158 results on '"L.S. Wang"'
Search Results
2. Lanthanum chloride enhances the photosynthetic characteristics and increases konjac glucomannan contents in Amorphophallus sinensis Belval
- Author
-
X.X. LI, B. YU, Y.Y. DONG, L.S. WANG, S.L. ZHANG, H.Y. SHANGGUAN, Z.H. HE, X.M. LUO, and P.F. LAI
- Subjects
chlorophyll content ,gas-exchange parameters ,rare element ,Botany ,QK1-989 - Abstract
Lanthanum (La) has been used as agricultural inputs in order to enhance yield and improve crop quality. However, little is known about the effect of La on the photosynthesis and growth of Amorphophallus sinensis, a worldwide food source. The effects of La on the photosynthetic and chlorophyll fluorescence parameters, photosynthetic pigments, corm yield, and konjac glucomannan (KGM) of Amorphophallus sinensis were investigated via field experiments. The leaves were sprayed with different concentrations of LaCl3 (20, 80, 160, and 240 mg L-1). The results exhibited an increasing effect of LaCl3 on photosynthetic rate, stomatal conductance, intercellular CO2 concentration, chlorophyll fluorescence parameters, photosynthetic pigments, corm yield, and KGM, when concentration was between 20 and 240 mg L-1, and the most effective concentration was 160 mg L-1. Therefore, moderate LaCl3 concentration may increase yield of Amorphophallus sinensis by enhancing the photosynthetic efficiency, increasing the corm yield, and KGM contents.
- Published
- 2020
- Full Text
- View/download PDF
3. Measurement of the phase between strong and electromagnetic amplitudes of J/ψ decays
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, M. Albrecht, A. Amoroso, F.F. An, Q. An, Y. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J. Chai, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, P.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, P.F. Duan, J. Fang, S.S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Y.G. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, S. Gu, Y.T. Gu, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, Z. Haddadi, S. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, C. Hu, H.M. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Z.L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, Y. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, T. Khan, A. Khoukaz, P. Kiese, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuessner, M. Kuhlmann, A. Kupsc, W. Kühn, J.S. Lange, M. Lara, P. Larin, L. Lavezzi, S. Leiber, H. Leithoff, C. Leng, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, K.J. Li, Kang Li, Ke Li, Lei Li, P.L. Li, P.R. Li, Q.Y. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Zhiqing Liu, Y.F. Long, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, G. Morello, N.Yu. Muchnoi, H. Muramatsu, A. Mustafa, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, M. Papenbrock, P. Patteri, M. Pelizaeus, J. Pellegrino, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, A. Pitka, R. Poling, V. Prasad, H.R. Qi, M. Qi, S. Qian, C.F. Qiao, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Richter, M. Ripka, M. Rolo, G. Rong, Ch. Rosner, X.D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, J.J. Song, W.M. Song, X.Y. Song, S. Sosio, C. Sowa, S. Spataro, G.X. Sun, J.F. Sun, L. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, G.Y. Tang, X. Tang, I. Tapan, M. Tiemens, B. Tsednee, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, Dan Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, Meng Wang, P. Wang, P.L. Wang, W.P. Wang, X.F. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, Zongyuan Wang, T. Weber, D.H. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, X. Xia, Y. Xia, D. Xiao, H. Xiao, Y.J. Xiao, Z.J. Xiao, Y.G. Xie, Y.H. Xie, X.A. Xiong, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.H. Yang, Y.X. Yang, Yifan Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.Q. Zhang, X.Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yang Zhang, Yao Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, Y.X. Zhou, J. Zhu, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, B.S. Zou, and J.H. Zou
- Subjects
Physics ,QC1-999 - Abstract
Using 16 energy points of e+e− annihilation data collected in the vicinity of the J/ψ resonance with the BESIII detector and with a total integrated luminosity of around 100pb−1, we study the relative phase between the strong and electromagnetic amplitudes of J/ψ decays. The relative phase between J/ψ electromagnetic decay and the continuum process (e+e− annihilation without the J/ψ resonance) is confirmed to be zero by studying the cross section lineshape of μ+μ− production. The relative phase between J/ψ strong and electromagnetic decays is then measured to be (84.9±3.6)∘ or (−84.7±3.1)∘ for the 2(π+π−)π0 final state by investigating the interference pattern between the J/ψ decay and the continuum process. This is the first measurement of the relative phase between J/ψ strong and electromagnetic decays into a multihadron final state using the lineshape of the production cross section. We also study the production lineshape of the multihadron final state ηπ+π− with η→π+π−π0, which provides additional information about the phase between the J/ψ electromagnetic decay amplitude and the continuum process. Additionally, the branching fraction of J/ψ→2(π+π−)π0 is measured to be (4.73±0.44)% or (4.85±0.45)%, and the branching fraction of J/ψ→ηπ+π− is measured to be (3.78±0.68)×10−4. Both of them are consistent with the world average values. The quoted uncertainties include both statistical and systematic uncertainties, which are mainly caused by the low statistics. Keywords: Phase, Strong amplitude, Electromagnetic amplitude, J/ψ decay, BESIII
- Published
- 2019
- Full Text
- View/download PDF
4. Study of e+e− → D+D−π+π− at center-of-mass energies from 4.36 to 4.60GeV
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, M. Alekseev, A. Amoroso, F.F. An, Q. An, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino Balossino, Y. Ban, K. Begzsuren, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Biernat, J. Bloms, I. Boyko, R.A. Briere, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J. Chai, J.F. Chang, W.L. Chang, G. Chelkov, D.Y. Chen, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, S.J. Chen, Y.B. Chen, W. Cheng, G. Cibinetto, F. Cossio, X.F. Cui, H.L. Dai, J.P. Dai, X.C. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, J.Z. Fan, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, M. Fritsch, C.D. Fu, Y. Fu, Q. Gao, X.L. Gao, Y. Gao, Y.G. Gao, Z. Gao, B. Garillon, I. Garzia, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, L.M. Gu, M.H. Gu, S. Gu, Y.T. Gu, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, S. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, T. Held, Y.K. Heng, M. Himmelreich, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, N. Huesken, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, H.L. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, I.K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. Kurth, M.G. Kurth, W. Kühn, J.S. Lange, P. Larin, L. Lavezzi, H. Leithoff, T. Lenz, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, J.W. Li, Ke Li, L.K. Li, Lei Li, P.L. Li, P.R. Li, Q.Y. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, X.N. Li, X.Q. Li, Z.B. Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, C.X. Lin, D.X. Lin, Y.J. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, D.Y. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.Y. Liu, K.Y. Liu, Ke Liu, L.D. Liu, L.Y. Liu, Q. Liu, S.B. Liu, T. Liu, X. Liu, X.Y. Liu, Y.B. Liu, Z.A. Liu, Zhiqing Liu, Y.F. Long, X.C. Lou, H.J. Lu, J.D. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, P.W. Luo, T. Luo, X.L. Luo, S. Lusso, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, X.N. Ma, X.X. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, N.Yu. Muchnoi, H. Muramatsu, A. Mustafa, S. Nakhoul, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, M. Papenbrock, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, A. Pitka, R. Poling, V. Prasad, M. Qi, T.Y. Qi, S. Qian, C.F. Qiao, N. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, K.H. Rashid, C.F. Redmer, M. Richter, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, M. Savrié, K. Schoenning, W. Shan, X.Y. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, X. Shi, X.D. Shi, J.J. Song, Q.Q. Song, X.Y. Song, S. Sosio, C. Sowa, S. Spataro, F.F. Sui, G.X. Sun, J.F. Sun, L. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, Y.T. Tan, C.J. Tang, G.Y. Tang, X. Tang, V. Thoren, B. Tsednee, I. Uman, B. Wang, B.L. Wang, C.W. Wang, D.Y. Wang, H.H. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, M.Z. Wang, Meng Wang, P.L. Wang, R.M. Wang, W.P. Wang, X. Wang, X.F. Wang, X.L. Wang, Y. Wang, Y.F. Wang, Z. Wang, Z.G. Wang, Z.Y. Wang, Zongyuan Wang, T. Weber, D.H. Wei, P. Weidenkaff, H.W. Wen, S.P. Wen, U. Wiedner, G. Wilkinson, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, Y. Xia, S.Y. Xiao, Y.J. Xiao, Z.J. Xiao, Y.G. Xie, Y.H. Xie, T.Y. Xing, X.A. Xiong, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, W. Xu, X.P. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, R.X. Yang, S.L. Yang, Y.H. Yang, Y.X. Yang, Yifan Yang, Z.Q. Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, X.Q. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, Y. Zeng, B.X. Zhang, B.Y. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.F. Zhang, T.J. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yang Zhang, Yao Zhang, Yi Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, L.P. Zhou, Q. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, Xiaoyu Zhou, Xu Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, S.H. Zhu, W.J. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, B.S. Zou, and J.H. Zou
- Subjects
Physics ,QC1-999 - Abstract
We report a study of the e+e−→D+D−π+π− process using e+e− collision data samples with an integrated luminosity of 2.5fb−1 at center-of-mass energies from 4.36 to 4.60GeV, collected with the BESIII detector at the BEPCII storage ring. The D1(2420)+ is observed in the D+π+π− mass spectrum. The mass and width of the D1(2420)+ are measured to be (2427.2±1.0stat.±1.2syst.)MeV/c2 and (23.2±2.3stat.±2.3syst.)MeV, respectively. In addition, the Born cross sections of the e+e−→D1(2420)+D−+c.c.→D+D−π+π− and e+e−→ψ(3770)π+π−→D+D−π+π− processes are measured as a function of the center-of-mass energy.
