen wie auch administrativen Prozessen abhängig sind. Ausfälle im System können je nach Schwere nachhaltige Versorgungsengpässe sowie erhebliche Störungen der öffentlichen Sicherheit verursachen. Aus diesem Grund wird die Strominfrastruktur von den Behörden als kritische Infrastruktur eingeordnet und in der nachfolgenden Ausarbeitung auch als solche betrachtet. Der zunehmende Einsatz elektronischer und PC-gestützter Systeme bei der Modernisierung von elektrotechnischen Anlagen für die Optimierung und Automatisierung von Prozessabläufen, wie beispielsweise im intelligenten Stromnetz (Smart Grid) umgesetzt, hat jedoch den Nachteil einer Zunahme der Empfindlichkeit dieser Systeme gegenüber externen Störgrößen. Eine dieser zusätzlichen Bedrohungen besteht in einer vorsätzlichen Beeinflussung der elektronischen Systeme mit elektromagnetischen Störsignalen (IEMI, Intentional Electromagnetic Interference), welche Fehlfunktionen und Ausfälle bei den Elektroniken verursachen können. Dabei können die Störsignale sowohl leitungsgeführt wie auch gestrahlt auf die elektronischen Systeme einwirken. Auf Grund der Tatsache, dass jedes elektronische Gerät oder System individuelle Empfindlichkeiten gegenüber externen Störgrößen aufweist, die beispielsweise auch in Abhängigkeit von Signalparametern des Störsignals variieren können, müssen die Risiken sowie die Auswirkungen eines Ausfalls im Detail analysiert werden. In der nachfolgenden Ausarbeitung werden die Methodik sowie auch Ergebnisse einer detaillierten Studie zur Risikoanalyse der kritischen Infrastruktur Smart Grid gegenüber einer vorsätzlichen Beeinflussung durch elektromagnetische Störgrößen unter Anwendung etablierter Methoden aus dem Bereich des Risikomanagements dargestellt. Neben der theoretischen Betrachtung der Bedrohung wurden zusätzlich umfangreiche empirische Laboruntersuchungen an einer für die deutsche Energieinfrastruktur repräsentativen Auswahl an elektronischen Steuer- und Kontrollgeräten aus kritischen Schaltanlagen sowie einer Auswahl an intelligenten Stromzählern durchgeführt. Dabei wurden neben der einfachen Bestimmung von Empfindlichkeiten der untersuchten elektronischen Systeme weiterhin auch ausführliche Untersuchungen zu Einkoppelpfaden der elektromagnetischen Störgrößen im Labor sowie Signaldämpfungsanalysen an in Betrieb befindlichen Schaltanlagen der Strominfrastruktur durchgeführt. Die Ergebnisse der Laboruntersuchungen konnten außerdem im Rahmen einer Messkampagne an der baulichen Nachbildung einer realen Infrastruktur validiert werden. Die untersuchten intelligenten Stromzähler sowie Netzbetriebsmittel der Energieversorgungsunternehmen weisen zum Teil eine signifikante Empfindlichkeit gegenüber elektromagnetischen Störsignalen auf, wobei auch eine Vielzahl kritischer Ausfälle verursacht werden konnte, die gegebenenfalls einen Einfluss auf die Stabilität der Strominfrastruktur haben können. Die hier gewonnenen Ergebnisse bilden eine substantielle Grundlage für die Risikoanalyse von HPEM-Bedrohungen und für die Dimensionierung von effizienten Schutzmaßnahmen, die im Kontext der kritischen Infrastrukturen kosteneffizient und schnell umgesetzt werden könnten., The uninterrupted supply of electrical energy is one of the most important goods for modern society, because a huge variety of everyday, industrial and administrative processes rely on the sustained availability of the energy supply. Potential power outages could cause sustained bottlenecks in supply as well as significant disorders for the public safety, depending on their severity. As a consequence, the government has declared the power infrastructure to be a critical infrastructure which has to be addressed in the succeeding considerations. The increasing implementation of electronical and computer-based