28 results on '"Lamaire, Aran"'
Search Results
2. Nuclear quantum effects on zeolite proton hopping kinetics explored with machine learning potentials and path integral molecular dynamics
- Author
-
Bocus, Massimo, Goeminne, Ruben, Lamaire, Aran, Cools-Ceuppens, Maarten, Verstraelen, Toon, and Van Speybroeck, Veronique
- Published
- 2023
- Full Text
- View/download PDF
3. High rate nanofluidic energy absorption in porous zeolitic frameworks
- Author
-
Sun, Yueting, Rogge, Sven M. J., Lamaire, Aran, Vandenbrande, Steven, Wieme, Jelle, Siviour, Clive R., Van Speybroeck, Veronique, and Tan, Jin-Chong
- Subjects
Condensed Matter - Materials Science - Abstract
Optimal mechanical impact absorbers are reusable and exhibit high specific energy absorption. The forced intrusion of liquid water in hydrophobic nanoporous materials, such as zeolitic imidazolate frameworks (ZIFs), presents an attractive pathway to engineer such systems. However, to harness their full potential, it is crucial to understand the underlying water intrusion and ex-trusion mechanisms under realistic, high-rate deformation conditions. Herein, we report a critical increase of the energy absorption capacity of confined water-ZIF systems at elevated strain rates. Starting from ZIF-8 as proof-of-concept, we demonstrate that this attractive rate depend-ence is generally applicable to cage-type ZIFs but disappears for channel-containing zeolites. Molecular simulations reveal that this phenomenon originates from the intrinsic nanosecond timescale needed for critical-sized water clusters to nucleate inside the nanocages, expediting water transport through the framework. Harnessing this fundamental understanding, design rules are formulated to construct effective, tailorable, and reusable impact energy absorbers for challenging new applications., Comment: 35 pages, 6 Figures, 1 Supplementary Information
- Published
- 2021
- Full Text
- View/download PDF
4. Modeling the structural and thermal properties of loaded metal-organic frameworks. An interplay of quantum and anharmonic fluctuations
- Author
-
Kapil, Venkat, Wieme, Jelle, Vandenbrande, Steven, Lamaire, Aran, Van Speybroeck, Veronique, and Ceriotti, Michele
- Subjects
Condensed Matter - Materials Science ,Physics - Chemical Physics - Abstract
Metal-organic frameworks show both fundamental interest and great promise for applications in adsorption-based technologies, such as the separation and storage of gases. The flexibility and complexity of the molecular scaffold poses a considerable challenge to atomistic modeling, especially when also considering the presence of guest molecules. We investigate the role played by quantum and anharmonic fluctuations in the archetypical case of MOF-5, comparing the material at various levels of methane loading. Accurate path integral simulations of such effects are made affordable by the introduction of an accelerated simulation scheme and the use of an optimized force field based on first-principles reference calculations. We find that the level of statistical treatment that is required for predictive modeling depends significantly on the property of interest. The thermal properties of the lattice are generally well described by a quantum harmonic treatment, with the adsorbate behaving in a classical but strongly anharmonic manner. The heat capacity of the loaded framework - which plays an important role in the characterization of the framework and in determining its stability to thermal fluctuations during adsorption/desorption cycles - requires, however, a full quantum and anharmonic treatment, either by path integral methods or by a simple but approximate scheme. We also present molecular-level insight into the nanoscopic interactions contributing to the material's properties and suggest design principles to optimize them
- Published
- 2019
- Full Text
- View/download PDF
5. Unraveling the Mechanisms of Zirconium Metal–Organic Frameworks‐Based Mixed‐Matrix Membranes Preventing Polysulfide Shuttling.
- Author
-
Lu, Wenqing, Pang, Zhenfeng, Lamaire, Aran, Liu, Fu, Dai, Shan, Pinto, Moisés L., Demir‐Cakan, Rezan, Ooi Tan, Kong, Van Speybroeck, Veronique, Pimenta, Vanessa, and Serre, Christian
- Subjects
POLYSULFIDES ,NUCLEAR magnetic resonance ,ZIRCONIUM ,GRID energy storage ,LITHIUM sulfur batteries ,MOLECULAR dynamics ,METALLIC composites - Abstract
Lithium–sulfur batteries are considered as promising candidates for next‐generation energy storage devices for grid applications due to their high theoretical energy density. However, the inevitable shuttle effect of lithium polysulfides and/or dendrite growth of Li metal anodes hinder their commercial viability. Herein, the microporous Zr fumarate metal–organic framework (MOF)‐801(Zr) is considered to produce thin (≈15.6 μm, ≈1 mg cm2) mixed‐matrix membranes (MMM) as a novel interlayer for Li–S batteries. It is found that the MOF‐801(Zr)/C/PVDF‐HFP composite interlayer facilitates Li+ ions diffusion, and anchors polysulfides while promoting their redox conversion effectively. It is demonstrated that MOF‐801 effectively trapped polysulfides at the cathode side, and confirmed for the first time the nature of the interaction between the adsorbed polysulfides and the host framework, through a combination of solid‐state nuclear magnetic resonance and molecular dynamics simulations. The incorporation of MOF‐801(Zr)/C/PVDF‐HFP MMM interlayer results in a notable enhancement in the initial capacity of Li–S batteries up to 1110 mA h g−1. Moreover, even after 50 cycles, a specific capacity of 880 mA h g−1 is delivered. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
6. Water motifs in zirconium metal-organic frameworks induced by nanoconfinement and hydrophilic adsorption sites
- Author
-
Speybroeck, Veronique Van, primary, Lamaire, Aran, additional, Rogge, Sven, additional, and Wieme, Jelle, additional
- Published
- 2024
- Full Text
- View/download PDF
7. Unraveling the mechanisms of Zirconium MOFs based Mixed Matrix Membranes Preventing Polysulfide Shuttling
- Author
-
Lu, Wenqing, primary, Pang, Zhenfeng, additional, Lamaire, Aran, additional, Liu, Fu, additional, Dai, Shan, additional, Pinto, Moisés L., additional, Demir-Cakan, Rezan, additional, Tan, Kong Ooi, additional, Van Speybroeck, Veronique, additional, Pimenta, Vanessa, additional, and Serre, Christian, additional
- Published
- 2023
- Full Text
- View/download PDF
8. Quantum tunneling rotor as a sensitive atomistic probe of guests in a metal-organic framework
- Author
-
Titov, Kirill, primary, Ryder, Matthew R., additional, Lamaire, Aran, additional, Zeng, Zhixin, additional, Chaudhari, Abhijeet K., additional, Taylor, James, additional, Mahdi, E. M., additional, Rogge, Sven M. J., additional, Mukhopadhyay, Sanghamitra, additional, Rudić, Svemir, additional, Van Speybroeck, Veronique, additional, Fernandez-Alonso, Felix, additional, and Tan, Jin-Chong, additional
- Published
- 2023
- Full Text
- View/download PDF
9. Quantum tunneling rotor as a sensitive atomistic probe of guests in a metal-organic framework
- Author
-
European Commission, European Research Council, Engineering and Physical Sciences Research Council (UK), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Department of Energy (US), Research Foundation - Flanders, Eusko Jaurlaritza, Ikerbasque Basque Foundation for Science, Titov, Kirill, Ryder, Matthew R., Lamaire, Aran, Zeng, Zhixin, Chaudhari, Abhijeet K., Taylor, James, Mahdi, E. M., Rogge, Sven M. J., Mukhopadhyay, Sanghamitra, Rudić, Svemir, Van Speybroeck, Veronique, Fernández-Alonso, Félix, Tan, Jin-Chong, European Commission, European Research Council, Engineering and Physical Sciences Research Council (UK), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Department of Energy (US), Research Foundation - Flanders, Eusko Jaurlaritza, Ikerbasque Basque Foundation for Science, Titov, Kirill, Ryder, Matthew R., Lamaire, Aran, Zeng, Zhixin, Chaudhari, Abhijeet K., Taylor, James, Mahdi, E. M., Rogge, Sven M. J., Mukhopadhyay, Sanghamitra, Rudić, Svemir, Van Speybroeck, Veronique, Fernández-Alonso, Félix, and Tan, Jin-Chong
- Abstract
Quantum tunneling rotors in a zeolitic imidazolate framework ZIF-8 can provide insights into local gas adsorption sites and local dynamics of porous structure, which are inaccessible to standard physisorption or x-ray diffraction sensitive primarily to long-range order. Using in situ high-resolution inelastic neutron scattering at 3 K, we follow the evolution of methyl tunneling with respect to the number of dosed gas molecules. While nitrogen adsorption decreases the energy of the tunneling peak, and ultimately hinders it completely (0.33 meV to zero), argon substantially increases the energy to 0.42 meV. Ab initio calculations of the rotational barrier of ZIF-8 show an exception to the reported adsorption sites hierarchy, resulting in anomalous adsorption behavior and linker dynamics at subatmospheric pressure. The findings reveal quantum tunneling rotors in metal-organic frameworks as a sensitive atomistic probe of local physicochemical phenomena.