- Published
- 2020
- Full Text
- View/download PDF
5. Measurement of singly Cabibbo-suppressed decays D0 → π0π0π0, π0π0η, π0ηη and ηηη
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, M. Albrecht, A. Amoroso, F.F. An, Q. An, J.Z. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J. Chai, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, P.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, P.F. Duan, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Y.G. Gao, Z. Gao, B. Garillon, I. Garzia, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, A.Q. Guo, R.P. Guo, Y.P. Guo, Z. Haddadi, S. Han, X.Q. Hao, F.A. Harris, K.L. He, X.Q. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, H.M. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Z.L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, Y. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, T. Khan, A. Khoukaz, P. Kiese, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuessner, M. Kuhlmann, A. Kupsc, W. Kühn, J.S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Leng, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, Jin Li, K.J. Li, Kang Li, Ke Li, Lei Li, P.L. Li, P.R. Li, Q.Y. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Zhiqing Liu, Y.F. Long, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, N.Yu. Muchnoi, H. Muramatsu, A. Mustafa, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, M. Papenbrock, P. Patteri, M. Pelizaeus, J. Pellegrino, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, A. Pitka, R. Poling, V. Prasad, H.R. Qi, M. Qi, S. Qian, C.F. Qiao, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Richter, M. Ripka, M. Rolo, G. Rong, Ch. Rosner, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, J.J. Song, W.M. Song, X.Y. Song, S. Sosio, C. Sowa, S. Spataro, G.X. Sun, J.F. Sun, L. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, G.Y. Tang, X. Tang, I. Tapan, M. Tiemens, B. Tsednee, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, Dan Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, Meng Wang, P. Wang, P.L. Wang, W.P. Wang, X.F. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.Y. Wang, Zongyuan Wang, T. Weber, D.H. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, Y. Xia, D. Xiao, H. Xiao, Y.J. Xiao, Z.J. Xiao, Y.G. Xie, Y.H. Xie, X.A. Xiong, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.H. Yang, Y.X. Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.Q. Zhang, X.Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yang Zhang, Yao Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, J. Zhu, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, B.S. Zou, and J.H. Zou
- Subjects
Physics ,QC1-999 - Abstract
Using a data sample of e+e− collision data corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at a center-of-mass energy of s=3.773GeV, we search for the singly Cabibbo-suppressed decays D0→π0π0π0, π0π0η, π0ηη and ηηη using the double tag method. The absolute branching fractions are measured to be B(D0→π0π0π0)=(2.0±0.4±0.3)×10−4, B(D0→π0π0η)=(3.8±1.1±0.7)×10−4 and B(D0→π0ηη)=(7.3±1.6±1.5)×10−4 with the statistical significances of 4.8σ, 3.8σ and 5.5σ, respectively, where the first uncertainties are statistical and the second ones systematic. No significant signal of D0→ηηη is found, and the upper limit on its decay branching fraction is set to be B(D0→ηηη)
- Published
- 2018
- Full Text
- View/download PDF
6. Genetically elevated high‐density lipoprotein cholesterol through the cholesteryl ester transfer protein gene does not associate with risk of Alzheimer's disease
- Author
-
Gina M. Peloso, Sven J. van derLee, International Genomics of Alzheimer's Project (IGAP), R. Sims, S.J. van derLee, A.C. Naj, C. Bellenguez, N. Badarinarayan, J. Jakobsdottir, B.W. Kunkle, A. Boland, R. Raybould, J.C. Bis, E.R. Martin, B. Grenier‐Boley, S. Heilmann‐Heimbach, V. Chouraki, A.B. Kuzma, K. Sleegers, M. Vronskaya, A. Ruiz, R.R. Graham, R. Olaso, P. Hoffmann, M.L. Grove, B.N. Vardarajan, M. Hiltunen, M.M. Nöthen, C.C. White, K.L. Hamilton‐Nelson, J. Epelbaum, W. Maier, S.H. Choi, G.W. Beecham, C. Dulary, S. Herms, A.V. Smith, C.C. Funk, Derbois, A.J. Forstner, S. Ahmad, H. Li, D. Bacq, D. Harold, C.L. Satizabal, O. Valladares, A. Squassina, R. Thomas, J.A. Brody, L. Qu, P. Sánchez‐Juan, T. Morgan, F.J. Wolters, Y. Zhao, F.S. Garcia, N. Denning, M. Fornage, J. Malamon, M.C.D. Naranjo, E. Majounie, T.H. Mosley, B. Dombroski, D. Wallon, M.K. Lupton, J. Dupuis, P. Whitehead, L. Fratiglioni, C. Medway, X. Jian, S. Mukherjee, L. Keller, K. Brown, H. Lin, L.B. Cantwell, F. Panza, B. McGuinness, S. Moreno‐Grau, J.D. Burgess, V. Solfrizzi, P. Proitsi, H.H. Adams, M. Allen, D. Seripa, P. Pastor, L.A. Cupples, N.D. Price, D. Hannequin, A. Frank‐García, D. Levy, P. Chakrabarty, P. Caffarra, I. Giegling, A.S. Beiser, V. Giedraitis, H. Hampel, M.E. Garcia, X. Wang, L. Lannfelt, P. Mecocci, G. Eiriksdottir, P.K. Crane, F. Pasquier, V. Boccardi, I. Henández, R.C. Barber, M. Scherer, L. Tarraga, P.M. Adams, M. Leber, Y. Chen, M.S. Albert, S. Riedel‐Heller, V. Emilsson, D. Beekly, A. Braae, R. Schmidt, D. Blacker, C. Masullo, H. Schmidt, R.S. Doody, G. Spalletta, W.T. Longstreth Jr., T.J. Fairchild, P. Bossù, O.L. Lopez, M.P. Frosch, E. Sacchinelli, B. Ghetti, Q. Yang, R.M. Huebinger, F. Jessen, S. Li, M.I. Kamboh, J. Morris, O. Sotolongo‐Grau, M.J. Katz, C. Corcoran, M. Dunstan, A. Braddel, C. Thomas, A. Meggy, R. Marshall, A. Gerrish, J. Chapman, M. Aguilar, S. Taylor, M. Hill, M.D. Fairén, A. Hodges, B. Vellas, H. Soininen, I. Kloszewska, M. Daniilidou, J. Uphill, Y. Patel, J.T. Hughes, J. Lord, J. Turton, A.M. Hartmann, R. Cecchetti, C. Fenoglio, M. Serpente, M. Arcaro, C. Caltagirone, M.D. Orfei, A. Ciaramella, S. Pichler, M. Mayhaus, W. Gu, A. Lleó, J. Fortea, R. Blesa, I.S. Barber, K. Brookes, C. Cupidi, R.G. Maletta, D. Carrell, S. Sorbi, S. Moebus, M. Urbano, A. Pilotto, J. Kornhuber, P. Bosco, S. Todd, D. Craig, J. Johnston, M. Gill, B. Lawlor, A. Lynch, N.C. Fox, J. Hardy, ARUK Consortium, R.L. Albin, L.G. Apostolova, S.E. Arnold, S. Asthana, C.S. Atwood, C.T. Baldwin, L.L. Barnes, S. Barral, T.G. Beach, J.T. Becker, E.H. Bigio, T.D. Bird, B.F. Boeve, J.D. Bowen, A. Boxer, J.R. Burke, J.M. Burns, J.D. Buxbaum, N.J. Cairns, C. Cao, C.S. Carlson, C.M. Carlsson, R.M. Carney, M.M. Carrasquillo, S.L. Carroll, C.C. Diaz, H.C. Chui, D.G. Clark, D.H. Cribbs, E.A. Crocco, C. DeCarli, M. Dick, R. Duara, D.A. Evans, K.M. Faber, K.B. Fallon, D.W. Fardo, M.R. Farlow, S. Ferris, T.M. Foroud, D.R. Galasko, M. Gearing, D.H. Geschwind, J.R. Gilbert, N.R. Graff‐Radford, R.C. Green, J.H. Growdon, R.L. Hamilton, L.E. Harrell, L.S. Honig, M.J. Huentelman, C.M. Hulette, B.T. Hyman, G.P. Jarvik, E. Abner, L.W. Jin, G. Jun, A. Karydas, J.A. Kaye, R. Kim, N.W. Kowall, J.H. Kramer, F.M. LaFerla, J.J. Lah, J.B. Leverenz, A.I. Levey, G. Li, A.P. Lieberman, K.L. Lunetta, C.G. Lyketsos, D.C. Marson, F. Martiniuk, D.C. Mash, E. Masliah, W.C. McCormick, S.M. McCurry, A.N. McDavid, A.C. McKee, M. Mesulam, B.L. Miller, C.A. Miller, J.W. Miller, J.C. Morris, J.R. Murrell, A.J. Myers, S. O'Bryant, J.M. Olichney, V.S. Pankratz, J.E. Parisi, H.L. Paulson, W. Perry, E. Peskind, A. Pierce, W.W. Poon, H. Potter, J.F. Quinn, A. Raj, M. Raskind, B. Reisberg, C. Reitz, J.M. Ringman, E.D. Roberson, E. Rogaeva, H.J. Rosen, R.N. Rosenberg, M.A. Sager, A.J. Saykin, J.A. Schneider, L.S. Schneider, W.W. Seeley, A.G. Smith, J.A. Sonnen, S. Spina, R.A. Stern, R.H. Swerdlow, R.E. Tanzi, T.A. Thornton‐Wells, J.Q. Trojanowski, J.C. Troncoso, V.M. Van Deerlin, L.J. Van Eldik, H.V. Vinters, J.P. Vonsattel, S. Weintraub, K.A. Welsh‐Bohmer, K.C. Wilhelmsen, J. Williamson, T.S. Wingo, R.L. Woltjer, C.B. Wright, C.E. Yu, L. Yu, F. Garzia, F. Golamaully, G. Septier, S. Engelborghs, R. Vandenberghe, P.P. De Deyn, C.M. Fernadez, Y.A. Benito, H. Thonberg, C. Forsell, L. Lilius, A. Kinhult‐Stählbom, L. Kilander, R. Brundin, L. Concari, S. Helisalmi, A.M. Koivisto, A. Haapasalo, V. Dermecourt, N. Fievet, O. Hanon, C. Dufouil, A. Brice, K. Ritchie, B. Dubois, J.J. Himali, C.D. Keene, J. Tschanz, A.L. Fitzpatrick, W.A. Kukull, M. Norton, T. Aspelund, E.B. Larson, R. Munger, J.I. Rotter, R.B. Lipton, M.J. Bullido, A. Hofman, T.J. Montine, E. Coto, E. Boerwinkle, R.C. Petersen, V. Alvarez, F. Rivadeneira, E.M. Reiman, M. Gallo, C.J. O'Donnell, J.S. Reisch, A.C. Bruni, D.R. Royall, M. Dichgans, M. Sano, D. Galimberti, P. St George‐Hyslop, E. Scarpini, D.W. Tsuang, M. Mancuso, U. Bonuccelli, A.R. Winslow, A. Daniele, C.K. Wu, GERAD/PERADES, CHARGE, ADGC, EADI, O. Peters, B. Nacmias, M. Riemenschneider, R. Heun, C. Brayne, D.C. Rubinsztein, J. Bras, R. Guerreiro, A. Al‐Chalabi, C.E. Shaw, J. Collinge, D. Mann, M. Tsolaki, J. Clarimón, R. Sussams, S. Lovestone, M.C. O'Donovan, M.J. Owen, T.W. Behrens, S. Mead, A.M. Goate, A.G. Uitterlinden, C. Holmes, C. Cruchaga, M. Ingelsson, D.A. Bennett, J. Powell, T.E. Golde, C. Graff, P.L. De Jager, K. Morgan, N. Ertekin‐Taner, O. Combarros, B.M. Psaty, P. Passmore, S.G. Younkin, C. Berr, V. Gudnason, D. Rujescu, D.W. Dickson, J.F. Dartigues, A.L. DeStefano, S. Ortega‐Cubero, H. Hakonarson, D. Campion, M. Boada, J.K. Kauwe, L.A. Farrer, C. Van Broeckhoven, M.A. Ikram, L. Jones, J.L. Haines, C. Tzourio, L.J. Launer, V. Escott‐Price, R. Mayeux, J.F. Deleuze, N. Amin, P.A. Holmans, M.A. Pericak‐Vance, P. Amouyel, C.M. vanDuijn, A. Ramirez, L.S. Wang, J.C. Lambert, S. Seshadri, J. Williams, G.D. Schellenberg, Anita L. Destefano, and Sudha Seshardi
- Subjects
Genetics ,HDL‐C ,Single nucleotide polymorphisms ,Instrumental variables ,Cholesteryl ester transfer protein ,Neurology. Diseases of the nervous system ,RC346-429 ,Geriatrics ,RC952-954.6 - Abstract
Abstract Introduction There is conflicting evidence whether high‐density lipoprotein cholesterol (HDL‐C) is a risk factor for Alzheimer's disease (AD) and dementia. Genetic variation in the cholesteryl ester transfer protein (CETP) locus is associated with altered HDL‐C. We aimed to assess AD risk by genetically predicted HDL‐C. Methods Ten single nucleotide polymorphisms within the CETP locus predicting HDL‐C were applied to the International Genomics of Alzheimer's Project (IGAP) exome chip stage 1 results in up 16,097 late onset AD cases and 18,077 cognitively normal elderly controls. We performed instrumental variables analysis using inverse variance weighting, weighted median, and MR‐Egger. Results Based on 10 single nucleotide polymorphisms distinctly predicting HDL‐C in the CETP locus, we found that HDL‐C was not associated with risk of AD (P > .7). Discussion Our study does not support the role of HDL‐C on risk of AD through HDL‐C altered by CETP. This study does not rule out other mechanisms by which HDL‐C affects risk of AD.