systems as part of modernisation processes of electrotechnical systems for optimization and automatization, such as implemented in the Smart Grid, is accompanied by the disadvantage of an increasing susceptibility of these systems to external disturbances.One of these additional threats is based on the intentional interference using electromagnetic signals to cause malfunctions to the systems (IEMI, Intentional Electromagnetic Interference). The disturbing signals could be directly injected on the connected cabling or couple into the systems by irradiating them. Based on the fact that every electronic system has an individual susceptibility to electromagnetic disturbance signals which might also depend on different excitation parameters, the consequences and risks have to be evaluated in detail for each individual system. In the following report, the method as well as the results of a study concerning the risk analysis of the critical infrastructure Smart Grid against IEMI using established riskmanagement methods for the evaluation are presented. Besides the theoretical considerations of the IEMI threat further detailed empirical laboratory studies were performed. These studies contain the testing of a representative selection of electronical control and communication systems used within critical substations of the German power grid as well as some Smart Meter devices on their susceptibility to IEMI excitation. Alongside with the determination of the IEMI susceptibility of the test devices within a wide frequency range, also additional investigations using various excitations methods and signalparameters were used to gain information on the coupling paths into the test systems. Furthermore, investigations have been conducted concerning the electromagnetic signal reduction performance of typical operating substations within the German power grid. Finally, the laboratory studies were validated using a close to reality infrastructure for the susceptibility testing. The ascertained test results of the investigated systems revealed a significant susceptibility to IEMI, while a mass of critical malfunctions were recorded. Their analysis in the system context yielded possible consequences which might also have an impact on the stability of the infrastructure as a whole. The achieved results of the study form an important basis for the risk analysis of electromagnetic threats and the design of effective protective measures, which could be easily implemented in the critical infrastructures implying low costs.
- Published
- 2020
8. Response of the UAV Sensor System to HPEM Attacks
- Author
-
Lubkowski, Grzegorz, primary, Lanzrath, Marian, additional, Lavau, Louis Cesbron, additional, and Suhrke, Michael, additional
- Published
- 2020
- Full Text
- View/download PDF
9. Vulnerability of Smart Grid-enabled Protection Relays to IEMI.
- Author
-
Arduini, Fernando, Lanzrath, Marian, Ghosalkar, Samikshya, Nateghi, Arash, Fisahn, Sven, and Schaarschmidt, Martin
- Subjects
- *
SMART power grids , *AUTOMATIC control systems , *SMART devices , *ELECTRONIC equipment , *ENERGY infrastructure , *HORN antennas - Abstract
The electricity sector has been undergoing transformations towards the smart grid concept, which aims to improve the robustness, efficiency, and flexibility of the power system. This transition has been achieved by the introduction of smart electronic devices (SEDs) and advanced automatic control and communication systems. Despite the benefits of such modernization, safety issues have emerged with significant concern by experts and entities worldwide. One of these issues is known as Intentional Electromagnetic Interference (IEMI), where offenders employ high-power electromagnetic sources to maliciously disrupt or damage electronic