- Published
- 2023
10. Quantum Free Energy Profiles for Molecular Proton Transfers
- Author
-
Lamaire, Aran, primary, Cools-Ceuppens, Maarten, additional, Bocus, Massimo, additional, Verstraelen, Toon, additional, and Van Speybroeck, Veronique, additional
- Published
- 2022
- Full Text
- View/download PDF
11. Truly combining the advantages of polymeric and zeolite membranes for gas separations
- Author
-
Tan, Xiaoyu, primary, Robijns, Sven, additional, Thür, Raymond, additional, Ke, Quanli, additional, De Witte, Niels, additional, Lamaire, Aran, additional, Li, Yun, additional, Aslam, Imran, additional, Van Havere, Daan, additional, Donckels, Thibaut, additional, Van Assche, Tom, additional, Van Speybroeck, Veronique, additional, Dusselier, Michiel, additional, and Vankelecom, Ivo, additional
- Published
- 2022
- Full Text
- View/download PDF
12. On the impact of nuclear quantum effects on zeolite proton hopping kinetics through machine learning potentials and path integral molecular dynamics simulations
- Author
-
Bocus, Massimo, primary, Goeminne, Ruben, additional, Lamaire, Aran, additional, Cools-Ceuppens, Maarten, additional, Verstraelen, Toon, additional, and Speybroeck, Veronique Van, additional
- Published
- 2022
- Full Text
- View/download PDF
13. How Reproducible are Surface Areas Calculated from the BET Equation? (Adv. Mater. 27/2022)
- Author
-
Osterrieth, Johannes W. M., primary, Rampersad, James, additional, Madden, David, additional, Rampal, Nakul, additional, Skoric, Luka, additional, Connolly, Bethany, additional, Allendorf, Mark D., additional, Stavila, Vitalie, additional, Snider, Jonathan L., additional, Ameloot, Rob, additional, Marreiros, João, additional, Ania, Conchi, additional, Azevedo, Diana, additional, Vilarrasa‐Garcia, Enrique, additional, Santos, Bianca F., additional, Bu, Xian‐He, additional, Chang, Ze, additional, Bunzen, Hana, additional, Champness, Neil R., additional, Griffin, Sarah L., additional, Chen, Banglin, additional, Lin, Rui‐Biao, additional, Coasne, Benoit, additional, Cohen, Seth, additional, Moreton, Jessica C., additional, Colón, Yamil J., additional, Chen, Linjiang, additional, Clowes, Rob, additional, Coudert, François‐Xavier, additional, Cui, Yong, additional, Hou, Bang, additional, D'Alessandro, Deanna M., additional, Doheny, Patrick W., additional, Dincă, Mircea, additional, Sun, Chenyue, additional, Doonan, Christian, additional, Huxley, Michael Thomas, additional, Evans, Jack D., additional, Falcaro, Paolo, additional, Ricco, Raffaele, additional, Farha, Omar, additional, Idrees, Karam B., additional, Islamoglu, Timur, additional, Feng, Pingyun, additional, Yang, Huajun, additional, Forgan, Ross S., additional, Bara, Dominic, additional, Furukawa, Shuhei, additional, Sanchez, Eli, additional, Gascon, Jorge, additional, Telalović, Selvedin, additional, Ghosh, Sujit K., additional, Mukherjee, Soumya, additional, Hill, Matthew R., additional, Sadiq, Muhammed Munir, additional, Horcajada, Patricia, additional, Salcedo‐Abraira, Pablo, additional, Kaneko, Katsumi, additional, Kukobat, Radovan, additional, Kenvin, Jeff, additional, Keskin, Seda, additional, Kitagawa, Susumu, additional, Otake, Ken‐ichi, additional, Lively, Ryan P., additional, DeWitt, Stephen J. A., additional, Llewellyn, Phillip, additional, Lotsch, Bettina V., additional, Emmerling, Sebastian T., additional, Pütz, Alexander M., additional, Martí‐Gastaldo, Carlos, additional, Padial, Natalia M., additional, García‐Martínez, Javier, additional, Linares, Noemi, additional, Maspoch, Daniel, additional, Suárez del Pino, Jose A., additional, Moghadam, Peyman, additional, Oktavian, Rama, additional, Morris, Russel E., additional, Wheatley, Paul S., additional, Navarro, Jorge, additional, Petit, Camille, additional, Danaci, David, additional, Rosseinsky, Matthew J., additional, Katsoulidis, Alexandros P., additional, Schröder, Martin, additional, Han, Xue, additional, Yang, Sihai, additional, Serre, Christian, additional, Mouchaham, Georges, additional, Sholl, David S., additional, Thyagarajan, Raghuram, additional, Siderius, Daniel, additional, Snurr, Randall Q., additional, Goncalves, Rebecca B., additional, Telfer, Shane, additional, Lee, Seok J., additional, Ting, Valeska P., additional, Rowlandson, Jemma L., additional, Uemura, Takashi, additional, Iiyuka, Tomoya, additional, van der Veen, Monique A., additional, Rega, Davide, additional, Van Speybroeck, Veronique, additional, Rogge, Sven M. J., additional, Lamaire, Aran, additional, Walton, Krista S., additional, Bingel, Lukas W., additional, Wuttke, Stefan, additional, Andreo, Jacopo, additional, Yaghi, Omar, additional, Zhang, Bing, additional, Yavuz, Cafer T., additional, Nguyen, Thien S., additional, Zamora, Felix, additional, Montoro, Carmen, additional, Zhou, Hongcai, additional, Kirchon, Angelo, additional, and Fairen‐Jimenez, David, additional