- Published
- 2018
- Full Text
- View/download PDF
7. Dark photon search in the mass range between 1.5 and 3.4 GeV/c2
- Author
-
M. Ablikim, M.N. Achasov, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, H.Y. Chen, J.C. Chen, M.L. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, P.F. Duan, E.E. Eren, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.Y. Gao, Y. Gao, Z. Gao, I. Garzia, C. Geng, K. Goetzen, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, Y.L. Han, X.Q. Hao, F.A. Harris, K.L. He, Z.Y. He, T. Held, Y.K. Heng, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.M. Huang, G.S. Huang, H.P. Huang, J.S. Huang, X.T. Huang, Y. Huang, T. Hussain, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.L. Jiang, L.W. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, P. Kiese, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, W. Kuehn, A. Kupsc, J.S. Lange, M. Lara, P. Larin, C. Leng, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H.B. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.M. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B.J. Liu, C.X. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, X.X. Liu, Y.B. Liu, Z.A. Liu, Zhiqiang Liu, Zhiqing Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, R.Q. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, M. Lv, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, K. Moriya, N.Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, Y.N. Pu, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Y. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, H.L. Ren, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, V. Santoro, A. Sarantsev, M. Savrié, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, M. Ullrich, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, S.G. Wang, W. Wang, X.F. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, Z. Wu, L.G. Xia, Y. Xia, D. Xiao, H. Xiao, Z.J. Xiao, Y.G. Xie, Q.L. Xiu, G.F. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y. Yang, Y.X. Yang, H. Ye, M. Ye, M.H. Ye, J.H. Yin, B.X. Yu, C.X. Yu, H.W. Yu, J.S. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.H. Zhang, X.Y. Zhang, Y. Zhang, Y.N. Zhang, Y.H. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, Li Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
Dark photon search ,Initial state radiation ,BESIII ,Physics ,QC1-999 - Abstract
Using a data set of 2.93 fb−1 taken at a center-of-mass energy s=3.773 GeV with the BESIII detector at the BEPCII collider, we perform a search for an extra U(1) gauge boson, also denoted as a dark photon. We examine the initial state radiation reactions e+e−→e+e−γISR and e+e−→μ+μ−γISR for this search, where the dark photon would appear as an enhancement in the invariant mass distribution of the leptonic pairs. We observe no obvious enhancement in the mass range between 1.5 and 3.4 GeV/c2 and set a 90% confidence level upper limit on the mixing strength of the dark photon and the Standard Model photon. We obtain a competitive limit in the tested mass range.
- Published
- 2017
- Full Text
- View/download PDF
8. Measurement of cross sections of the interactions e+e−→ϕϕω and e+e−→ϕϕϕ at center-of-mass energies from 4.008 to 4.600 GeV
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J. Chai, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, S. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, P.F. Duan, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, C. Hu, H.M. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Z.L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.W. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, P. Kiese, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, A. Kupsc, W. Kühn, J.S. Lange, M. Lara, P. Larin, H. Leithoff, C. Leng, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, Q.Y. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Y.B. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Y.Y. Liu, Z.A. Liu, Zhiqing Liu, H. Loehner, Y.F. Long, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, G. Mezzadri, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, G. Morello, N.Yu. Muchnoi, H. Muramatsu, P. Musiol, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, H.R. Qi, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, W. Wang, W.P. Wang, X.F. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, Zongyuan Wang, T. Weber, D.H. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, L.G. Xia, Y. Xia, D. Xiao, H. Xiao, Z.J. Xiao, Y.G. Xie, Y.H. Xie, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.X. Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.Q. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.N. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
e+e− annihilation ,Triple quarkonia ,Cross section ,Physics ,QC1-999 - Abstract
Using data samples collected with the BESIII detector at the BEPCII collider at six center-of-mass energies between 4.008 and 4.600 GeV, we observe the processes e+e−→ϕϕω and e+e−→ϕϕϕ. The Born cross sections are measured and the ratio of the cross sections σ(e+e−→ϕϕω)/σ(e+e−→ϕϕϕ) is estimated to be 1.75±0.22±0.19 averaged over six energy points, where the first uncertainty is statistical and the second is systematic. The results represent first measurements of these interactions.
- Published
- 2017
- Full Text
- View/download PDF
9. Observation of the decay Λc+→Σ−π+π+π0
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, M. Albrecht, A. Amoroso, F.F. An, Q. An, J.Z. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J. Chai, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, O. Dorjkhaidav, Z.L. Dou, S.X. Du, P.F. Duan, J. Fang, S.S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Y.G. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, S. Gu, Y.T. Gu, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, Z. Haddadi, S. Han, X.Q. Hao, F.A. Harris, K.L. He, X.Q. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, C. Hu, H.M. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Z.L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, T. Khan, P. Kiese, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuhlmann, A. Kupsc, W. Kühn, J.S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Leng, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.L. Li, P.R. Li, Q.Y. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Y.Y. Liu, Z.A. Liu, Zhiqing Liu, Y.F. Long, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, G. Mezzadri, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, G. Morello, N.Yu. Muchnoi, H. Muramatsu, P. Musiol, A. Mustafa, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, J. Pellegrino, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, H.R. Qi, M. Qi, S. Qian, C.F. Qiao, J.J. Qin, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Richter, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, J.J. Song, X.Y. Song, S. Sosio, C. Sowa, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, G.Y. Tang, X. Tang, I. Tapan, M. Tiemens, B.T. Tsednee, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, Dan Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, W.P. Wang, X.F. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, Y. Xia, D. Xiao, H. Xiao, Y.J. Xiao, Z.J. Xiao, Y.G. Xie, Y.H. Xie, X.A. Xiong, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.H. Yang, Y.X. Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.Q. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, Y.X. Zhou, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
Branching fraction ,Charmed baryon ,Weak decays ,e+e− annihilation ,BESIII ,Physics ,QC1-999 - Abstract
We report the first observation of the decay Λc+→Σ−π+π+π0, based on data obtained in e+e− annihilations with an integrated luminosity of 567 pb−1 at s=4.6 GeV. The data were collected with the BESIII detector at the BEPCII storage rings. The absolute branching fraction B(Λc+→Σ−π+π+π0) is determined to be (2.11±0.33(stat.)±0.14(syst.))%. In addition, an improved measurement of B(Λ+c→Σ−π+π+) is determined as (1.81±0.17(stat.)±0.09(syst.))%.
- Published
- 2017
- Full Text
- View/download PDF
10. Measurements of cross section of e+e−→pp¯π0 at center-of-mass energies between 4.008 and 4.600 GeV
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J. Chai, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, S. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, P.F. Duan, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, O. Fedorov, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Y. Huang, Z.L. Huang, T. Hussain, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.W. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, P. Kiese, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, A. Kupsc, W. Kühn, J.S. Lange, M. Lara, P. Larin, H. Leithoff, C. Leng, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, Q.Y. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Y.B. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Y.Y. Liu, Z.A. Liu, Zhiqing Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, G. Mezzadri, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, N.Yu. Muchnoi, H. Muramatsu, P. Musiol, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, H.R. Qi, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, M. Shi, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, S.G. Wang, W. Wang, W.P. Wang, X.F. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, L.G. Xia, Y. Xia, D. Xiao, H. Xiao, Z.J. Xiao, Y.G. Xie, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.X. Yang, M. Ye, M.H. Ye, J.H. Yin, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.Q. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.N. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
Physics ,QC1-999 - Abstract
Based on e+e− annihilation data samples collected with the BESIII detector at the BEPCII collider at 13 center-of-mass energies from 4.008 to 4.600 GeV, measurements of the Born cross section of e+e−→pp¯π0 are performed. No significant resonant structure is observed in the measured energy dependence of the cross section. The upper limit on the Born cross section of e+e−→Y(4260)→pp¯π0 at the 90% C.L. is determined to be 0.01 pb. The upper limit on the ratio of the branching fractions B(Y(4260)→pp¯π0)B(Y(4260)→π+π−J/ψ) at the 90% C.L. is determined to be 0.02%. Keywords: Hadrons, Cross section measurements, Y(4260)
- Published
- 2017
- Full Text
- View/download PDF
11. Study of J/ψ and ψ(3686)→Σ(1385)0Σ¯(1385)0 and Ξ0Ξ¯0
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J. Chai, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, S. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, P.F. Duan, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, C. Hu, H.M. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Z.L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.W. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, P. Kiese, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, A. Kupsc, W. Kühn, J.S. Lange, M. Lara, P. Larin, H. Leithoff, C. Leng, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, Q.Y. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Y.B. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Y.Y. Liu, Z.A. Liu, Zhiqing Liu, H. Loehner, Y.F. Long, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, G. Mezzadri, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, G. Morello, N.Yu. Muchnoi, H. Muramatsu, P. Musiol, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, H.R. Qi, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, W. Wang, W.P. Wang, X.F. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, L.G. Xia, Y. Xia, D. Xiao, H. Xiao, Z.J. Xiao, Y.G. Xie, Y.H. Xie, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.X. Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.Q. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.N. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
Charmonium ,Branching fraction ,Angular distribution ,Physics ,QC1-999 - Abstract
We study the decays of J/ψ and ψ(3686) to the final states Σ(1385)0Σ¯(1385)0 and Ξ0Ξ¯0 based on a single baryon tag method using data samples of (1310.6±7.0)×106 J/ψ and (447.9±2.9)×106 ψ(3686) events collected with the BESIII detector at the BEPCII collider. The decays to Σ(1385)0Σ¯(1385)0 are observed for the first time. The measured branching fractions of J/ψ and ψ(3686) to Ξ0Ξ¯0 are in good agreement with, and much more precise than, the previously published results. The angular parameters for these decays are also measured for the first time. The measured angular decay parameter for J/ψ→Σ(1385)0Σ¯(1385)0, α=−0.64±0.03±0.10, is found to be negative, different to the other decay processes in this measurement. In addition, the “12% rule” and isospin symmetry in the decays of J/ψ and ψ(3686) to ΞΞ¯ and Σ(1385)Σ¯(1385) are tested.