devices. One of the possible gateways for IEMI attacks targeting the smart grids is the microprocessor-based protection relays. On the one hand, the malfunctioning of these devices can lead to equipment damage, including high-voltage equipment (e.g., power transformers), which represent one of the most high-cost items of energy infrastructure. On the other hand, a possible misleading triggering of these devices could cause cascading effects along the various nodes of the power system, resulting in widespread blackouts. Thus, this study presents the possible recurring effects of IEMI exposure of a typical protection relay used in smart grid substations as part of the SCADA (Supervisory Control and Data Acquisition) system. For this purpose, a test setup containing a smart grid protective unit, a monitoring box, and the device's wiring harness is exposed to radiated IEMI threats with high-power narrowband signals using a TEM waveguide and horn antennas. The effects during the test campaigns are observed by means of an IEMI-hardened camera system and a software developed to real-time monitor the device's fibre optic communication link, which is established according to the IEC 60870-5-105 protocol. The results revealed failures ranging from display deviation to various types of protection relay shutdown. Moreover, the consequences of the identified failures in a power substation are discussed to feed into a risk analysis regarding the threat of IEMI to power infrastructures. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
10. HPEM-Based Risk Assessment of Substations Enabled for the Smart Grid
- Author
-
Lanzrath, Marian, primary, Suhrke, Michael, additional, and Hirsch, Holger, additional
- Published
- 2020
- Full Text
- View/download PDF
11. IEMI Resilience Assessment of Critical Infrastructures
- Author
-
Pusch, Thorsten, primary, Lanzrath, Marian, additional, and Suhrke, Michael, additional
- Published
- 2019
- Full Text
- View/download PDF
12. HPEM Vulnerability of Smart Grid Substation Secondary Systems
- Author
-
Lanzrath, Marian, primary, Suhrke, Michael, additional, and Hirsch, Holger, additional
- Published
- 2018
- Full Text
- View/download PDF
13. D4.1 - Supervised RIs: Defining resilience indicators based on risk assessment frameworks
- Author
-
Øien, Knut, Bodsberg, Lars, Hoem, Å., Øren, Anita, Grøtan, Tor Olav, Jovanovic, Aleksandar, Choudhary, Amrita, Jelic, M., Petrenj, Boris, Tetlak, K., Kokejl, Roswitha, Djurovic, S., Rosen, T., Husta, Stefan, Lanzrath, Marian, Pusch, Thorsten, Suhrke, Michael, Walther, Gerald, Székely, Zoltán, Macsári, I., Bouklis, P., Lykourgiotis, K., Markogiannakis, M., Sanne, Johan, Bergfors, Linus, Ekholm, Hanna Matschke, Eremic, Svetozar, Bezrukov, Dmitrij, Blazevic, D., Molarius, Riitta, Koivisto, Raija, Auerkari, Pertti, Pohja, Rami, and Tuurna, Satu
- Published
- 2017
- Full Text
- View/download PDF
14. HPEM vulnerability of substation control systems as components of the Smart Grid
- Author
-
Lanzrath, Marian, Suhrke, Michael, Pusch, Thorsten, Adami, Christian, and Jöster, Michael
- Published
- 2016
- Full Text
- View/download PDF
15. HPEM-Empfindlichkeit von intelligenten Stromzählern als Komponenten des Smart Grid
- Author
-
Lanzrath, Marian, Pusch, Thorsten, Jöster, Michael, and Suhrke, Michael
- Subjects
intelligenter Stromzähler ,Empfindlichkeit ,IEMI ,Verwundbarkeit ,ddc:621,3 ,intelligentes Stromnetz ,Dewey Decimal Classification::600 | Technik::620 | Ingenieurwissenschaften und Maschinenbau::621 | Angewandte Physik::621,3 | Elektrotechnik, Elektronik ,HPEM ,smart grid ,Dewey Decimal Classification::600 | Technik ,ddc:600 ,Konferenzschrift - Abstract
