1. Improving Latin American Soil Information Database for Digital Soil Mapping enhances its usability and scalability
- Author
-
Sergio Díaz-Guadarrama, Iván Lizarazo, Mario Guevara, Marcos Angelini, Gustavo A. Araujo-Carrillo, Jainer Argeñal, Daphne Armas, Rafael A. Balta, Adriana Bolivar, Nelson Bustamante, Ricardo O. Dart, Martin Dell Aqua, Arnulfo Encina, Hernán Figueredo, Fernando Fontes, Joan S. Gutiérrez-Diaz, Wilmer Jiménez, Raúl S. Lavado, Jesús F. Mansilla-Baca, Maria de Lourdes Mendonça-Santos, Lucas M. Moretti, Iván D. Muñoz, Carolina Olivera, Guillermo Olmedo, Christian Omuto, Sol Ortiz, Carla Pascale, Marco Pfeiffer, Iván A. Ramos, Danny Ríos, Rafael Rivera, Lady M. Rodríguez, Darío M. Rodríguez, Albán Rosales, Kenset Rosales, Guillermo Schulz, Victor Sevilla, Leonardo M. Tenti, Ronald Vargas, Viviana M. Varón-Ramírez, Gustavo M. Vasques, Yusuf Yigini, and Yolanda Rubiano
- Subjects
Databases ,Cartografía de la Cubierta Vegetal ,Suelos Agrícolas ,Agricultural Soils ,Land Cover Mapping ,Mapeo Digital de Suelos ,Base de Datos ,Digital Soil Mapping - Abstract
Spatial soil databases can help model complex phenomena in which soils are decisive, for example, evaluating agricultural potential or estimating carbon storage capacity. The Soil Information System for Latin America and the Caribbean, SISLAC, is a regional initiative promoted by the FAO's South American Soil Partnership to contribute to the sustainable management of soil. SISLAC includes data coming from 49,084 soil profiles distributed unevenly across the continent, making it the region's largest soil database. However, some problems hinder its usages, such as the quality of the data and its high dimensionality. The objective of this research is twofold. First, to evaluate the quality of SISLAC and its data values and generate a new, improved version that meets the minimum quality requirements to be used by different interests or practical applications. Second, to demonstrate the potential of improved soil profile databases to generate more accurate information on soil properties, by conducting a case study to estimate the spatial variability of the percentage of soil organic carbon using 192 profiles in a 1473 km2 region located in the department of Valle del Cauca, Colombia. The findings show that 15 percent of the existing soil profiles had an inaccurate description of the diagnostic horizons. Further correction of an 4.5 additional percent of existing inconsistencies improved overall data quality. The improved database consists of 41,691 profiles and is available for public use at ttps://doi.org/10.5281/zenodo.6540710 (Díaz-Guadarrama, S. & Guevara, M., 2022). The updated profiles were segmented using algorithms for quantitative pedology to estimate the spatial variability. We generated segments one centimeter thick along with each soil profile data, then the values of these segments were adjusted using a spline-type function to enhance vertical continuity and reliability. Vertical variability was estimated up to 150 cm in-depth, while ordinary kriging predicts horizontal variability at three depth intervals, 0 to 5, 5 to 15, and 15 to 30 cm, at 250 m-spatial resolution, following the standards of the GlobalSoilMap project. Finally, the leave-one-out cross validation provides information for evaluating the kriging model performance, obtaining values for the RMSE index between 1.77% and 1.79% and the R2 index greater than 0.5. The results show the usability of SISLAC database to generate spatial information on soil properties and suggest further efforts to collect a more significant amount of data to guide sustainable soil management. Fil: Diaz Guadamarra, Sergio. Universidad Nacional de Colombia. Facultad de Ciencias Agrarias. Departamento de Agronomía; Colombia Fil: Lizarazo, Iván. Universidad Nacional de Colombia. Facultad de Ciencias Agrarias. Departamento de Agronomía; Colombia Fil: Guevara, Mario. Universidad Nacional Autónoma de México. Campus Juriquilla. Centro de Geociencias; México Fil: Guevara, Mario. Universidad Nacional Autónoma de México.Campus Juriquilla. Centro de Geociencias; México. United States Department of Agriculture. Soil Salinity National Laboratory, Estados Unidos Fil: Angelini, Marcos Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Wageningen University. Soil Geography and Landscape Group; Países Bajos. International Soil Reference and Information Centre. World Soil Information; Países Bajos Fil: Araujo Carrillo, Gustavo A. Corporación Colombiana de Investigación Agropecuaria AGROSAVIA; Colombia Fil: Argeñal, Jainer. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias; Honduras. Fil: Armas, Daphne. Universidad de Almería. Departamento de Agronomía, Edif. CITEIIB, España. Fil: Balsa, Rafael A. Ministerio de Desarrollo Agrario y Riego. Dirección General de Asuntos Ambientales Agrarios, Perú. Fil: Bolivar, Adriana. Instituto Geográfico Agustín Codazzi. Subdirección Agrología; Colombia Fil: Bustamante, Nelson. Servicio Agrícola y Ganadero; Chile. Fil: Dart, Ricardo O. Embrapa Solos; Brasil Fil: Dell Acqua, Martín. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; Uruguay Fil: Lencina, Arnulfo. Universidad Nacional de Asunción. Facultad de Ciencias Agrarias; Paraguay Fil: Figueredo, Hernán. Sociedad Boliviana de la Ciencia del Suelo; Bolivia. Fil: Fontes, Fernando. Ministerio de Ganadería, Agricultura y Pesca. Dirección General de Recursos Naturales; Uruguay Fil: Gutierrez Diaz, Joan S. Aarhus University. Faculty of Science and Technology,.Department of Agroecology; Dinamarca Fil: Jiménez, Wilmer. Ministerio de Agricultura y Ganadería; Ecuador. Fil: Rodriguez, Dario Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina Fil: Schulz, Guillermo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina Fil: Tenti Vuegen, Leonardo Mauricio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina
- Published
- 2022