- Published
- 2017
- Full Text
- View/download PDF
12. Measurement of the absolute branching fraction for Λc+→Λμ+νμ
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, S. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, P.F. Duan, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Z.L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.W. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, P. Kiese, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, A. Kupsc, W. Kühn, J.S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Leng, C. Li, Li Cheng, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, Jin Li, K. Li, Lei. Li, P.R. Li, Q.Y. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Y.B. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, Q.J. Liu, S.B. Liu, X. Liu, Y.B. Liu, Y.Y. Liu, Z.A. Liu, Z.Q. Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, G. Mezzadri, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, N.Yu. Muchnoi, H. Muramatsu, P. Musiol, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, H.R. Qi, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, W. Wang, W.P. Wang, X.F. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, L.G. Xia, Y. Xia, D. Xiao, H. Xiao, Z.J. Xiao, Y.G. Xie, Xie Yuehong, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.X. Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.Q. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.N. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
Λc+ ,Semi-leptonic decay ,Absolute branching fraction ,BESIII ,Physics ,QC1-999 - Abstract
We report the first measurement of the absolute branching fraction for Λc+→Λμ+νμ. This measurement is based on a sample of e+e− annihilation data produced at a center-of-mass energy s=4.6 GeV, collected with the BESIII detector at the BEPCII storage rings. The sample corresponds to an integrated luminosity of 567 pb−1. The branching fraction is determined to be B(Λc+→Λμ+νμ)=(3.49±0.46(stat)±0.27(syst))%. In addition, we calculate the ratio B(Λc+→Λμ+νμ)/B(Λc+→Λe+νe) to be 0.96±0.16(stat)±0.04(syst).
- Published
- 2017
- Full Text
- View/download PDF
13. Measurements of the branching fractions for D+→KS0KS0K+, KS0KS0π+ and D0→KS0KS0, KS0KS0KS0
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J. Chai, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, S. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, P.F. Duan, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, O. Fedorov, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Y. Huang, Z.L. Huang, T. Hussain, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.W. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, P. Kiese, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, A. Kupsc, W. Kühn, J.S. Lange, M. Lara, P. Larin, H. Leithoff, C. Leng, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, Q.Y. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Y.B. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Y.Y. Liu, Z.A. Liu, Zhiqing Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, G. Mezzadri, J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, N.Yu. Muchnoi, H. Muramatsu, P. Musiol, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, H.R. Qi, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, M. Shi, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, S.G. Wang, W. Wang, W.P. Wang, X.F. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, L.G. Xia, Y. Xia, D. Xiao, H. Xiao, Z.J. Xiao, Y.G. Xie, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.X. Yang, M. Ye, M.H. Ye, J.H. Yin, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.Q. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.N. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
BESIII ,D0 and D+ mesons ,Hadronic decays ,Branching fractions ,Physics ,QC1-999 - Abstract
By analyzing 2.93fb−1 of data taken at the ψ(3770) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D+→KS0KS0K+, D+→KS0KS0π+, D0→KS0KS0 and D0→KS0KS0KS0. They are determined to be B(D+→KS0KS0K+)=(2.54±0.05stat.±0.12sys.)×10−3, B(D+→KS0KS0π+)=(2.70±0.05stat.±0.12sys.)×10−3, B(D0→KS0KS0)=(1.67±0.11stat.±0.11sys.)×10−4 and B(D0→KS0KS0KS0)=(7.21±0.33stat.±0.44sys.)×10−4, where the second one is measured for the first time and the others are measured with significantly improved precision over the previous measurements.
- Published
- 2017
- Full Text
- View/download PDF
14. Measurement of branching fractions for D meson decaying into ϕ meson and a pseudoscalar meson
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, M. Alekseev, A. Amoroso, F.F. An, Q. An, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Biernat, J. Bloms, I. Boyko, R.A. Briere, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J. Chai, J.F. Chang, W.L. Chang, G. Chelkov, D.Y. Chen, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, S.J. Chen, Y.B. Chen, W. Cheng, G. Cibinetto, F. Cossio, X.F. Cui, H.L. Dai, J.P. Dai, X.C. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, J.Z. Fan, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, M. Fritsch, C.D. Fu, Y. Fu, Q. Gao, X.L. Gao, Y. Gao, Y.G. Gao, Z. Gao, B. Garillon, I. Garzia, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, L.M. Gu, M.H. Gu, S. Gu, Y.T. Gu, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, S. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, T. Held, Y.K. Heng, M. Himmelreich, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, N. Huesken, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, H.L. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, I.K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. Kurth, M.G. Kurth, W. Kühn, J.S. Lange, P. Larin, L. Lavezzi, H. Leithoff, T. Lenz, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, J.W. Li, Ke Li, L.K. Li, Lei Li, P.L. Li, P.R. Li, Q.Y. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, X.N. Li, Z.B. Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, C.X. Lin, D.X. Lin, Y.J. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, D.Y. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L.Y. Liu, Q. Liu, S.B. Liu, T. Liu, X. Liu, X.Y. Liu, Y.B. Liu, Z.A. Liu, Zhiqing Liu, Y.F. Long, X.C. Lou, H.J. Lu, J.D. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, P.W. Luo, T. Luo, X.L. Luo, S. Lusso, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, X.N. Ma, X.X. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, N.Yu. Muchnoi, H. Muramatsu, A. Mustafa, S. Nakhoul, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, M. Papenbrock, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, A. Pitka, R. Poling, V. Prasad, H.R. Qi, M. Qi, T.Y. Qi, S. Qian, C.F. Qiao, N. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, K.H. Rashid, K. Ravindran, C.F. Redmer, M. Richter, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, M. Savrié, Y. Schelhaas, K. Schoenning, W. Shan, X.Y. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, X. Shi, X.D Shi, J.J. Song, Q.Q. Song, X.Y. Song, S. Sosio, C. Sowa, S. Spataro, F.F. Sui, G.X. Sun, J.F. Sun, L. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.K Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, Y.T Tan, C.J. Tang, G.Y. Tang, X. Tang, V. Thoren, B. Tsednee, I. Uman, B. Wang, B.L. Wang, C.W. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, M.Z. Wang, Meng Wang, P.L. Wang, R.M. Wang, W.P. Wang, X. Wang, X.F. Wang, X.L. Wang, Y. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.Y. Wang, Zongyuan Wang, T. Weber, D.H. Wei, P. Weidenkaff, F. Weidner, H.W. Wen, S.P. Wen, U. Wiedner, G. Wilkinson, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, Y. Xia, S.Y. Xiao, Y.J. Xiao, Z.J. Xiao, Y.G. Xie, Y.H. Xie, T.Y. Xing, X.A. Xiong, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, W. Xu, X.P. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, R.X. Yang, S.L. Yang, Y.H. Yang, Y.X. Yang, Yifan Yang, Z.Q. Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, J.S. Yu, T. Yu, C.Z. Yuan, X.Q. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, Y. Zeng, B.X. Zhang, B.Y. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.F. Zhang, T.J. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yang Zhang, Yao Zhang, Yi Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, L.P. Zhou, Q. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, Xiaoyu Zhou, Xu Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, S.H. Zhu, W.J. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, B.S. Zou, and J.H. Zou
- Subjects
Physics ,QC1-999 - Abstract
The four decay modes D0→ϕπ0, D0→ϕη, D+→ϕπ+, and D+→ϕK+ are studied by using a data sample taken at the centre-of-mass energy s=3.773 GeV with the BESIII detector, corresponding to an integrated luminosity of 2.93 fb−1. The branching fractions of the first three decay modes are measured to be B(D0→ϕπ0)=(1.168±0.028±0.028)×10−3, B(D0→ϕη)=(1.81±0.46±0.06)×10−4, and B(D+→ϕπ+)=(5.70±0.05±0.13)×10−3, respectively, where the first uncertainties are statistical and the second are systematic. In addition, the upper limit of the branching fraction for D+→ϕK+ is given to be 2.1×10−5 at the 90% confidence level. The ratio of B(D0→ϕπ0) to B(D+→ϕπ+) is calculated to be (20.49±0.50±0.45)%, which is consistent with the theoretical prediction based on isospin symmetry between these two decay modes. Keywords: BESIII, D meson, Hadronic decays, Branching fractions
- Published
- 2019
- Full Text
- View/download PDF
15. Measurement of the leptonic decay width of J/ψ using initial state radiation
- Author
-
M. Ablikim, M.N. Achasov, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, H.Y. Chen, J.C. Chen, M.L. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, P.F. Duan, E.E. Eren, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.Y. Gao, Y. Gao, Z. Gao, I. Garzia, C. Geng, K. Goetzen, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, Y.L. Han, X.Q. Hao, F.A. Harris, K.L. He, Z.Y. He, T. Held, Y.K. Heng, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.M. Huang, G.S. Huang, H.P. Huang, J.S. Huang, X.T. Huang, Y. Huang, T. Hussain, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.L. Jiang, L.W. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, P. Kiese, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, W. Kuehn, A. Kupsc, J.S. Lange, M. Lara, P. Larin, C. Leng, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H.B. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.M. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B.J. Liu, C.X. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, X.X. Liu, Y.B. Liu, Z.A. Liu, Zhiqiang Liu, Zhiqing Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, R.Q. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, M. Lv, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, K. Moriya, N.Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, Y.N. Pu, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Y. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, H.L. Ren, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, V. Santoro, A. Sarantsev, M. Savrié, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, M. Ullrich, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, S.G. Wang, W. Wang, X.F. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, Z. Wu, L.G. Xia, Y. Xia, D. Xiao, H. Xiao, Z.J. Xiao, Y.G. Xie, Q.L. Xiu, G.F. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y. Yang, Y.X. Yang, H. Ye, M. Ye, M.H. Ye, J.H. Yin, B.X. Yu, C.X. Yu, H.W. Yu, J.S. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.H. Zhang, X.Y. Zhang, Y. Zhang, Y.N. Zhang, Y.H. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, Li Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
J/ψ resonance ,Electronic width ,Initial state radiation ,BESIII ,Physics ,QC1-999 - Abstract
Using a data set of 2.93 fb−1 taken at a center-of-mass energy of s=3.773 GeV with the BESIII detector at the BEPCII collider, we measure the process e+e−→J/ψγ→μ+μ−γ and determine the product of the branching fraction and the electronic width Bμμ⋅Γee=(333.4±2.5stat±4.4sys) eV. Using the earlier-published BESIII result for Bμμ=(5.973±0.007stat±0.037sys)%, we derive the J/ψ electronic width Γee=(5.58±0.05stat±0.08sys) keV.