- Published
- 2022
- Full Text
- View/download PDF
14. How Reproducible are Surface Areas Calculated from the BET Equation?
- Author
-
Universidad de Alicante. Departamento de Química Inorgánica, Osterrieth, Johannes W. M., Rampersad, James, Madden, David G., Rampal, Nakul, Skoric, Luka, Connolly, Bethany M., Allendorf, Mark D., Stavila, Vitalie, Snider, Jonathan L., Ameloot, Rob, Marreiros, João, Coudert, François-Xavier, Cui, Yong, Hou, Bang, D'Alessandro, Deanna M., Doheny, Patrick W., Dincă, Mircea, Sun, Chenyue, Doonan, Christian, Huxley, Michael Thomas, Evans, Jack D., Bara, Dominic, Falcaro, Paolo, Ricco, Raffaele, Farha, Omar, Idrees, Karam B., Islamoglu, Timur, Feng, Pingyun, Yang, Huajun, Forgan, Ross S., Furukawa, Shuhei, Sanchez, Eli, Gascon, Jorge, Telalović, Selvedin, Ghosh, Sujit K., Mukherjee, Soumya, Hill, Matthew R., Sadiq, Muhammed Munir, Horcajada, Patricia, DeWitt, Stephen J. A., Salcedo-Abraira, Pablo, Kaneko, Katsumi, Kukobat, Radovan, Kenvin, Jeff, Keskin, Seda, Kitagawa, Susumu, Otake, Ken-ichi, Lively, Ryan P., Llewellyn, Phillip L., Lotsch, Bettina V., Emmerling, Sebastian T., Pütz, Alexander M., Martí-Gastaldo, Carlos, Padial, Natalia M., Garcia-Martinez, Javier, Linares, Noemi, Maspoch, Daniel, Rosseinsky, Matthew J., Suárez del Pino, Jose A., Moghadam, Peyman Z., Oktavian, Rama, Morris, Russel E., Wheatley, Paul S., Navarro, Jorge, Petit, Camille, Danaci, David, Katsoulidis, Alexandros P., Schröder, Martin, Han, Xue, Yang, Sihai, Serre, Christian, Mouchaham, Georges, Sholl, David S., Thyagarajan, Raghuram, Siderius, Daniel, van der Veen, Monique A., Snurr, Randall Q., Goncalves, Rebecca B., Telfer, Shane, Lee, Seok J., Ting, Valeska P., Rowlandson, Jemma L., Uemura, Takashi, Iiyuka, Tomoya, Rega, Davide, Van Speybroeck, Veronique, Rogge, Sven M.J., Lamaire, Aran, Walton, Krista S., Bingel, Lukas W., Wuttke, Stefan, Andreo, Jacopo, Yaghi, Omar, Ania, Conchi O., Zhang, Bing, Yavuz, Cafer T., Nguyen, Thien S., Zamora, Félix, Montoro, Carmen, Zhou, Hongcai, Kirchon, Angelo, Fairen-Jimenez, David, Azevedo, Diana, Vilarrasa-García, Enrique, Santos, Bianca F., Bu, Xian-He, Chang, Ze, Bunzen, Hana, Champness, Neil R., Griffin, Sarah L., Chen, Banglin, Lin, Rui-Biao, Coasne, Benoit, Cohen, Seth, Moreton, Jessica C., Colón, Yamil J., Chen, Linjiang, Clowes, Rob, Universidad de Alicante. Departamento de Química Inorgánica, Osterrieth, Johannes W. M., Rampersad, James, Madden, David G., Rampal, Nakul, Skoric, Luka, Connolly, Bethany M., Allendorf, Mark D., Stavila, Vitalie, Snider, Jonathan L., Ameloot, Rob, Marreiros, João, Coudert, François-Xavier, Cui, Yong, Hou, Bang, D'Alessandro, Deanna M., Doheny, Patrick W., Dincă, Mircea, Sun, Chenyue, Doonan, Christian, Huxley, Michael Thomas, Evans, Jack D., Bara, Dominic, Falcaro, Paolo, Ricco, Raffaele, Farha, Omar, Idrees, Karam B., Islamoglu, Timur, Feng, Pingyun, Yang, Huajun, Forgan, Ross S., Furukawa, Shuhei, Sanchez, Eli, Gascon, Jorge, Telalović, Selvedin, Ghosh, Sujit K., Mukherjee, Soumya, Hill, Matthew R., Sadiq, Muhammed Munir, Horcajada, Patricia, DeWitt, Stephen J. A., Salcedo-Abraira, Pablo, Kaneko, Katsumi, Kukobat, Radovan, Kenvin, Jeff, Keskin, Seda, Kitagawa, Susumu, Otake, Ken-ichi, Lively, Ryan P., Llewellyn, Phillip L., Lotsch, Bettina V., Emmerling, Sebastian T., Pütz, Alexander M., Martí-Gastaldo, Carlos, Padial, Natalia M., Garcia-Martinez, Javier, Linares, Noemi, Maspoch, Daniel, Rosseinsky, Matthew J., Suárez del Pino, Jose A., Moghadam, Peyman Z., Oktavian, Rama, Morris, Russel E., Wheatley, Paul S., Navarro, Jorge, Petit, Camille, Danaci, David, Katsoulidis, Alexandros P., Schröder, Martin, Han, Xue, Yang, Sihai, Serre, Christian, Mouchaham, Georges, Sholl, David S., Thyagarajan, Raghuram, Siderius, Daniel, van der Veen, Monique A., Snurr, Randall Q., Goncalves, Rebecca B., Telfer, Shane, Lee, Seok J., Ting, Valeska P., Rowlandson, Jemma L., Uemura, Takashi, Iiyuka, Tomoya, Rega, Davide, Van Speybroeck, Veronique, Rogge, Sven M.J., Lamaire, Aran, Walton, Krista S., Bingel, Lukas W., Wuttke, Stefan, Andreo, Jacopo, Yaghi, Omar, Ania, Conchi O., Zhang, Bing, Yavuz, Cafer T., Nguyen, Thien S., Zamora, Félix, Montoro, Carmen, Zhou, Hongcai, Kirchon, Angelo, Fairen-Jimenez, David, Azevedo, Diana, Vilarrasa-García, Enrique, Santos, Bianca F., Bu, Xian-He, Chang, Ze, Bunzen, Hana, Champness, Neil R., Griffin, Sarah L., Chen, Banglin, Lin, Rui-Biao, Coasne, Benoit, Cohen, Seth, Moreton, Jessica C., Colón, Yamil J., Chen, Linjiang, and Clowes, Rob
- Abstract
Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer–Emmett–Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called “BET surface identification” (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible.
- Published
- 2022
15. How Reproducible are Surface Areas Calculated from the BET Equation?
- Author
-
European Commission, European Research Council, University of Cambridge, Trinity College Cambridge, National Nuclear Security Administration (US), Department of Energy (US), Alexander von Humboldt Foundation, Center for Advancing Electronics Dresden, Science and Engineering Research Board (India), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Universidad de Alicante, Research Foundation - Flanders, Engineering and Physical Sciences Research Council (UK), National Research Foundation of Korea, Indonesia Endowment Fund for Education, National Institute of Standards and Technology (US), Osterrieth, Johannes W. M., Rampersad, James, Madden, David, Rampal, Nakul, Skoric, Luka, Connolly, Bethany, Allendorf, Mark D., Stavila, Vitalie, Snider, Jonathan L., Ameloot, Rob, Marreiros, João, Bara, Dominic, Furukawa, Shuhei, Sánchez, Eli, Gascón, Jorge, Telalović, Selvedin, Ghosh, Sujit K., Mukherjee, Soumya, Hill, Matthew R., Sadiq, Muhammed Munir, Horcajada, Patricia, DeWitt, Stephen J. A., Salcedo Abraira, Pablo, Kaneko, Katsumi, Kukobat, Radovan, Kenvin, Jeff, Keskin, Seda, Kitagawa, Susumu, Otake, Ken-Ichi, Lively, Ryan P., Llewellyn, Phillip, Lotsch, Bettina V., Emmerling, Sebastian T., Pütz, Alexander M., Martí-Gastaldo, Carlos, Padial, Natalia M., García-Martínez, Javier, Linares, Noemí, Maspoch, Daniel, Rosseinsky, Matthew J., Suárez, José Antonio, Moghadam, Peyman, Oktavian, Rama, Morris, Russell E., Wheatley, Paul S., Navarro, Jorge, Petit, Camille, Danaci, David, Katsoulidis, Alexandros P., Schröder, Martin, Han, Xue, Yang, Sihai, Serre, Christian, Mouchaham, Georges, Sholl, David S., Thyagarajan, Raghuram, Siderius, Daniel, Veen, Monique A. van der, Snurr, Randall Q., Goncalves, Rebecca B., Telfer, Shane, Lee, Seok J., Ting, Valeska P., Rowlandson, Jemma L., Uemura, Takashi, Iiyuka, Tomoya, Rega, Davide, Speybroeck, Veronique van, Rogge, Sven M. J., Lamaire, Aran, Walton, Krista S., Bingel, Lukas W., Wuttke, Stefan, Andreo, Jacopo, Yaghi, Omar, Ania, Conchi O., Zhang, Bing, Yavuz, Cafer T., Nguyen, Thien S., Zamora, Félix, Montoro, Carmen, Zhou, Hongcai, Kirchon, Angelo, Fairen-Jiménez, David, Azevedo, Diana, Vilarrasa-García, E., Santos, Bianca