1. Evidence for biquadratic exchange in the quasi-two-dimensional antiferromagnet FePS$_3$
- Author
-
Wildes, A. R., Zhitomirsky, M. E., Ziman, T., Lançon, D., and Walker, H. C.
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Strongly Correlated Electrons - Abstract
FePS$_3$ is a van der Waals compound with a honeycomb lattice that is a good example of a two-dimensional antiferromagnet with Ising-like anisotropy. Neutron spectroscopy data from FePS3 were previously analysed using a straight-forward Heisenberg Hamiltonian with a single-ion anisotropy. The analysis captured most of the elements of the data, however some significant discrepancies remained. The discrepancies were most obvious at the Brillouin zone boundaries. The data are subsequently reanalysed allowing for unequal exchange between nominally equivalent nearest-neighbours, which resolves the discrepancies. The source of the unequal exchange is attributed to a biquadratic exchange term in the Hamiltonian which most probably arises from a strong magnetolattice coupling. The new parameters show that there are features consistent with Dirac magnon nodal lines along certain Brillouin zone boundaries., Comment: 8 pages, 4 figures. The following article has been accepted by the Journal of Applied Physics. After it is published, it will be found at (https://publishing.aip.org/resources/librarians/products/journals/). The article was submitted as part of a special topic edition (https://publishing.aip.org/publications/journals/special-topics/jap/2d-quantum-materials-magnetism-and-superconductivity/)
- Published
- 2020
- Full Text
- View/download PDF