- Published
- 2016
- Full Text
- View/download PDF
16. Measurement of the e+e−→π+π− cross section between 600 and 900 MeV using initial state radiation
- Author
-
M. Ablikim, M.N. Achasov, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, H.Y. Chen, J.C. Chen, M.L. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, P.F. Duan, E.E. Eren, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.Y. Gao, Y. Gao, Z. Gao, I. Garzia, K. Goetzen, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, X.Q. Hao, F.A. Harris, K.L. He, X.Q. He, T. Held, Y.K. Heng, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.M. Huang, G.S. Huang, J.S. Huang, X.T. Huang, Y. Huang, T. Hussain, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.W. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, P. Kiese, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, W. Kühn, A. Kupsc, J.S. Lange, M. Lara, P. Larin, C. Leng, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.M. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B.J. Liu, C.X. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Zhiqing Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, K. Moriya, N.Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, V. Santoro, A. Sarantsev, M. Savrié, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, W.M. Song, M.R. Shepherd, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, M. Ullrich, I. Uman, G.S. Varner, B. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, S.G. Wang, W. Wang, X.F. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, Z. Wu, L.G. Xia, Y. Xia, D. Xiao, H. Xiao, Z.J. Xiao, Y.G. Xie, Q.L. Xiu, G.F. Xu, L. Xu, Q.J. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y. Yang, Y.X. Yang, M. Ye, M.H. Ye, J.H. Yin, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, X.Y. Zhang, Y. Zhang, Y.N. Zhang, Y.H. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
Hadronic cross section ,Muon anomaly ,Initial state radiation ,Pion form factor ,BESIII ,Physics ,QC1-999 - Abstract
We extract the e+e−→π+π− cross section in the energy range between 600 and 900 MeV, exploiting the method of initial state radiation. A data set with an integrated luminosity of 2.93 fb−1 taken at a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider is used. The cross section is measured with a systematic uncertainty of 0.9%. We extract the pion form factor |Fπ|2 as well as the contribution of the measured cross section to the leading-order hadronic vacuum polarization contribution to (g−2)μ. We find this value to be aμππ,LO(600–900MeV)=(368.2±2.5stat±3.3sys)⋅10−10, which is between the corresponding values using the BaBar or KLOE data.
- Published
- 2016
- Full Text
- View/download PDF
17. Measurement of the branching fraction for ψ(3770)→γχc0
- Author
-
M. Ablikim, M.N. Achasov, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, H.Y. Chen, J.C. Chen, M.L. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, P.F. Duan, E.E. Eren, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, O. Fedorov, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, X.Y. Gao, Y. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, X.Q. Hao, F.A. Harris, K.L. He, T. Held, Y.K. Heng, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, Y. Huang, T. Hussain, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.W. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, P. Kiese, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, W. Kuehn, A. Kupsc, J.S. Lange, M. Lara, P. Larin, C. Leng, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, Q.Y. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.M. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Zhiqing Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, N.Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, H.R. Qi, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, V. Santoro, A. Sarantsev, M. Savrié, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, M. Ullrich, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, S.G. Wang, W. Wang, W.P. Wang, X.F. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, Z. Wu, L. Xia, L.G. Xia, Y. Xia, D. Xiao, H. Xiao, Z.J. Xiao, Y.G. Xie, Q.L. Xiu, G.F. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.X. Yang, M. Ye, M.H. Ye, J.H. Yin, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.N. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
Physics ,QC1-999 - Abstract
By analyzing a data set of 2.92 fb−1 of e+e− collision data taken at s=3.773 GeV and 106.41×106 ψ(3686) decays taken at s=3.686 GeV with the BESIII detector at the BEPCII collider, we measure the branching fraction and the partial decay width for ψ(3770)→γχc0 to be B(ψ(3770)→γχc0)=(6.88±0.28±0.67)×10−3 and Γ[ψ(3770)→γχc0]=(187±8±19) keV, respectively. These are the most precise measurements to date.
- Published
- 2016
- Full Text
- View/download PDF
18. Measurement of the branching fractions of Ds+→η′X and Ds+→η′ρ+ in e+e−→Ds+Ds−
- Author
-
M. Ablikim, M.N. Achasov, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, H.Y. Chen, J.C. Chen, M.L. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, P.F. Duan, E.E. Eren, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.Y. Gao, Y. Gao, Z. Gao, I. Garzia, C. Geng, K. Goetzen, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, Y.L. Han, X.Q. Hao, F.A. Harris, K.L. He, Z.Y. He, T. Held, Y.K. Heng, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.M. Huang, G.S. Huang, H.P. Huang, J.S. Huang, X.T. Huang, Y. Huang, T. Hussain, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.L. Jiang, L.W. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, P. Kiese, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, W. Kühn, A. Kupsc, J.S. Lange, M. Lara, P. Larin, C. Leng, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H.B. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.M. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B.J. Liu, C.X. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.B. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, X.X. Liu, Y.B. Liu, Z.A. Liu, Zhiqiang Liu, Zhiqing Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, R.Q. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, M. Lv, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, K. Moriya, N.Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, V. Prasad, Y.N. Pu, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Y. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, H.L. Ren, M. Ripka, G. Rong, Ch. Rosner, X.D. Ruan, V. Santoro, A. Sarantsev, M. Savrié, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, M. Ullrich, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, S.G. Wang, W. Wang, X.F. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, Z. Wu, L.G. Xia, Y. Xia, D. Xiao, Z.J. Xiao, Y.G. Xie, Q.L. Xiu, G.F. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y. Yang, Y.X. Yang, H. Ye, M. Ye, M.H. Ye, J.H. Yin, B.X. Yu, C.X. Yu, H.W. Yu, J.S. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.H. Zhang, X.Y. Zhang, Y. Zhang, Y.N. Zhang, Y.H. Zhang, Y.T. Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, Li Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
BESIII ,Ds ,Branching fractions ,Physics ,QC1-999 - Abstract
We study Ds+ decays to final states involving the η′ with a 482 pb−1 data sample collected at s=4.009 GeV with the BESIII detector at the BEPCII collider. We measure the branching fractions B(Ds+→η′X)=(8.8±1.8±0.5)% and B(Ds+→η′ρ+)=(5.8±1.4±0.4)% where the first uncertainty is statistical and the second is systematic. In addition, we estimate an upper limit on the non-resonant branching ratio B(Ds+→η′π+π0)
- Published
- 2015
- Full Text
- View/download PDF
19. An improved limit for Γee of X(3872) and Γee measurement of ψ(3686)
- Author
-
M. Ablikim, M.N. Achasov, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, O. Bondarenko, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, H.Y. Chen, J.C. Chen, M.L. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, G. Cibinetto, D. Cronin-Hennessy, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, P.F. Duan, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.Y. Gao, Y. Gao, Z. Gao, I. Garzia, C. Geng, K. Goetzen, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, Y.L. Han, X.Q. Hao, F.A. Harris, K.L. He, Z.Y. He, T. Held, Y.K. Heng, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.M. Huang, G.S. Huang, H.P. Huang, J.S. Huang, X.T. Huang, Y. Huang, T. Hussain, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.L. Jiang, L.W. Jiang, X.S. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, W. Kühn, A. Kupsc, W. Lai, J.S. Lange, M. Lara, P. Larin, C. Leng, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H.B. Li, J.C. Li, Jin Li, K. Li, Lei Li, P.R. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.M. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B.J. Liu, C.X. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, X.X. Liu, Y.B. Liu, Z.A. Liu, Zhiqiang Liu, Zhiqing Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, R.Q. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, M. Lv, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, Q.M. Ma, S. Ma, T. Ma, X.N. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, K. Moriya, N.Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, R. Poling, Y.N. Pu, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Y. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, H.L. Ren, M. Ripka, G. Rong, X.D. Ruan, V. Santoro, A. Sarantsev, M. Savrié, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, G.X. Sun, J.F. Sun, S.S. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, D. Toth, M. Ullrich, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, Q.J. Wang, S.G. Wang, W. Wang, X.F. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, Z. Wu, L.G. Xia, Y. Xia, D. Xiao, Z.J. Xiao, Y.G. Xie, Q.L. Xiu, G.F. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.X. Yang, L. Yang, Y. Yang, Y.X. Yang, H. Ye, M. Ye, M.H. Ye, J.H. Yin, B.X. Yu, C.X. Yu, H.W. Yu, J.S. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.H. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, Li Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, L. Zotti, B.S. Zou, and J.H. Zou
- Subjects
X(3872) ,ψ(3686) ,Γee ,Charmonium spectroscopy ,BESIII ,Physics ,QC1-999 - Abstract
Using the data sets taken at center-of-mass energies above 4 GeV by the BESIII detector at the BEPCII storage ring, we search for the reaction e+e−→γISRX(3872)→γISRπ+π−J/ψ via the Initial State Radiation technique. The production of a resonance with quantum numbers JPC=1++ such as the X(3872) via single photon e+e− annihilation is forbidden, but is allowed by a next-to-leading order box diagram. We do not observe a significant signal of X(3872), and therefore give an upper limit for the electronic width times the branching fraction ΓeeX(3872)B(X(3872)→π+π−J/ψ)
- Published
- 2015
- Full Text
- View/download PDF
20. Measurement of yCP in D0–D¯0 oscillation using quantum correlations in e+e−→D0D¯0 at s=3.773 GeV
- Author
-