S., Bu, Xian-He, Chang, Ze, Bunzen, Hana, Champness, Neil R., Griffin, Sarah L., Chen, Banglin, Lin, Rui-Biao, Coasne, Benoit, Cohen, Seth, Moreton, Jessica C., Colón, Yamil J., Chen, Linjiang, Clowes, Rob, Coudert, François Xavier, Cui, Yong, Hou, Bang, D'Alessandro, Deanna M., Doheny, Patrick W., Dincă, Mircea, Sun, Chenyue, Doonan, Christian J., Huxley, Michael Thomas, Evans, Jack D., Falcaro, Paolo, Ricco, Raffaele, Farha, Omar, Idrees, Karam B., Islamoglu, Timur, Feng, Pingyun, Chang, Huajun, Forgan, Ross S., European Commission, European Research Council, University of Cambridge, Trinity College Cambridge, National Nuclear Security Administration (US), Department of Energy (US), Alexander von Humboldt Foundation, Center for Advancing Electronics Dresden, Science and Engineering Research Board (India), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Universidad de Alicante, Research Foundation - Flanders, Engineering and Physical Sciences Research Council (UK), National Research Foundation of Korea, Indonesia Endowment Fund for Education, National Institute of Standards and Technology (US), Osterrieth, Johannes W. M., Rampersad, James, Madden, David, Rampal, Nakul, Skoric, Luka, Connolly, Bethany, Allendorf, Mark D., Stavila, Vitalie, Snider, Jonathan L., Ameloot, Rob, Marreiros, João, Bara, Dominic, Furukawa, Shuhei, Sánchez, Eli, Gascón, Jorge, Telalović, Selvedin, Ghosh, Sujit K., Mukherjee, Soumya, Hill, Matthew R., Sadiq, Muhammed Munir, Horcajada, Patricia, DeWitt, Stephen J. A., Salcedo Abraira, Pablo, Kaneko, Katsumi, Kukobat, Radovan, Kenvin, Jeff, Keskin, Seda, Kitagawa, Susumu, Otake, Ken-Ichi, Lively, Ryan P., Llewellyn, Phillip, Lotsch, Bettina V., Emmerling, Sebastian T., Pütz, Alexander M., Martí-Gastaldo, Carlos, Padial, Natalia M., García-Martínez, Javier, Linares, Noemí, Maspoch, Daniel, Rosseinsky, Matthew J., Suárez, José Antonio, Moghadam, Peyman, Oktavian, Rama, Morris, Russell E., Wheatley, Paul S., Navarro, Jorge, Petit, Camille, Danaci, David, Katsoulidis, Alexandros P., Schröder, Martin, Han, Xue, Yang, Sihai, Serre, Christian, Mouchaham, Georges, Sholl, David S., Thyagarajan, Raghuram, Siderius, Daniel, Veen, Monique A. van der, Snurr, Randall Q., Goncalves, Rebecca B., Telfer, Shane, Lee, Seok J., Ting, Valeska P., Rowlandson, Jemma L., Uemura, Takashi, Iiyuka, Tomoya, Rega, Davide, Speybroeck, Veronique van, Rogge, Sven M. J., Lamaire, Aran, Walton, Krista S., Bingel, Lukas W., Wuttke, Stefan, Andreo, Jacopo, Yaghi, Omar, Ania, Conchi O., Zhang, Bing, Yavuz, Cafer T., Nguyen, Thien S., Zamora, Félix, Montoro, Carmen, Zhou, Hongcai, Kirchon, Angelo, Fairen-Jiménez, David, Azevedo, Diana, Vilarrasa-García, E., Santos, Bianca S., Bu, Xian-He, Chang, Ze, Bunzen, Hana, Champness, Neil R., Griffin, Sarah L., Chen, Banglin, Lin, Rui-Biao, Coasne, Benoit, Cohen, Seth, Moreton, Jessica C., Colón, Yamil J., Chen, Linjiang, Clowes, Rob, Coudert, François Xavier, Cui, Yong, Hou, Bang, D'Alessandro, Deanna M., Doheny, Patrick W., Dincă, Mircea, Sun, Chenyue, Doonan, Christian J., Huxley, Michael Thomas, Evans, Jack D., Falcaro, Paolo, Ricco, Raffaele, Farha, Omar, Idrees, Karam B., Islamoglu, Timur, Feng, Pingyun, Chang, Huajun, and Forgan, Ross S.
- Abstract
Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer–Emmett–Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called “BET surface identification” (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible.
- Published
- 2022
16. How reproducible are surface areas calculated from the BET equation?
- Author
-
Avcı, Seda Keskin (ORCID 0000-0001-5968-0336 & YÖK ID 40548), Osterrieth, J.W.M., Rampersad, J., Madden, D., Rampal, N., Skoric, L., Connolly, B., Allendorf, M.D., Stavila, V., Snider, J.L., Ameloot, R., Marreiros, J., Ania, C., Azevedo, D., Vilarrasa-Garcia, E., Santos, B.F., Bu, X.H., Chang, Z., Bunzen, H., Champness, N.R., Griffin, S.L., Chen, B., Lin, R.B., Coasne, B., Cohen, S., Moreton, J.C., Colón, Y.J., Chen, L., Clowes, R., Coudert, F.X., Cui, Y., Hou, B., D'Alessandro, D.M., Doheny, P.W., Dinc?, M., Sun, C., Doonan, C., Huxley, M.T., Evans, J.D., Falcaro, P., Ricco, R., Farha, O., Idrees, K.B., Islamoglu, T., Feng, P., Yang, H., Forgan, R.S., Bara, D., Furukawa, S., Sanchez, E., Gascon, J., Telalovi?, S., Ghosh, S.K., Mukherjee, S., Hill, M.R., Sadiq, M.M., Horcajada, P., Salcedo-Abraira, P., Kaneko, K., Kukobat, R., Kenvin, J., Kitagawa, S., Otake, K.I., Lively, R.P., DeWitt, S.J.A., Llewellyn, P., Lotsch, B.V., Emmerling, S.T., Pütz, A.M., Martí-Gastaldo, C., Padial, N.M., García-Martínez, J., Linares, N., Maspoch, D., Suárez Del Pino, J.A., Moghadam, P., Oktavian, R.; Morris, R.E.; Wheatley, P.S.; Navarro, J.; Petit, C.; Danacı, D.; Rosseinsky, M.J.; Katsoulidis, A.P.; Schröder, M.; Han, X.; Yan, S.; Serre, C.; Mouchaham, G.; Sholl, D.S.; Thyagarajan, R.; Siderius, D.; Snurr, R.Q.; Goncalves, R.B.; Telfer, S.; Lee, S.J.; Ting, V.P.; Rowlandson, J.L.; Uemura T, Iiyuka, T.; van derVeen, Monique A.; Rega, Davide; Van Speybroeck, Veronique; Rogge, Sven M. J.; Lamaire, Aran; Walton, Krista S.; Bingel, Lukas W.; Wuttke, Stefan; Andreo, Jacopo; Yaghi, Omar; Zhang, Bing; Yavuz, Cafer T.; Nguyen, Thien S.; Zamora, Felix; Montoro, Carmen; Zhou, Hongcai; Kirchon, Angelo; Fairen-Jimenez, David, College of Engineering, Department of Chemical and Biological Engineering, Avcı, Seda Keskin (ORCID 0000-0001-5968-0336 & YÖK ID 40548), Osterrieth, J.W.M., Rampersad, J., Madden, D., Rampal, N., Skoric, L., Connolly, B., Allendorf, M.D., Stavila, V., Snider, J.L., Ameloot, R., Marreiros, J., Ania, C., Azevedo, D., Vilarrasa-Garcia, E., Santos, B.F., Bu, X.H., Chang, Z., Bunzen, H., Champness, N.R., Griffin, S.L., Chen, B., Lin, R.B., Coasne, B., Cohen, S., Moreton, J.C., Colón, Y.J., Chen, L., Clowes, R., Coudert, F.X., Cui, Y., Hou, B., D'Alessandro, D.M., Doheny, P.W., Dinc?, M., Sun, C., Doonan, C., Huxley, M.T., Evans, J.D., Falcaro, P., Ricco, R., Farha, O., Idrees, K.B., Islamoglu, T., Feng, P., Yang, H., Forgan, R.S., Bara, D., Furukawa, S., Sanchez, E., Gascon, J., Telalovi?, S., Ghosh, S.K., Mukherjee, S., Hill, M.R., Sadiq, M.M., Horcajada, P., Salcedo-Abraira, P., Kaneko, K., Kukobat, R., Kenvin, J., Kitagawa, S., Otake, K.I., Lively, R.P., DeWitt, S.J.A., Llewellyn, P., Lotsch, B.V., Emmerling, S.T., Pütz, A.M., Martí-Gastaldo, C., Padial, N.M., García-Martínez, J., Linares, N., Maspoch, D., Suárez Del Pino, J.A., Moghadam, P., Oktavian, R.; Morris, R.E.; Wheatley, P.S.; Navarro, J.; Petit, C.; Danacı, D.; Rosseinsky, M.J.; Katsoulidis, A.P.; Schröder, M.; Han, X.; Yan, S.; Serre, C.; Mouchaham, G.; Sholl, D.S.; Thyagarajan, R.; Siderius, D.; Snurr, R.Q.; Goncalves, R.B.; Telfer, S.; Lee, S.J.; Ting, V.P.; Rowlandson, J.L.; Uemura T, Iiyuka, T.; van derVeen, Monique A.; Rega, Davide; Van Speybroeck, Veronique; Rogge, Sven M. J.; Lamaire, Aran; Walton, Krista S.; Bingel, Lukas W.; Wuttke, Stefan; Andreo, Jacopo; Yaghi, Omar; Zhang, Bing; Yavuz, Cafer T.; Nguyen, Thien S.; Zamora, Felix; Montoro, Carmen; Zhou, Hongcai; Kirchon, Angelo; Fairen-Jimenez, David, College of Engineering, and Department of Chemical and Biological Engineering