Die elektrische Energieversorgung ist die wichtigste kritische Infrastruktur unserer Gesellschaft. Die ständige Verfügbarkeit der Stromversorgung ist Grundlage der modernen, durchoptimierten Industrie und aller Dienstleistungen, die heutzutage ohne digitale Informationsverarbeitung nicht mehr denkbar wären. Im privaten Umfeld ist die ständige Verfügbarkeit von Strom aus der Steckdose eine Selbstverständlichkeit, über die wir gar nicht mehr nachdenken. Die Sicherung der Verfügbarkeit von elektrischem Strom ist demnach essentiell wichtig. Durch umweltpolitische Entscheidungen geht der Trend in der Erzeugung weg von fossilen Brennstoffen und zentral gelegenen Großkraftwerken hin zu in der Fläche abschöpfbaren erneuerbaren Energien. Die Umstellung der Erzeugung hat Einfluss auf die Netzregelung, denn diese muss von einer bedarfsorientierten, zentralen Kraftwerksregelung hin zu einer angebotsangepassten, dezentralen VerbraucherErzeugerregelung umgewandelt werden. In der Regelung müssen beispielsweise wetterbedingte Verfügbarkeitsschwankungen der erneuerbaren Energiequellen berücksichtigt werden. Damit bei der dezentralen Verteilung von Erzeuger und Verbraucher weiterhin ein stabiles Stromnetz zur Verfügung gestellt werden kann, soll dem flächendeckenden Stromversorgungsnetz ein IT-Kommunikationsnetz überlagert werden, das dem aufkommenden Echtzeit-Kommunikationsaufwand gewachsen ist. Die flächendeckende kommunikative Vernetzung von Erzeuger und Verbraucher bietet Potential für ein neues Regelungskonzept, das Demand-Side-Management (DSM). Hierbei sollen ausgewählte elektrische Verbraucher in Haushalten und Industriebetrieben bei Bedarf zum Lastausgleich automatisch zuoder abgeschaltet. Ergänzt um diese Erweiterung wird ein solches künftiges Stromnetz auch Smart Grid („intelligentes Stromnetz“) genannt. Im Smart Grid wird im Vergleich zum aktuellen Stromnetz die Anzahl verbauter elektronischer Geräte vervielfacht. Es sollen elektronische Zähler, IT-Knoten, Kommunikationsgateways, Messsensoren und auch moderne Fernwirktechnik verbaut werden. Damit stellt sich die Frage nach der Funktionsund Ausfallsicherheit auf einer neuen Ebene, insbesondere, wenn man Möglichkeiten zur bewussten, schädlichen Fremdeinwirkung auf moderne Elektronik komplexer Bauart in Betracht zieht. Es wurden in den vergangenen Jahrzehnten bereits umfangreiche Versuche unternommen, die Verwundbarkeit von Elektronik durch elektromagnetische Felder hoher Leistung (HPEM, „High Power Electromagnetics“) zu untersuchen [1],[2]. Im Fraunhofer Institut für Naturwissenschaftlich-Technische Trendanalysen (INT) wurden unter anderem gezielt Kommunikationsund Überwachungssysteme sowie PC’s auf ihre Störempfindlichkeit gegenüber HPEM hin untersucht [3],[4],[5],[6]. Kriminelle nutzen bereits Hochfrequenzquellen, um mit Hilfe von IEMI („Intentional Electromagnetic Interference“) IToder Sicherheitssysteme in ihrer Funktion zu beeinträchtigen. Betrachtet man das Smart Grid im Lichte dieser Entwicklungen, so lassen sich fehlerhafte Informationen und Totalausfälle von Elektronik als eine erhebliche Gefährdung für die Stromversorgung und die Netzregelung identifizieren. Eine Manipulation des Stromnetzes durch IEMI ist denkbar und sollte als Gefährdungspotential bei der zukünftigen Netzplanung berücksichtigt werden. In diesem Beitrag werden HPEM-Empfindlichkeitsuntersuchungen an intelligenten Stromzählern (Smart Meter) vorgestellt, welche von Energieversorgern eingesetzt werden. Die Smart Meter werden aktuell nur zu Abrechnungszwecke eingesetzt und haben keinen Einfluss auf die Netzstabilität, sie bilden jedoch ein leicht zugängliches Ziel für Angreifer, welches zusätzlich eine der am häufigsten verbauten Komponenten im intelligenten Stromnetz ist. Die Untersuchungen der Smart-Meter bilden eine Grundlage für weitere Untersuchungen an kritischen Netzkomponenten.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.