M. Ablikim, M.N. Achasov, X.C. Ai, O. Albayrak, M. Albrecht, D.J. Ambrose, A. Amoroso, F.F. An, Q. An, J.Z. Bai, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, O. Bondarenko, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, H.Y. Chen, J.C. Chen, M.L. Chen, S.J. Chen, X. Chen, X.R. Chen, Y.B. Chen, H.P. Cheng, X.K. Chu, G. Cibinetto, D. Cronin-Hennessy, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, P.F. Duan, J.Z. Fan, J. Fang, S.S. Fang, X. Fang, Y. Fang, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, Y. Gao, Z. Gao, I. Garzia, K. Goetzen, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, Y.H. Guan, A.Q. Guo, L.B. Guo, T. Guo, Y. Guo, Y.P. Guo, Z. Haddadi, A. Hafner, S. Han, Y.L. Han, F.A. Harris, K.L. He, Z.Y. He, T. Held, Y.K. Heng, Z.L. Hou, C. Hu, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.M. Huang, G.S. Huang, H.P. Huang, J.S. Huang, X.T. Huang, Y. Huang, T. Hussain, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, L.L. Jiang, L.W. Jiang, X.S. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, R. Kliemt, B. Kloss, O.B. Kolcu, B. Kopf, M. Kornicer, W. Kuehn, A. Kupsc, W. Lai, J.S. Lange, M. Lara, P. Larin, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H.B. Li, J.C. Li, Jin Li, K. Li, P.R. Li, T. Li, W.D. Li, W.G. Li, X.L. Li, X.M. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B.J. Liu, C.X. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.H. Liu, H.M. Liu, J. Liu, J.P. Liu, J.Y. Liu, K. Liu, K.Y. Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, X.X. Liu, Y.B. Liu, Z.A. Liu, Zhiqiang Liu, Zhiqing Liu, H. Loehner, X.C. Lou, H.J. Lu, J.G. Lu, R.Q. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, M. Lv, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, Q.M. Ma, S. Ma, T. Ma, X.N. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, J.G. Messchendorp, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, K. Moriya, N.Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J.L. Ping, R.G. Ping, R. Poling, Y.N. Pu, M. Qi, S. Qian, C.F. Qiao, L.Q. Qin, N. Qin, X.S. Qin, Y. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, H.L. Ren, M. Ripka, G. Rong, X.D. Ruan, V. Santoro, A. Sarantsev, M. Savrié, K. Schoenning, S. Schumann, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, M.R. Shepherd, W.M. Song, X.Y. Song, S. Sosio, S. Spataro, B. Spruck, G.X. Sun, J.F. Sun, S.S. Sun, Y.J. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, X. Tang, I. Tapan, E.H. Thorndike, M. Tiemens, D. Toth, M. Ullrich, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, P. Wang, P.L. Wang, Q.J. Wang, S.G. Wang, W. Wang, X.F. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.H. Wang, Z.Y. Wang, T. Weber, D.H. Wei, J.B. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, Z. Wu, L.G. Xia, Y. Xia, D. Xiao, Z.J. Xiao, Y.G. Xie, G.F. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.X. Yang, L. Yang, Y. Yang, Y.X. Yang, H. Ye, M. Ye, M.H. Ye, J.H. Yin, B.X. Yu, C.X. Yu, H.W. Yu, J.S. Yu, C.Z. Yuan, W.L. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, A. Zallo, Y. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.H. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, Q.W. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, Li Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, K. Zhu, K.J. Zhu, S. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, B.S. Zou, and J.H. Zou
- Subjects
Physics ,QC1-999 - Abstract
We report a measurement of the parameter yCP in D0–D¯0 oscillations performed by taking advantage of quantum coherence between pairs of D0D¯0 mesons produced in e+e− annihilations near threshold. In this work, doubly-tagged D0D¯0 events, where one D decays to a CP eigenstate and the other D decays in a semileptonic mode, are reconstructed using a data sample of 2.92 fb−1 collected with the BESIII detector at the center-of-mass energy of s=3.773 GeV. We obtain yCP=(−2.0±1.3±0.7)%, where the first uncertainty is statistical and the second is systematic. This result is compatible with the current world average. Keywords: BESIII, D0–D¯0 oscillation, yCP, Quantum correlation
- Published
- 2015
- Full Text
- View/download PDF
21. Effects of conjugated linoleic acid or betaine on the growth performance and fatty acid composition in backfat and belly fat of finishing pigs fed dried distillers grains with solubles
- Author
-
L.S. Wang, Z. Shi, R. Gao, B.C. Su, H. Wang, B.M. Shi, and A.S. Shan
- Subjects
distillers dried grains with solubles ,conjugated linoleic acid ,betaine ,carcass quality ,fatty acid composition ,Animal culture ,SF1-1100 - Abstract
The objectives of this study were to determine the effects of conjugated linoleic acid (CLA) or betaine on the growth performance, carcass characteristics and fatty acid composition in backfat and belly fat of pigs fed distillers dried grains with solubles (DDGS). Thirty-two (60±2 kg) crossbred barrows (Duroc×Landrace×Yorkshine) were assigned to one of four diets randomly: (1) the control diet containing no corn DDGS (control group); (2) the diet containing 30% corn DDGS (DDGS-fed group); (3) the diet containing 30% corn DDGS and 10 g/kg CLA (CLA-fed group); (4) the diet containing 30% corn DDGS and 1 g/kg BET (BET-fed group). The pigs fed DDGS showed that the percentages of C18:2, polyunsaturated fatty acid (PUFA) and iodine value (IV) increased, while C18:1, saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) decreased. Pigs fed the DDGS+CLA or DDGS+betaine diets showed the increased percentage of SFA, and the decreased percentage of C18:2, PUFA and IV. In conclusion, results confirmed that the diets containing 30% DDGS had no detrimental effects on growth performance, but increased the percentage of PUFA and IV and decreased the percentage of SFA and MUFA in the backfat and belly fat. However, supplementation with CLA or BET can part reverse these effects on carcass fat in finishing pigs.
- Published
- 2015
- Full Text
- View/download PDF
22. Multiparametric Electromagnetic Inversion of 3-D Anisotropic Objects Embedded in Layered Media Based on Mixed $L_1$–$L_2$ Norm Regularization
- Author
-
Yanjin Chen, L.S. Wang, Feng Han, Qing Huo Liu, and Jiawen Li
- Subjects
Mathematics::Functional Analysis ,Electromagnetics ,Iterative method ,020206 networking & telecommunications ,02 engineering and technology ,Regularization (mathematics) ,Tikhonov regularization ,Matrix (mathematics) ,Conjugate gradient method ,Norm (mathematics) ,Inverse scattering problem ,0202 electrical engineering, electronic engineering, information engineering ,Applied mathematics ,Electrical and Electronic Engineering ,Mathematics - Abstract
In this letter, the mixed $L_1$ – $L_2$ norm regularization is adopted to constrain the full-wave inversion solution of the multiparametric electromagnetic inverse scattering by the 3-D anisotropic objects. The mixed $L_1$ – $L_2$ regularization term is added to the standard $L_2$ norm cost function in the framework of the Born iterative method. In each iteration, the mixed $L_1$ – $L_2$ norm term is transformed into $L_2$ norm term through a weight matrix and the whole cost function is minimized by the conjugate gradient method. Numerical results show that, compared with the traditional Tikhonov $L_2$ regularization, the mixed $L_1$ – $L_2$ regularization can achieve higher reconstruction accuracy without additional computational cost due to the structural similarity constraint among different model parameters.
- Published
- 2021
23. Hybrid Reconstruction of Subsurface 3-D Objects Using FRTM and VBIM Enhanced by Monte Carlo Method
- Author
-
L.S. Wang, Hai Liu, Qing Huo Liu, Jiawen Li, Xi Tang, and Feng Han
- Subjects
Electromagnetic field ,Subsurface imaging ,Computer science ,Iterative method ,Monte Carlo method ,0211 other engineering and technologies ,Seismic migration ,02 engineering and technology ,Iterative reconstruction ,Geotechnical Engineering and Engineering Geology ,Ground-penetrating radar ,Electrical and Electronic Engineering ,Algorithm ,021101 geological & geomatics engineering - Abstract
A hybrid method is proposed to reconstruct the subsurface 3-D objects with electromagnetic fields. The frequency-domain reverse time migration (FRTM) is first used to determine the approximate locations and sizes of the objects. Then, based on these results, the full-wave inversion, the variational Born iteration method (VBIM) is used to reconstruct both the shapes and dielectric parameters of the objects. The Monte Carlo method (MCM) is adopted to further refine the reconstructed shapes. Numerical simulations show that the proposed hybrid method can be effectively used for the subsurface imaging and detection.
- Published
- 2021
24. A Hybrid CN-FDTD-SPICE Solver for Field-Circuit Analyses in Low-Frequency Wideband Problems
- Author
-
Jianliang Zhuo, Jianyang Zhou, Xin Lu, L.S. Wang, Xuejun Wang, Qing Huo Liu, and Mengqing Yuan
- Subjects
Computer science ,020208 electrical & electronic engineering ,Spice ,Finite difference method ,Finite-difference time-domain method ,CPU time ,020206 networking & telecommunications ,02 engineering and technology ,Solver ,Low frequency ,Industrial and Manufacturing Engineering ,Electronic, Optical and Magnetic Materials ,0202 electrical engineering, electronic engineering, information engineering ,Electronic engineering ,Electrical and Electronic Engineering ,Wideband ,Electronic circuit - Abstract
The conventional finite-difference time-domain (FDTD) method is efficient for microwave frequencies, but requires a large number of time steps for low frequencies. In this work, a hybrid Crank–Nicolson (CN) FDTD-SPICE method is applied to field-circuit analyses in low- frequency wideband problems. The unconditionally stable CN-FDTD method is used to give a rapid full wave solution by overcoming the Courant–Friedrichs–Lewy (CFL) condition that constrains the conventional FDTD method at low frequencies. The hybrid CN-FDTD-SPICE method can be used for simulating the interactions between modern electronic circuit systems and a 3-D structure supporting field radiation and interferences. It can greatly improve the computational efficiency over the conventional FDTD method at low frequencies because its time increment can be significantly larger. Three numerical examples are presented to verify the accuracy and efficiency of this hybrid method. Its CPU time is much shorter than that of the conventional FDTD-SPICE method. This CN-FDTD-SPICE method becomes increasingly advantageous when the radiation fields are required as the system integration continues to accelerate.
- Published
- 2020
25. A Phaseless Inverse Source Method (PISM) Based on Near-Field Scanning for Radiation Diagnosis and Prediction of PCBs
- Author
-
Yuxian Zhang, Qing Huo Liu, L.S. Wang, Feng Han, and Jianyang Zhou
- Subjects
Radiation ,Computer science ,Iterative method ,Inverse ,020206 networking & telecommunications ,Near and far field ,02 engineering and technology ,Inverse problem ,Condensed Matter Physics ,Printed circuit board ,Nonlinear system ,Robustness (computer science) ,0202 electrical engineering, electronic engineering, information engineering ,Electrical and Electronic Engineering ,Algorithm - Abstract
In this article, we present an efficient phaseless inverse source method (PISM) to reconstruct equivalent sources on a printed circuit board (PCB) using magnitude-only single-plane near-field scanning. The equivalent source distribution reconstructed by the conventional source reconstruction method requires accurate near-field magnitude and phase information, but phase measurement is difficult in many cases due to inaccuracy and complexity. In order to describe the inverse problem between phaseless fields and radiation sources, a nonlinear cost function based on surface integral equations is established. The cost function of the PISM is rapidly minimized by an iterative optimization and regularization technique for nonlinear ill-posed systems. The proposed method gives the characterization of PCBs both for diagnostic tasks of radiation sources and the near-field radiation behavior prediction when the phase information is missing. It also shows excellent robustness in tackling with various near-field data and noises. Both numerical examples and laboratory experiments are given to verify the effectiveness of the proposed method.