- Abstract
Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called ""BET surface identification"" (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible., European Union (EU); Horizon 2020; European Research Council (ERC); Research and Innovation Programme; NanoMOFdeli; COFLeaf; ERC-2016-COG; SCoTMOF; ERC-2015-StG; COSMOS; 2017-StG; European Commission (EC); H2020-MSCA-RISE-2019 Program; ZEOBIOCHEM; Innovate UK; EPSRC IAA; U.S. Department of Energy; Office of Basic Energy Sciences, Materials Sciences and Engineering Division; SERB; Spanish MICINN; AEI/FEDER; University of Alicante; Severo Ochoa Program; Spanish MINECO; Fund for Scientific Research Flanders (FWO); EPSRC Cambridge NanoDTC; National Research Foundation of Korea; Indonesian Endowment Fund for Education-LPDP;Cambridge International Scholarship; Trinity-Henry Barlow Scholarship (Honorary); U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Hydrogen and Fuel Cell Technologies Office; Hydrogen Storage Materials Advanced Research Consortium (HyMARC); Alexander von Humboldt Foundation; Center for Information Services and High Performance Computing (ZIH); Sandia National Laboratories; Official contribution of the National Institute of Standards and Technology (NIST)
- Published
- 2022
17. On the importance of anharmonicities and nuclear quantum effects in modelling the structural properties and thermal expansion of MOF-5.
- Author
-
Lamaire, Aran, Wieme, Jelle, Rogge, Sven M. J., Waroquier, Michel, and Van Speybroeck, Veronique
- Subjects
- *
THERMAL expansion , *NUCLEAR weapons , *THERMAL properties - Abstract
In this article, we investigate the influence of anharmonicities and nuclear quantum effects (NQEs) in modelling the structural properties and thermal expansion of the empty MOF-5 metal-organic framework. To introduce NQEs in classical molecular dynamics simulations, two different methodologies are considered, comparing the approximate, but computationally cheap, method of generalised Langevin equation thermostatting to the more advanced, computationally demanding path integral molecular dynamics technique. For both methodologies, similar results were obtained for all the properties under investigation. The structural properties of MOF-5, probed by means of radial distribution functions (RDFs), show some distinct differences with respect to a classical description. Besides a broadening of the RDF peaks under the influence of quantum fluctuations, a different temperature dependence is also observed due to a dominant zero-point energy (ZPE) contribution. For the thermal expansion of MOF-5, by contrast, NQEs appear to be only of secondary importance with respect to an adequate modelling of the anharmonicities of the potential energy surface (PES), as demonstrated by the use of two differently parametrised force fields. Despite the small effect in the temperature dependence of the volume of MOF-5, NQEs do however significantly affect the absolute volume of MOF-5, in which the ZPE resulting from the intertwining of NQEs and anharmonicities plays a crucial role. A sufficiently accurate description of the PES is therefore prerequisite when modelling NQEs. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
18. How Reproducible Are Surface Areas Calculated from the BET Equation?
- Author
-
Osterrieth, Johannes, primary, Rampersad, James, additional, Madden, David G., additional, Rampal, Nakul, additional, Skoric, Luka, additional, Connolly, Bethany, additional, Allendorf, Mark, additional, Stavila, Vitalie, additional, SNIDER, JONATHAN, additional, Ameloot, Rob, additional, Marreiros, Joao, additional, Ania, Conchi O., additional, Azevedo, Diana C. S., additional, Vilarrasa-García, Enrique, additional, Santos, Bianca F, additional, Bu, Xian-He, additional, Zang, Xe, additional, Bunzen, Hana, additional, Champness, Neil, additional, Griffin, Sarah L., additional, Chen, Banglin, additional, Lin, Rui-Biao, additional, Coasne, Benoit, additional, Cohen, Seth M., additional, Moreton, Jessica C., additional, Colon, Yamil J., additional, Chen, Linjiang, additional, Clowes, Rob, additional, Coudert, François-Xavier, additional, Cui, Yong, additional, Hou, Bang, additional, D’Alessandro, Deanna, additional, Doheny, Patrick W., additional, Dinca, Mircea, additional, Sun, Chenyue, additional, Doonan, Christian, additional, Huxley, Michael, additional, Evans, Jack D., additional, falcaro, paolo, additional, Riccò, Raffaele, additional, Farha, Omar K., additional, Idrees, Karam B., additional, Islamoglu, Timur, additional, Feng, Pingyun, additional, Yang, Huajun, additional, Forgan, Ross, additional, Bara, Dominic, additional, Furukawa, Shuhei, additional, Sanchez, Elisabeth, additional, Gascon, Jorge, additional, Telalovic, Selvedin, additional, Ghosha, Sujit K., additional, MUKHERJEE, SOUMYA, additional, Hill, Matthew R., additional, Sadiq, Muhammad Munir, additional, Horcajada, Patricia, additional, Salcedo-Abraira, Pablo, additional, Kaneko, Katsumi, additional, Kukobat, Radovan, additional, Kenvin, Jeffrey, additional, Keskin, Seda, additional, Kitagawa, Susumu, additional, Otake, Kenichi, additional, Lively, Ryan P., additional, DeWitt, Stephen J. A., additional, Llewellyn, Philip L., additional, Lotsch, Bettina, additional, Emmerling, Sebastian T., additional, Pütz, Alexander, additional, Martí-Gastaldo, Carlos, additional, Muñoz, Natalia, additional, Garcia-Martinez, Javier, additional, Linares, Noemi, additional, Maspoch, Daniel, additional, Suarez, Jose Antonio, additional, Moghadam, Peyman, additional, Oktavian, Rama, additional, Morris, Russell, additional, Wheatley, Paul, additional, Navarro, Jorge, additional, Petit, Camille, additional, Danaci, David, additional, Rosseinsky, Matthew, additional, Katsoulidis, Alexandros, additional, Schroder, Martin, additional, Han, Xue, additional, Yang, Sihai, additional, Serre, Christian, additional, Mouchaham, Georges, additional, Sholl, David, additional, Thyagarajan, Raghuram, additional, Siderius, Daniel, additional, Snurr, Randall Q., additional, Goncalves, Rebecca B., additional, Telfer, Shane G., additional, Lee, Seok J., additional, Ting, Valeska, additional, Rowlandson, Jemma, additional, Uemura, Takeshi, additional, Iiyuka, Tomoya, additional, van der Veen, Monique, additional, Rega, Davide, additional, Vanspeybroeck, Veronique, additional, Lamaire, Aran, additional, Rogge, Sven, additional, Walton, Krista, additional, Bingel, Lukas W., additional, Wuttke, Stefan, additional, Andreo, Jacopo, additional, Yaghi, Omar, additional, Zhang, Bing, additional, Yavuz, Cafer, additional, Nguyen, Thien, additional, Zamora, Felix, additional, Montoro, Carmen, additional, Zhou, Hong-Cai, additional, Angelo, Kirchon, additional, and Fairen-Jimenez, David, additional
