1. Muscular Dystrophy Mutations Impair the Nuclear Envelope Emerin Self-assembly Properties
- Author
-
Brigitte Buendia, Dmytro Puchkov, Sophie Zinn-Justin, Christophe Velours, Camille Samson, Louis Renault, Howard J. Worman, Pierre Chervy, Cecilia Östlund, Isaline Herrada, Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Laboratoire de Biologie Structurale et Radiobiologie (LBSR), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Department of Medicine, Columbia University [New York]-College of Physicians and Surgeons, Department of Pathology and Cell Biology, Department of Molecular Pharmacology and Cell Biology, Leibniz Institute of Molecular Pharmacology, FMP Berlin, Unité de Biologie Fonctionnelle et Adaptative (BFA (UMR_8251 / U1133)), Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Leibniz Forschungsinstitut für Molekulare Pharmakolgie = Leibniz Institute for Molecular Pharmacology [Berlin, Allemagne] (FMP), Leibniz Association-Leibniz Association, Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Biologie Structurale et Radiobiologie ( LBSR ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Biologie Fonctionnelle et Adaptative ( BFA ), and Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
Magnetic Resonance Spectroscopy ,Nuclear Envelope ,[SDV]Life Sciences [q-bio] ,Emerin ,Biochemistry ,Muscular Dystrophies ,Article ,Frameshift mutation ,Spectroscopy, Fourier Transform Infrared ,medicine ,Humans ,Missense mutation ,Proteostasis Deficiencies ,Muscular dystrophy ,Nuclear protein ,Gene ,Loss function ,[ SDV ] Life Sciences [q-bio] ,Chemistry ,Genetic Variation ,Membrane Proteins ,Nuclear Proteins ,General Medicine ,medicine.disease ,Cell biology ,Membrane protein ,Molecular Medicine ,Hydrophobic and Hydrophilic Interactions ,HeLa Cells - Abstract
International audience; More than 100 genetic mutations causing X-linked Emery-Dreifuss muscular dystrophy have been identified in the gene encoding the integral inner nuclear membrane protein emerin. Most mutations are nonsense or frameshift mutations that lead to the absence of emerin in cells. Only very few cases are due to missense or short in-frame deletions. Molecular mechanisms explaining the corresponding emerin variants' loss of function are particularly difficult to identify because of the mostly intrinsically disordered state of the emerin nucleoplasmic region. We now demonstrate that this EmN region can be produced as a disordered monomer, as revealed by nuclear magnetic resonance, but rapidly self-assembles in vitro. Increases in concentration and temperature favor the formation of long curvilinear filaments with diameters of approximately 10 nm, as observed by electron microscopy. Assembly of these filaments can be followed by fluorescence through Thioflavin-T binding and by Fourier-transform Infrared spectrometry through formation of β-structures. Analysis of the assembly properties of five EmN variants reveals that del95-99 and Q133H impact filament assembly capacities. In cells, these variants are located at the nuclear envelope, but the corresponding quantities of emerin-emerin and emerin-lamin proximities are decreased compared to wild-type protein. Furthermore, variant P183H favors EmN aggregation in vitro, and variant P183T provokes emerin accumulation in cytoplasmic foci in cells. Substitution of residue Pro183 might systematically favor oligomerization, leading to emerin aggregation and mislocalization in cells. Our results suggest that emerin self-assembly is necessary for its proper function and that a loss of either the protein itself or its ability to self-assemble causes muscular dystrophy.
- Published
- 2015
- Full Text
- View/download PDF