- Published
- 2020
26. Wideband Low-Frequency Design of Inductors and Wireless Power Transfer Coils Using the Mixed Finite-Element Time-Domain Method
- Author
-
Qing Huo Liu, Ke Chen, L.S. Wang, Xuejun Wang, and Xin Lu
- Subjects
Computer science ,Numerical analysis ,020206 networking & telecommunications ,02 engineering and technology ,Low frequency ,Condensed Matter Physics ,Inductor ,Finite element method ,Inductance ,0202 electrical engineering, electronic engineering, information engineering ,Electronic engineering ,Finite element time domain ,Wireless power transfer ,Electrical and Electronic Engineering ,Wideband - Abstract
Wideband low-frequency designs of inductors and wireless power transfer (WPT) coils are challenging because of the low-frequency breakdown in traditional numerical methods. In this letter, we apply a recently developed mixed finite-element time-domain (mixed FETD) method to overcome such low-frequency breakdown difficulties in designing inductors and WPT coils and verify the feasibility of the mixed FETD method for such models at low frequencies. This letter provides a demonstration for the design of the low-frequency electrically small electromagnetic devices.
- Published
- 2020
27. Lanthanum chloride enhances the photosynthetic characteristics and increases konjac glucomannan contents in Amorphophallus sinensis Belval
- Author
-
L.S. Wang, X.X. Li, P.F. Lai, B. Yu, H.Y. Shangguan, X.M. Luo, Z.H. He, Y.Y. Dong, and S.L. Zhang
- Subjects
0106 biological sciences ,Stomatal conductance ,gas-exchange parameters ,Physiology ,chemistry.chemical_element ,Corm ,Plant Science ,Photosynthetic efficiency ,Photosynthesis ,01 natural sciences ,Amorphophallus ,rare element ,lcsh:Botany ,Lanthanum ,Chlorophyll fluorescence ,biology ,04 agricultural and veterinary sciences ,biology.organism_classification ,lcsh:QK1-989 ,Horticulture ,chlorophyll content ,chemistry ,Yield (chemistry) ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,010606 plant biology & botany - Abstract
Lanthanum (La) has been used as agricultural inputs in order to enhance yield and improve crop quality. However, little is known about the effect of La on the photosynthesis and growth of Amorphophallus sinensis, a worldwide food source. The effects of La on the photosynthetic and chlorophyll fluorescence parameters, photosynthetic pigments, corm yield, and konjac glucomannan (KGM) of Amorphophallus sinensis were investigated via field experiments. The leaves were sprayed with different concentrations of LaCl3 (20, 80, 160, and 240 mg L-1). The results exhibited an increasing effect of LaCl3 on photosynthetic rate, stomatal conductance, intercellular CO2 concentration, chlorophyll fluorescence parameters, photosynthetic pigments, corm yield, and KGM, when concentration was between 20 and 240 mg L-1, and the most effective concentration was 160 mg L-1. Therefore, moderate LaCl3 concentration may increase yield of Amorphophallus sinensis by enhancing the photosynthetic efficiency, increasing the corm yield, and KGM contents.
- Published
- 2020
28. Histological changes, lipid metabolism, and oxidative and endoplasmic reticulum stress in the liver of laying hens exposed to cadmium concentrations
- Author
-
L.S. Wang, H.Y. Li, L.H. Bai, Mingkun Zhu, and Xiaoting Zou
- Subjects
medicine.medical_specialty ,Antioxidant ,cadmium ,medicine.medical_treatment ,chemistry.chemical_element ,Oxidative phosphorylation ,liver ,Metabolism and Nutrition ,Basal (phylogenetics) ,Internal medicine ,medicine ,Animals ,lcsh:SF1-1100 ,chemistry.chemical_classification ,Cadmium ,Kidney ,Dose-Response Relationship, Drug ,Chemistry ,Endoplasmic reticulum ,laying hens ,Lipid metabolism ,General Medicine ,Endoplasmic Reticulum Stress ,Lipid Metabolism ,Oxidative Stress ,Endocrinology ,medicine.anatomical_structure ,Enzyme ,Animal Science and Zoology ,Environmental Pollutants ,Female ,lcsh:Animal culture ,Chickens - Abstract
The objective of this study was to determine the effects of cadmium (Cd) on histological changes, lipid metabolism, and oxidative and endoplasmic reticulum (ER) stress in the liver of layers. A total of 480 hens at 38 wk of age were randomly assigned in 5 groups that were fed a basal diet or basal diet supplemented with CdCl2 2.5H2O at 7.5, 15, 30, and 60 mg Cd/kg feed for 9 wk. The results showed that accumulation of Cd was the greatest in the kidney, followed by the liver, pancreas, and lung. Diet contaminated with 30 mg Cd/kg induced antioxidant defenses accompanied by the increase of the activities of antioxidant enzymes in the liver, while dietary supplementation with 60 mg Cd/kg decreased the antioxidant levels significantly (P
- Published
- 2020
29. An FDTD Method for Fully Anisotropic Periodic Structures Impinged by Obliquely Incident Plane Waves
- Author
-
L.S. Wang, Naixing Feng, Qing Huo Liu, Zhen Guan, and Yuxian Zhang
- Subjects
Physics ,Mathematical analysis ,Plane wave ,Finite-difference time-domain method ,020206 networking & telecommunications ,02 engineering and technology ,Magnetic field ,Perfectly matched layer ,Vertical direction ,0202 electrical engineering, electronic engineering, information engineering ,Transmittance ,Periodic boundary conditions ,Boundary value problem ,Electrical and Electronic Engineering - Abstract
A finite-difference time-domain (FDTD) method is developed to analyze electromagnetic scattering from 3-D fully anisotropic periodic structures impinged by obliquely incident plane waves. Starting from Maxwell’s curl equations, we employ material transformation matrices to link the update of the electric and magnetic fields in the FDTD method. The problem under consideration is Bloch–Floquet periodic in the horizontal directions but finite in the vertical direction. At the FDTD truncation boundaries in the horizontal directions, the Bloch–Floquet periodic boundary conditions (BPBCs) are applied, while the perfectly matched layer (PML) absorbing boundary condition is implemented for the vertical direction. We design three different anisotropic models in 3-D simulations to validate our method with a commercial software package COMSOL. These examples show the accuracy and efficiency of the FDTD method for analyzing the propagation characteristics, including reflectance, transmittance, absorptance, and complex reflection and transmission coefficients for the fully anisotropic periodic structures.
- Published
- 2020
30. Synergistic effects of Ce and Mg on the microstructure and tensile properties of Al-7Si-0.3Mg-0.2Fe alloy
- Author
-
L.S. Wang, Balaji Narayanaswamy, Jidong Kang, C.H. Liu, Ru Su, Dayong Wu, and T. Li
- Subjects
Materials science ,Mechanical Engineering ,Alloy ,Metals and Alloys ,chemistry.chemical_element ,02 engineering and technology ,engineering.material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Microstructure ,01 natural sciences ,Casting ,0104 chemical sciences ,Brittleness ,chemistry ,Mechanics of Materials ,Aluminium ,Ultimate tensile strength ,Materials Chemistry ,engineering ,Elongation ,Composite material ,0210 nano-technology ,Eutectic system - Abstract
The effects of Ce and/or Mg on the microstructure and tensile properties of Al-Si-Mg-Fe alloys have been systematically investigated. Results showed that the separate addition of Mg or Ce could cause grain and eutectic Si refinement to some extent, whereas, the combined addition of Mg and Ce had a more appreciable grain refinement and excellent eutectic Si modification, modifying the eutectic Si morphology from plate-like to fibrous. The combined addition of Mg and Ce produced a large number of nanosized precipitates containing Ce and Mg within eutectic Si. These nanosized precipitates inhibited the Si growth and also the increase of constitutional undercooling were responsible for the excellent Si modification. Moreover, the combined addition of Mg and Ce significantly improved the strength and elongation due to grain refinement and eutectic Si modification. The ultimate tensile strength, yield strength and elongation reached 313 MPa, 227 MPa, 5.7%, respectively. Fractographic studies on alloys with a combined addition of Mg and Ce have revealed more dimples on tensile surface indicating a transition from brittle to ductile fracture than alloys with separate additions of Mg or Ce. These experimental findings provide a new feasible scheme for rare earth elements application in aluminum alloy casting production.
- Published
- 2019
31. A 3-D High-Order Reverse-Time Migration Method for High-Resolution Subsurface Imaging With a Multistation Ultra-Wideband Radar System
- Author
-
Naixing Feng, Xiaoli Feng, Mingwei Zhuang, L.S. Wang, Guangyou Fang, Yuxian Zhang, and Qing Huo Liu
- Subjects
Atmospheric Science ,Finite difference method ,Seismic migration ,CPU time ,020206 networking & telecommunications ,02 engineering and technology ,010502 geochemistry & geophysics ,01 natural sciences ,law.invention ,Antenna array ,law ,Radar imaging ,Ground-penetrating radar ,0202 electrical engineering, electronic engineering, information engineering ,Computers in Earth Sciences ,Radar ,Computer memory ,Geology ,0105 earth and related environmental sciences ,Remote sensing - Abstract
A three-dimensional high-order reverse-time migration (3-D HO-RTM) method is proposed to perform subsurface electromagnetic imaging with an ultra-wideband radar (UWBR) system consisting of a multi-input and multi-output antenna array. By using a UWBR system to collect temporal scattering signals, subsurface targets can be detected, and the image of targets can be obtained by imaging methods such as the back-propagation method, frequency-wavenumber migration technique, time-reversal mirror, and reverse-time migration method. The proposed HO-RTM method is based on the high-order finite-difference time-domain (HO-FDTD) method to significantly reduce the computational cost in the conventional RTM method. The measured data from an experimental lunar exploration system Chang'E-5 have been collected on a 7 m × 2.5 m × 2.5 m laboratory model with volcanic ash and validated by the 3-D HO-RTM method. Results show that all buried objects can be effectively identified by the HO-RTM, and its computer memory and CPU time are only 3.87% and 0.7128% of the conventional RTM method, respectively.
