1. The JWST/NIRSpec view of the nuclear region in the prototypical merging galaxy NGC 6240
- Author
-
Ceci, Matteo, Cresci, Giovanni, Arribas, Santiago, Böker, Torsten, Bunker, Andy, Charlot, Stephane, Fahrion, Katja, Isaak, Kate, Lamperti, Isabella, Marconi, Alessandro, Tozzi, Giulia, Perna, Michele, and Ulivi, Lorenzo
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Merger events are thought to be an important phase in the assembly of massive galaxies. At the same time, Active Galactic Nuclei (AGN) play a fundamental role in the evolution of their star formation histories. Both phenomena can be observed at work in NGC 6240, a local prototypical merger, classified as an UltraLuminous InfraRed Galaxy (ULIRG) thanks to its elevated infrared luminosity. Interestingly, NGC 6240 hosts two AGN separated by 1.5''(~ 735 pc), detected in both X-ray and radio band. Taking advantage of the unprecedented sensitivity and wavelength coverage provided by the Integral Field Unit (IFU) of the NIRSpec instrument onboard JWST, we observed the nuclear region of NGC 6240 in a FoV of 3.7'' x 3.7''(1.9 x 1.9 kpc^2), to investigate gas kinematics and InterStellar Medium (ISM) properties with a high spatial resolution of ~ 0.1'' (or ~ 50 pc). We separated the different gas kinematic components through multi-Gaussian fitting and studied the excitation properties of the ISM from the NIR diagnostic diagram based on the H_2 1-0 S(1)/BrGamma and [Fe II]1.257micron/PaBeta lines ratios. We isolated the ionization cones of the two nuclei, and detected coronal lines emission from both of them. Using H_2 line ratios, we found that the molecular hydrogen gas is excited mostly by thermal processes. We computed a hot molecular gas mass of 1.3 x 10^5 M_sun and an ionized gas mass in the range of 10^5 - 10^7 M_sun. We studied with unprecedented spatial resolution and sensitivity the kinematics of the molecular and ionized gas phases. We revealed the complex structure of the molecular gas and found a blueshifted outflow near the Southern nucleus, together with filaments connecting a highly redshifted H_2 cloud with the two nuclei. We speculate on the possible nature of this H_2 cloud and propose two possible scenarios: either outflowing gas, or a tidal cloud falling onto the nuclei., Comment: 27 pages, 25 figures. Submitted to Astronomy & Astrophysics (A&A)
- Published
- 2024