- Published
- 2022
- Full Text
- View/download PDF
19. Quantum Free Energy Profiles for Molecular Proton Transfers.
- Author
-
Lamaire, Aran, Cools-Ceuppens, Maarten, Bocus, Massimo, Verstraelen, Toon, and Van Speybroeck, Veronique
- Published
- 2023
- Full Text
- View/download PDF
20. Truly combining the advantages of polymeric and zeolite membranes for gas separations.
- Author
-
Xiaoyu Tan, Robijns, Sven, Thür, Raymond, Ke, Quanli, De Witte, Niels, Lamaire, Aran, Yun Li, Aslam, Imran, Van Havere, Daan, Donckels, Thibaut, Van Assche, Tom, Van Speybroeck, Veronique, Dusselier, Michiel, and Vankelecom, Ivo
- Published
- 2022
- Full Text
- View/download PDF
21. How Reproducible Are Surface Areas Calculated from the BET Equation?
- Author
-
Osterrieth, Johannes, primary, Rampersad, James, primary, Madden, David G., primary, Rampal, Nakul, primary, Skoric, Luka, primary, Connolly, Bethany, primary, Allendorf, Mark, primary, Stavila, Vitalie, primary, SNIDER, JONATHAN, primary, Ameloot, Rob, primary, Marreiros, Joao, primary, Ania, ConchiO., primary, Azevedo, Diana C. S., primary, Vilarrasa-García, Enrique, primary, Santos, Bianca F, primary, Bu, Xian-He, primary, Zang, Xe, primary, Bunzen, Hana, primary, Champness, Neil, primary, Griffin, Sarah L., primary, Chen, Banglin, primary, Lin, Rui-Biao, primary, Coasne, Benoit, primary, Cohen, Seth M., primary, Moreton, JessicaC., primary, Colon, Yamil J., primary, Chen, Linjiang, primary, Clowes, Rob, primary, Coudert, François-Xavier, primary, Cui, Yong, primary, Hou, Bang, primary, D’Alessandro, Deanna, primary, Doheny, Patrick W., primary, Dinca, Mircea, primary, Sun, Chenyue, primary, Doonan, Christian, primary, Huxley, Michael, primary, Evans, Jack D., primary, falcaro, paolo, primary, Riccò, Raffaele, primary, Farha, OmarK., primary, Idrees, Karam B., primary, Islamoglu, Timur, primary, Feng, Pingyun, primary, Yang, Huajun, primary, Forgan, Ross, primary, Bara, Dominic, primary, Furukawa, Shuhei, primary, Sanchez, Elisabeth, primary, Gascon, Jorge, primary, Telalovic, Selvedin, primary, Ghosha, Sujit K., primary, MUKHERJEE, SOUMYA, primary, Hill, Matthew R., primary, Sadiq, Muhammad Munir, primary, Horcajada, Patricia, primary, Salcedo-Abraira, Pablo, primary, Kaneko, Katsumi, primary, Kukobat, Radovan, primary, Kenvin, Jeffrey, primary, Keskin, Seda, primary, Kitagawa, Susumu, primary, Otake, Kenichi, primary, Lively, Ryan P., primary, DeWitt, Stephen J. A., primary, Llewellyn, Philip L., primary, Lotsch, Bettina, primary, Emmerling, Sebastian T., primary, Pütz, Alexander, primary, Martí-Gastaldo, Carlos, primary, Muñoz, Natalia, primary, Garcia-Martinez, Javier, primary, Linares, Noemi, primary, Maspoch, Daniel, primary, Suarez, Jose Antonio, primary, Moghadam, Peyman, primary, Oktavian, Rama, primary, Morris, Russell, primary, Wheatley, Paul, primary, Navarro, Jorge, primary, Petit, Camille, primary, Danaci, David, primary, Rosseinsky, Matthew, primary, Katsoulidis, Alexandros, primary, Schroder, Martin, primary, Han, Xue, primary, Yang, Sihai, primary, Serre, Christian, primary, Mouchaham, Georges, primary, Sholl, David, primary, Thyagarajan, Raghuram, primary, Siderius, Daniel, primary, Snurr, Randall Q., primary, Goncalves, Rebecca B., primary, Telfer, Shane G., primary, Lee, Seok J., primary, Ting, Valeska, primary, Rowlandson, Jemma, primary, Uemura, Takeshi, primary, Iiyuka, Tomoya, primary, van der Veen, Monique, primary, Rega, Davide, primary, Vanspeybroeck, Veronique, primary, Lamaire, Aran, primary, Rogge, Sven, primary, Walton, Krista, primary, Bingel, LukasW., primary, Wuttke, Stefan, primary, Andreo, Jacopo, primary, Yaghi, Omar, primary, Zhang, Bing, primary, Yavuz, Cafer, primary, Nguyen, Thien, primary, Zamora, Felix, primary, Montoro, Carmen, primary, Zhou, Hong-Cai, primary, Angelo, Kirchon, primary, and Fairen-Jimenez, David, primary
- Published
- 2021
- Full Text
- View/download PDF
22. High-rate nanofluidic energy absorption in porous zeolitic frameworks
- Author
-
Sun, Yueting, primary, Rogge, Sven M. J., additional, Lamaire, Aran, additional, Vandenbrande, Steven, additional, Wieme, Jelle, additional, Siviour, Clive R., additional, Van Speybroeck, Veronique, additional, and Tan, Jin-Chong, additional
- Published
- 2021
- Full Text
- View/download PDF
23. Atomistic insight in the flexibility and heat transport properties of the stimuli-responsive metal–organic framework MIL-53(Al) for water-adsorption applications using molecular simulations
- Author
-
Lamaire, Aran, primary, Wieme, Jelle, additional, Hoffman, Alexander E. J., additional, and Van Speybroeck, Veronique, additional
- Published
- 2021
- Full Text
- View/download PDF
24. Correlating MOF-808 parameters with mixed-matrix membrane (MMM) CO2 permeation for a more rational MMM development
- Author
-
Thür, Raymond, primary, Van Havere, Daan, additional, Van Velthoven, Niels, additional, Smolders, Simon, additional, Lamaire, Aran, additional, Wieme, Jelle, additional, Van Speybroeck, Veronique, additional, De Vos, Dirk, additional, and Vankelecom, Ivo F. J., additional
- Published
- 2021
- Full Text
- View/download PDF
25. Correlating MOF-808 parameters with mixed-matrix membrane (MMM) CO2 permeation for a more rational MMM development.
- Author
-
Thür, Raymond, Van Havere, Daan, Van Velthoven, Niels, Smolders, Simon, Lamaire, Aran, Wieme, Jelle, Van Speybroeck, Veronique, De Vos, Dirk, and Vankelecom, Ivo F. J.
