The aim of this thesis is to study three types of clustering in foreign exchange markets, namely in price, trades arrivals and investors decisions. We investigate the statistical properties of the EBS order book for the EUR/USD and USD/JPY currency pairs and the impact of a ten-fold tick size reduction on its dynamics. A large fraction of limit orders are still placed right at or halfway between the old allowed prices. This generates price barriers where the best quotes lie for much of the time, which causes the emergence of distinct peaks in the average shape of the book at round distances. Furthermore, we argue that this clustering is mainly due to manual traders who remained set to the old price resolution. Automatic traders easily take price priority by submitting limit orders one tick ahead of clusters, as shown by the prominence of buy (sell) limit orders posted with rightmost digit one (nine).The clustering of trades arrivals is well-known in financial markets and Hawkes processes are particularly suited to describe this phenomenon. We raise the question of what part of market dynamics Hawkes processes are able to account for exactly. We document the accuracy of such processes as one varies the time interval of calibration and compare the performance of various types of kernels made up of sums of exponentials. Because of their around-the-clock opening times, FX markets are ideally suited to our aim as they allow us to avoid the complications of the long daily overnight closures of equity markets. One can achieve statistical significance according to three simultaneous tests provided that one uses kernels with two exponentials for fitting an hour at a time, and two or three exponentials for full days, while longer periods could not be fitted within statistical satisfaction because of the non-stationarity of the endogenous process. Fitted timescales are relatively short and endogeneity factor is high but sub-critical at about 0.8.Most agent-based models of financial markets implicitly assume that the agents interact through asset prices and exchanged volumes. Some of them add an explicit trader-trader interaction network on which rumors propagate or that encode groups that take common decisions. Contrarily to other types of data, such networks, if they exist, are necessarily implicit, which makes their determination a more challenging task. We analyze transaction data of all the clients of two liquidity providers, encompassing several years of trading. By assuming that the links between agents are determined by systematic simultaneous activity or inactivity, we show that interaction networks do exist. In addition, we find that the (in)activity of some agents systematically triggers the (in)activity of other traders, defining lead-lag relationships between the agents. This implies that the global investment flux is predictable, which we check by using sophisticated machine learning methods., En utilisant des données haute-fréquence inédites, cette thèse étudie trois types de regroupements (“clusters”) présents dans le marché des changes: la concentration d'ordres sur certains prix, la concentration des transactions dans le temps et l'existence de groupes d'investisseurs prenant les mêmes décisions. Nous commençons par étudier les propriétés statistiques du carnet d'ordres EBS pour les paires de devises EUR/USD et USD/JPY et l'impact d'une réduction de la taille du tick sur sa dynamique. Une grande part des ordres limites est encore placée sur les anciens prix autorisés, entraînant l'apparition de prix-barrières, où figurent les meilleures limites la plupart du temps. Cet effet de congestion se retrouve dans la forme moyenne du carnet où des pics sont présents aux distances entières. Nous montrons que cette concentration des prix est causée par les traders manuels qui se refusent d’utiliser la nouvelle résolution de prix. Les traders automatiques prennent facilement la priorité, en postant des ordres limites un tick devant les pics de volume.Nous soulevons ensuite la question de l'aptitude des processus de Hawkes à rendre compte de la dynamique du marché. Nous analysons la précision de tels processus à mesure que l'intervalle de calibration est augmenté. Différent noyaux construits à partir de sommes d'exponentielles sont systématiquement comparés. Le marché FX qui ne ferme jamais est particulièrement adapté pour notre but, car il permet d’éviter les complications dues à la fermeture nocturne des marchés actions. Nous trouvons que la modélisation est valide selon les trois tests statistiques, si un noyau à deux exponentielles est utilisé pour fitter une heure, et deux ou trois pour une journée complète. Sur de plus longues périodes la modélisation est systématiquement rejetée par les tests à cause de la non-stationnarité du processus endogène. Les échelles de temps d'auto-excitation estimées sont relativement courtes et le facteur d'endogénéité est élevé mais sous-critique autour de 0.8. La majorité des modèles à agents suppose implicitement que les agents interagissent à travers du prix des actifs et des volumes échangés. Certains utilisent explicitement un réseau d'interaction entre traders, sur lequel des rumeurs se propagent, d'autres, un réseau qui représente des groupes prenant des décisions communes. Contrairement à d'autres types de données, de tels réseaux, s'ils existent, sont nécessairement implicites, ce qui rend leur détection compliquée. Nous étudions les transactions des clients de deux fournisseur de liquidités sur plusieurs années. En supposant que les liens entre agents sont déterminés par la synchronisation de leur activité ou inactivité, nous montrons que des réseaux d'interactions existent. De plus, nous trouvons que l'activité de certains agents entraîne systématiquement l’activité d'autres agents, définissant ainsi des relations de type “lead-lag” entre les agents. Cela implique que le flux des clients est prévisible, ce que nous vérifions à l'aide d'une méthode sophistiquée d'apprentissage statistique.