1. The nucleotide-binding domain of NRC-dependent disease resistance proteins is sufficient to activate downstream helper NLR oligomerization and immune signaling.
- Author
-
Contreras MP, Pai H, Thompson R, Marchal C, Claeys J, Adachi H, and Kamoun S
- Subjects
- Lactuca genetics, Lactuca immunology, Protein Multimerization, Nucleotides metabolism, Plant Diseases virology, Plant Diseases immunology, Plants, Genetically Modified, Plant Immunity, Signal Transduction, Nicotiana genetics, Nicotiana immunology, NLR Proteins metabolism, NLR Proteins genetics, Disease Resistance genetics, Protein Domains, Plant Proteins metabolism, Plant Proteins genetics
- Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins with pathogen sensor activities have evolved to initiate immune signaling by activating helper NLRs. However, the mechanisms underpinning helper NLR activation by sensor NLRs remain poorly understood. Although coiled coil (CC) type sensor NLRs such as the Potato virus X disease resistance protein Rx have been shown to activate the oligomerization of their downstream helpers NRC2, NRC3 and NRC4, the domains involved in sensor-helper signaling are not known. Here, we used Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana to show that the nucleotide-binding (NB) domain within the NB-ARC of Rx is necessary and sufficient for oligomerization and immune signaling of downstream helper NLRs. In addition, the NB domains of the disease resistance proteins Gpa2 (cyst nematode resistance), Rpi-amr1, Rpi-amr3 (oomycete resistance) and Sw-5b (virus resistance) are also sufficient to activate their respective downstream NRC helpers. Using transient expression in the lettuce (Lactuca sativa), we show that Rx (both as full length or as NB domain truncation) and its helper NRC2 form a minimal functional unit that can be transferred from solanaceous plants (lamiids) to Campanulid species. Our results challenge the prevailing paradigm that NLR proteins exclusively signal via their N-terminal domains and reveal a signaling activity for the NB domain of NRC-dependent sensor NLRs. We propose a model in which helper NLRs can perceive the status of the NB domain of their upstream sensors., (© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.)
- Published
- 2024
- Full Text
- View/download PDF