- Abstract
Consistent structure–performance relationships for the design of MOF (metal–organic framework)-based mixed-matrix membranes (MMMs) for gas separation are currently scarce in MMM literature. An important step in establishing such relationships could be to correlate intrinsic MOF parameters, such as CO
2 uptake and the CO2 adsorption enthalpy (Qst ), with the separation performance indicators of the MMM (i.e. separation factor and permeability). Such a study presumes the availability of a platform MOF, which allows systematic comparison of the relevant MOF parameters. MOF-808 can take up the role of such a platform MOF, owing to its unique cluster coordination and subsequent ease of introducing additional functional molecules. For this purpose, formic acid (FA) modulated MOF-808 (MOF–FA) was post-synthetically functionalized with five different ligands (histidine (His), benzoic acid (BA), glycolic acid (GA), lithium sulfate (Li2 SO4 ) and trifluoroacetic acid (TFA)) to create a series of isostructural MOFs with varying affinity/diffusivity properties but as constant as possible remaining properties (e.g. particles size distribution). CO2 uptake and CO2 adsorption enthalpy of the MOFs were determined with CO2 sorption experiments and Clausius–Clapeyron analysis. These MOF properties were subsequently linked to the CO2 /N2 separation factor and CO2 permeability of the corresponding MMM. Unlike what is often assumed in literature, MOF-808 CO2 uptake proved to be a poor indicator for MMM performance. In contrast, a strong correlation was observed between Qst at high CO2 loadings on one hand and CO2 permeability under varying feed conditions on the other hand. Furthermore, correlation coefficients of Qst,15 and Qst,30 (Qst at 15 and 30 cm3 (STP) g−1 ) with the separation factor were significantly better than those calculated for CO2 uptake. The surprising lack of correlation between membrane performance and CO2 uptake and the strong correlation with Qst opens possibilities to rationally design MMMs and stresses the need for more fundamental research focused on finding consistent relationships between filler properties and the final membrane performance. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
26. Thermal Engineering of Metal–Organic Frameworks for Adsorption Applications: A Molecular Simulation Perspective
- Author
-
Wieme, Jelle, primary, Vandenbrande, Steven, additional, Lamaire, Aran, additional, Kapil, Venkat, additional, Vanduyfhuys, Louis, additional, and Van Speybroeck, Veronique, additional
- Published
- 2019
- Full Text
- View/download PDF
27. Modeling the Structural and Thermal Properties of Loaded Metal–Organic Frameworks. An Interplay of Quantum and Anharmonic Fluctuations
- Author
-
Kapil, Venkat, primary, Wieme, Jelle, additional, Vandenbrande, Steven, additional, Lamaire, Aran, additional, Van Speybroeck, Veronique, additional, and Ceriotti, Michele, additional
- Published
- 2019
- Full Text
- View/download PDF
28. How reproducible are surface areas calculated from the BET equation?
- Author
-
Christian Serre, Peyman Z. Moghadam, Feng P, Rama Oktavian, Lin R, Ting, Telalovic S, Omar M. Yaghi, Mark D. Allendorf, Russell E. Morris, Muhammad Sadiq, Philip L. Llewellyn, Jonathan L. Snider, Stavila, Matthew J. Rosseinsky, Hou B, Pütz A, Daniel W. Siderius, Rowlandson J, Randall Q. Snurr, van der Veen M, Nguyen T, Kaneko K, Linares N, Félix Zamora, Zhou H, Camille Petit, Sebastian T. Emmerling, Aran Lamaire, Cui Y, David G. Madden, Salcedo-Abraira P, Krista S. Walton, Soumya Mukherjee, Karam B. Idrees, Doheny Pw, Timur Islamoglu, Azevedo Dcs, Conchi O. Ania, Bu X, Zang X, Martin Schröder, Vilarrasa-García E, Michael T. Huxley, Ken-ichi Otake, Sanchez E, Rega D, Vanspeybroeck, Georges Mouchaham, Carmen Montoro, Lee Sj, David Danaci, Goncalves Rb, Yamil J. Colón, Patricia Horcajada, David S. Sholl, David Fairen-Jimenez, Shane G. Telfer, Bethany M. Connolly, Christian J. Doonan, Ryan P. Lively, D’Alessandro D, Raffaele Ricco, Paul S. Wheatley, Clowes R, Bettina V. Lotsch, Alexandros P. Katsoulidis, François-Xavier Coudert, Dominic Bara, Garcia-Martinez J, Carlos Martí-Gastaldo, Yavuz C, Chen B, Matthew R. Hill, Ross S. Forgan, Shuhei Furukawa, Ghosha Sk, Johannes W.M. Osterrieth, Jack D. Evans, Jorge A. R. Navarro, Suarez Ja, Zhang B, João Marreiros, Jorge Gascon, Neil R. Champness, Kenvin J, Yang S, Iiyuka T, Nakul Rampal, Daniel Maspoch, falcaro p, Rampersad J, Han X, Jacopo Andreo, Benoit Coasne, Yang H, Angelo K, Stefan Wuttke, Santos Bf, Chenyue Sun, Susumu Kitagawa, Luka Skoric, Moreton Jc, Rob Ameloot, Muñoz N, DeWitt Sja, Uemura T, Sven Rogge, Seda Keskin, Lukas W. Bingel, Raghuram Thyagarajan, Mircea Dincă, Seth M. Cohen, Bunzen H, Kukobat R, Omar K. Farha, Sarah L. Griffin, Chen L, University of St Andrews. EaSTCHEM, University of St Andrews. School of Chemistry, University of St Andrews. Institute of Behavioural and Neural Sciences, Institut des Matériaux Poreux de Paris (IMAP ), Département de Chimie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), University of Cambridge [UK] (CAM), Sandia National Laboratories [Livermore], Sandia National Laboratories - Corporation, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Université d'Orléans (UO)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Universidade Federal do Ceará = Federal University of Ceará (UFC), Nankai University (NKU), University of Augsburg (UNIA), University of Nottingham, UK (UON), The University of Texas at San Antonio (UTSA), Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), University of California [San Diego] (UC San Diego), University of California (UC), University of Notre Dame [Indiana] (UND), University of Liverpool, Institut de Recherche de Chimie Paris (IRCP), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC), Shanghai Jiaotong University, The University of Sydney, Massachusetts Institute of Technology (MIT), University of Adelaide, Technische Universität Dresden = Dresden University of Technology (TU Dresden), Graz University of Technology [Graz] (TU Graz), Northwestern University [Evanston], University of California [Riverside] (UC Riverside), University of Glasgow, Kyoto University, King Abdullah University of Science and Technology (KAUST), Indian Institute of Science Education and Research Pune (IISER Pune), Monash university, Instituto IMDEA Energy [Madrid], Instituto IMDEA Energía, Shinshu University [Nagano], Koç University, Georgia Institute of Technology [Atlanta], TotalEnergies, Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), Max Planck Institute for Solid State Research, Max-Planck-Gesellschaft, Ludwig-Maximilians-Universität München (LMU), Universitat de València (UV), Universidad de Alicante, Barcelona Institute of Science and Technology (BIST), University of Sheffield [Sheffield], University of Saint Andrews, Universidad de Granada = University of Granada (UGR), Imperial College London, University of Manchester [Manchester], École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), National Institute of Standards and Technology [Gaithersburg] (NIST), Massey University, University of Bristol [Bristol], The University of Tokyo (UTokyo), Delft University of Technology (TU Delft), Universiteit Gent = Ghent University (UGENT), Ikerbasque - Basque Foundation for Science, University of California [Berkeley] (UC Berkeley), Korea Advanced Institute of Science and Technology (KAIST), Universidad Autónoma de Madrid (UAM), Texas A&M University [College Station], Universidad de Alicante. Departamento de Química Inorgánica, Laboratorio de Nanotecnología Molecular (NANOMOL), European Commission, European Research Council, University of Cambridge, Trinity College Cambridge, National Nuclear Security Administration (US), Department of Energy (US), Alexander von Humboldt Foundation, Center for Advancing Electronics Dresden, Science and Engineering Research Board (India), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Research Foundation - Flanders, Engineering and Physical Sciences Research Council (UK), National Research Foundation of Korea, Indonesia Endowment Fund for Education, National Institute of Standards and Technology (US), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université d'Orléans (UO), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ministère de la Culture (MC), Avcı, Seda Keskin (ORCID 0000-0001-5968-0336 & YÖK ID 40548), Osterrieth, J.W.M., Rampersad, J., Madden, D., Rampal, N., Skoric, L., Connolly, B., Allendorf, M.D., Stavila, V., Snider, J.L., Ameloot, R., Marreiros, J., Ania, C., Azevedo, D., Vilarrasa-Garcia, E., Santos, B.F., Bu, X.H., Chang, Z., Bunzen, H., Champness, N.R., Griffin, S.L., Chen, B., Lin, R.B., Coasne, B., Cohen, S., Moreton, J.C., Colón, Y.J., Chen, L., Clowes, R., Coudert, F.X., Cui, Y., Hou, B., D'Alessandro, D.M., Doheny, P.W., Dinc?, M., Sun, C., Doonan, C., Huxley, M.T., Evans, J.D., Falcaro, P., Ricco, R., Farha, O., Idrees, K.B., Islamoglu, T., Feng, P., Yang, H., Forgan, R.S., Bara, D., Furukawa, S., Sanchez, E., Gascon, J., Telalovi?, S., Ghosh, S.K., Mukherjee, S., Hill, M.R., Sadiq, M.M., Horcajada, P., Salcedo-Abraira, P., Kaneko, K., Kukobat, R., Kenvin, J., Kitagawa, S., Otake, K.I., Lively, R.P., DeWitt, S.J.A., Llewellyn, P., Lotsch, B.V., Emmerling, S.T., Pütz, A.M., Martí-Gastaldo, C., Padial, N.M., García-Martínez, J., Linares, N., Maspoch, D., Suárez Del Pino, J.A., Moghadam, P., Oktavian, R., Morris, R.E., Wheatley, P.S., Navarro, J., Petit, C., Danacı, D., Rosseinsky, M.J., Katsoulidis, A.P., Schröder, M., Han, X., Yan, S., Serre, C., Mouchaham, G., Sholl, D.S., Thyagarajan, R., Siderius, D., Snurr, R.Q., Goncalves, R.B., Telfer, S., Lee, S.J., Ting, V.P., Rowlandson, J.L., Uemura T, Iiyuka, T., van derVeen, Monique A., Rega, Davide, Van Speybroeck, Veronique, Rogge, Sven M. J., Lamaire, Aran, Walton, Krista S., Bingel, Lukas W., Wuttke, Stefan, Andreo, Jacopo, Yaghi, Omar, Zhang, Bing, Yavuz, Cafer T., Nguyen, Thien S., Zamora, Felix, Montoro, Carmen, Zhou, Hongcai, Kirchon, Angelo, Fairen-Jimenez, David, College of Engineering, Department of Chemical and Biological Engineering, UAM. Departamento de Química Inorgánica, Fairen-Jimenez, David [0000-0002-5013-1194], and Apollo - University of Cambridge Repository
- Subjects
Surface (mathematics) ,Technology ,Chemistry, Multidisciplinary ,Surface area ,02 engineering and technology ,01 natural sciences ,GAS-STORAGE ,Surface Area Analysis ,General Materials Science ,Porous materials ,QD ,BET theory ,Chemistry, Physical ,Nanoporous ,Physics ,1. No poverty ,Química ,[CHIM.MATE]Chemical Sciences/Material chemistry ,3rd-DAS ,Reproducibilities ,021001 nanoscience & nanotechnology ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Chemistry ,Physics, Condensed Matter ,Mechanics of Materials ,Physical Sciences ,Science & Technology - Other Topics ,0210 nano-technology ,Porosity ,Materials Science ,APPLICABILITY ,Materials Science, Multidisciplinary ,Nanotechnology ,010402 general chemistry ,Physics, Applied ,METAL-ORGANIC FRAMEWORKS ,Adsorption ,Porosimetry ,[CHIM]Chemical Sciences ,ddc:530 ,Nanoscience & Nanotechnology ,MCC ,Química Inorgánica ,Science & Technology ,Mechanical Engineering ,Science and technology ,Reproducibility of Results ,QD Chemistry ,0104 chemical sciences ,Physics and Astronomy ,Brunauer Emmett Tellers - Abstract
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (NanoMOFdeli), ERC-2016-COG 726380, Innovate UK (104384) and EPSRC IAA (IAA/RG85685). N.R. acknowledges the support of the Cambridge International Scholarship and the TrinityHenry Barlow Scholarship (Honorary). O.K.F. and R.Q.S. acknowledge funding from the U.S. Department of Energy (DE-FG02-08ER15967). R.S.F. and D.B. acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (SCoTMOF), ERC-2015-StG 677289. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. The authors gratefully acknowledge funding from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Technologies Office, through the Hydrogen Storage Materials Advanced Research Consortium (HyMARC). This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. J.D.E. acknowledges the support of the Alexander von Humboldt Foundation and the Center for Information Services and High Performance Computing (ZIH) at TU Dresden. S.K.G. and S.M. acknowledge SERB (Project No. CRG/2019/000906), India for financial support. K.K. and R.K. acknowledge Active Co. Research Grant for funding. S.K. acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (COSMOS), ERC-2017-StG 756489. N.L. and J.G.M acknowledge funding from the European Commission through the H2020-MSCA-RISE-2019 program (ZEOBIOCHEM -872102) and the Spanish MICINN and AEI/FEDER (RTI2018-099504-B-C21). N.L. thanks the University of Alicante for funding (UATALENTO17-05). ICN2 is supported by the Severo Ochoa program from the Spanish MINECO (Grant No. SEV-2017-0706) S.M.J.R. and A.L. wish to thank the Fund for Scientific Research Flanders (FWO), under grant nos. 12T3519N and 11D2220N. L.S. was supported by the EPSRC Cambridge NanoDTC EP/L015978/1. C.T.Y. and T.S.N. acknowledges funds from the National Research Foundation of Korea, NRF-2017M3A7B4042140 and NRF-2017M3A7B4042235. P.F. and H. Y. acknowledge US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Award No. DE-SC0010596 (P.F.). R.O. would like to acknowledge funding support during his Ph.D. study from Indonesian Endowment Fund for Education-LPDP with the contract No. 202002220216006. Daniel Siderius: Official contribution of the National Institute of Standards and Technology (NIST), not subject to copyright in the United States of America. Daniel Siderius: Certain commercially available items may be identified in this paper. This identification does not imply recommendation by NIST, nor does it imply that it is the best available for the purposes described. B.V.L, S.T.E and A.M.P acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Program (Grant agreement no. 639233, COFLeaf)., Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer–Emmett–Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of microand mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This roundrobin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called “BET surface identification” (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible., European Research Council (ERC) ERC-2016-COG 726380 ERC-2015-StG 677289 ERC-2017-StG 756489 639233, UK Research & Innovation (UKRI) Innovate UK 104384 UK Research & Innovation (UKRI), Engineering & Physical Sciences Research Council (EPSRC) IAA/RG85685, Cambridge International Scholarship TrinityHenry Barlow Scholarship, United States Department of Energy (DOE) DE-FG02-08ER15967, National Nuclear Security Administration DE-NA-0003525, United States Department of Energy (DOE), Alexander von Humboldt Foundation, Center for Information Services and High Performance Computing (ZIH) at TU Dresden, Department of Science & Technology (India), Science Engineering Research Board (SERB), India CRG/2019/000906, Active Co. Research Grant, European Commission through the H2020-MSCA-RISE-2019 program ZEOBIOCHEM -872102, Spanish MICINN and AEI/FEDER RTI2018-099504-B-C21, University of Alicante UATALENTO17-05, Spanish Government SEV-2017-0706 FWO 12T3519N 11D2220N, UK Research & Innovation (UKRI), Engineering & Physical Sciences Research Council (EPSRC) EP/L015978/1, National Research Foundation of Korea NRF-2017M3A7B4042140 NRF-2017M3A7B4042235, United States Department of Energy (DOE) DE-SC0010596, Indonesian Endowment Fund for Education-LPDP 202002220216006
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.