- Published
- 2019
32. Synthesis, Surface Modification and Characterisation of Nanoparticles
- Author
-
L.S. Wang and R.Y. Hong
- Subjects
Nanocomposite ,Materials science ,Phase (matter) ,Composite number ,Nanoparticle ,Surface modification ,Nanotechnology ,Characterization (materials science) ,Nanomaterials ,Amorphous solid - Abstract
Nanoparticles with sizes ranging between objects and microparticles (e.g. atom) have attracted much attention. These particles with various specialized functions not only deepen our understanding of nature, but also serve as the basis for the development of new advanced technology. The successful application of nanoparticles depends upon both the synthesis and the surface modification of these particles. Surface modification can improve the inherent characteristics of the nanoparticles and serve to prepare nanocomposites inexistent in nature. Nanocomposites are made from two or more of the solid phase, at least in one dimensional nano-level size (1-100 nm). The solid phase can be amorphous, semi-crystalline, grain, or a combination. The solid phase can also be organic, inorganic, or a combination. According to the size of the solid phase, nanocomposites generally include the following three types: nanoparticles and nanoparticle compounds (0-0 composite), nanoparticles and conventional bulk composites (0-3 composite) and composite nano-films (0-2 composite). In addition, the nano-layered structure material is ascribed to nano-material, and the multi-layer nanocomposite composed of different materials is also known as nanocomposites. Composite materials own excellent performance, which can be widely used in aerospace, defense, transportation, sports and other fields. Nanocomposites are one of the most attractive part of the composite materials. Due to the fast development in recent years, nanocomposites are put in an important position by the developed countries in the development of new materials. The research on nanocomposites includes organic-inorganic composites, nano-polymer matrix composites and inorganic-inorganic composites. In this chapter, combined with our research experience, we mainly introduce the nano-polymer matrix composites to the readers. In order to claim the nano-polymer matrix composites exactly, synthesis and modification of nanoparticles and preparation, characterization and applications of nano-polymer matrix composites were mainly discussed.
- Published
- 2021
33. Effects of 25-Hydroxyvitamin D3 and Oral Calcium Bolus on Lactation Performance, Ca Homeostasis, and Health of Multiparous Dairy Cows
- Author
-
Chengrui Zhang, Yang Li, Quanyu Zhang, L.S. Wang, Yonggen Zhang, and Hongjian Xu
- Subjects
Vitamin ,Antioxidant ,medicine.medical_treatment ,Veterinary medicine ,Ice calving ,milk yield ,chemistry.chemical_compound ,Animal science ,Lactation ,energy metabolism ,SF600-1100 ,medicine ,subclinical hypocalcemia ,oxidative stress ,General Veterinary ,biology ,business.industry ,Malondialdehyde ,medicine.anatomical_structure ,chemistry ,Alanine transaminase ,QL1-991 ,biology.protein ,Alkaline phosphatase ,Animal Science and Zoology ,Bolus (digestion) ,business ,Zoology - Abstract
Little information is available regarding the effect of supplementing 25-hydroxyvitamin D3 during the transition period combined with a postpartum oral calcium bolus on Ca homeostasis. The objectives of the current study were to evaluate the effects of 25-hydroxyvitamin D3 combined with postpartum oral calcium bolus on lactation performance, serum minerals and vitamin D3 metabolites, blood biochemistry, and antioxidant and immune function in multiparous dairy cows. To evaluate the effects of 25-hydroxyvitamin D3 combined with oral calcium, 48 multiparous Holstein cows were randomly assigned to one of four treatments: (1) supplementing 240 mg/day vitamin D3 without a postpartum oral Ca bolus (control), (2) supplementing 240 mg/day vitamin D3 with an oral Ca bolus containing 90 g of Ca immediately post-calving (Ca + VitD), (3) supplementing 6 g/day 25-hydroxyvitamin D3 without an oral Ca bolus (25D), and (4) supplementing 6 g/day 25-hydroxyvitamin D3 with an oral Ca bolus containing 90 g of Ca immediately post-calving (Ca + 25D). Lactation performance during the first 21 days was measured. Blood was collected at the initiation of calving and then 1, 2, 7, 14, and 21 days relative to the calving date. The yield of milk (0.05 <, p <, 0.10), energy-corrected milk (p <, 0.05), 3.5% fat-corrected milk (p <, 0.05), and milk protein (p <, 0.05) were significantly higher in 25-hydroxyvitamin D3-treated groups within 3 weeks of lactation than in vitamin D3-treated cows. The iCa (p <, 0.05) and tCa (p <, 0.05) were higher in both Ca and 25D + Ca cows than in the control and 25D groups within 48 h. The concentrations of serum tCa (p <, 0.05), tP (p <, 0.05), and 25-hydroxyvitamin D3 (p <, 0.05) in 25D and 25D + Ca cows were higher than those in control and Ca cows within 21 days postpartum. Feeding 25-hydroxyvitamin D3 also showed a lower concentration of malondialdehyde (p <, 0.05), interleukin 6 (p <, 0.05), and tumor necrosis factor-alpha (TNF-α) (p <, 0.05), as well as a higher concentration of alkaline phosphatase (p <, 0.05), total antioxidant capacity (p <, 0.05), and immunoglobulin G (p <, 0.05) than vitamin D3. Supplementing Ca bolus also showed lower concentrations of alanine transaminase (p <, 0.05) and TNF-α (p <, 0.05). In conclusion, supplementing 25-hydroxyvitamin D3 during the transition period combined with a postpartum oral calcium bolus improved lactation performance, Ca homeostasis, and antioxidant and immune function of medium-production dairy cows within 21 days postpartum.
- Published
- 2021
34. Homeland and school geography factors in the social networks of African college students in Jinan, China
- Author
-
L.S. Wang, H.F. Dong, T. Wang, and Y. Fan
- Subjects
Homeland ,Social science ,China - Published
- 2021
35. Study of $e^{+}e^{-} \to D^{+} D^{-} \pi^{+} \pi^{-} $ at center-of-mass energies from 4.36 to 4.60 GeV
- Author
-
Y. Fu, Y. H. Xie, Y. H. Zheng, Cong-Feng Qiao, Y. H. Yan, J. W. Zhao, M. Maggiora, Q.P. Ji, L. Zhao, Y. C. Zhu, Ke Wang, Bingxuan Liu, G. Wilkinson, J. G. Lu, X D Shi, Lei Zhao, M. G. Zhao, Y. H. Yang, X. X. Ma, Xiao-Rui Lyu, W. S. Cheng, Yao Zhang, Y. H. Zhang, J. B. Jiao, L. J. Wu, Y. J. Mao, Hongming Zhang, S.H. Zhu, Z. Q. Yang, J.S. Huang, A. Gilman, Z.P. Mao, R. Kappert, T. Held, T. Hu, S. Lusso, H.L. Ma, Y. J. Mo, Guang Zhao, W. C. Yan, K. Goetzen, F. F. Sui, Y. G. Gao, J. Zhu, S. Gu, C. Q. Feng, A. Yuncu, Q. A. Malik, B. Garillon, L. M. Gu, C.L. Luo, P. Kiese, T.C. Zhao, Huihui Liu, G. Felici, Yi Chen, M. H. Gu, R. Kiuchi, Y.T. Gu, C. Z. Yuan, N. Cao, S. F. Zhang, Shan Jin, L.L. Wang, A. Q. Guo, S. Marcello, Y. Zeng, Yi Zhang, J. G. Messchendorp, R. A. Briere, Y.J. Lin, G. S. Huang, B. L. Wang, J. P. Dai, R. Farinelli, L.S. Wang, B. Y. Zhang, Xiang-Gan Liu, Xinying Song, A. Sarantsev, L. P. Zhou, X. S. Jiang, Stephen Lars Olsen, L. Lavezzi, J. Bloms, M. Richter, P. X. Shen, Xingguo Li, S. J. Zhao, Meng Wang, Z. Ning, S. Y. Xiao, Z.T. Sun, Muhammad Irshad, C. X. Yu, J. J. Xu, T. Lenz, D. M. Li, Z. Wu, W. Imoehl, M.H. Ye, X. Y. Shen, Gang Chen, Y. M. Ma, H. J. Lu, J.F. Qiu, X. A. Xiong, L. Xu, Magnus Wolke, O. Bakina, J. Min, Y. F. Liang, R. X. Yang, H. H. Wang, Wei Xu, Xiaofeng Zhu, J. Z. Zhang, P. Adlarson, Xi Yuan, F.H. Liu, J. J. Song, R. Baldini Ferroli, L. Sun, A. Zhemchugov, I. Uman, J.H. Zou, T. Y. Xing, Y.T. Liang, D. Y. Chen, B. Zheng, R. G. Ping, S. B. Liu, L. Zhang, D. P. Jin, Zhiqing Zhang, G. Li, X. L. Gao, M. Kuessner, Y. K. Sun, J. Fang, M. Pelizaeus, K. Liu, Q. J. Xu, X. Wang, A. A. Zafar, A. Mangoni, A. Rivetti, Z. Gao, J. Q. Zhang, Q. Liu, Y.Z. Sun, J. Zhuang, Zhenjun Xiao, F. A. Harris, Z. A. Liu, Tao Luo, Xiaoyu Zhou, B. Kopf, S. Spataro, X. P. Xu, W. L. Chang, F. Feldbauer, Q. Gao, C.X. Liu, Y. Fang, Z. Y. You, Z. A. Zhu, W.G. Li, M. Albrecht, W. B. Yan, Feng Liu, J. Y. Liu, N. Qin, X. L. Ji, I. Denysenko, Xuanhong Lou, Viktor Thorén, Nasser Kalantar-Nayestanaki, M. Savrié, Jie Yu, S. L. Niu, F. Y. Li, X. Q. Li, Y. F. Long, J.H. Yin, C.C. Zhang, V. Prasad, N. Yu. Muchnoi, H. Leithoff, K. L. He, B. X. Yu, Lei Li, H. M. Liu, H. J. Li, Michael Papenbrock, M. X. Luo, F. Yan, R.P. Guo, T. Weber, P. Patteri, Y. Jin, W. D. Li, O.B. Kolcu, C. P. Shen, B. T. Tsednee, L. L. Ma, Ch. Rosner, L. Gong, Y. Ban, P. Weidenkaff, F. H. Heinsius, M. Kuemmel, Matthew Glenn Kurth, M. Z. Wang, C. Morales Morales, Yue Pan, I. Garzia, X. F. Cui, M. Ablikim, M. Bertani, G. F. Cao, J. Chai, F. Li, K. J. Zhu, S. Pacetti, N. Huesken, Libo Guo, Q. Q. Song, K. Zhu, L. G. Xia, Y. Zhang, A. Amoroso, Cui Li, C. W. Wang, Jimin Zhao, J. Libby, W. Kühn, X. R. Zhou, H.X. Yang, M. Greco, P. L. Li, G.R. Liao, J.L. Ping, K. H. Rashid, Z. G. Wang, M. Rolo, Xiongfei Wang, Y. Hu, Y.X. Yang, S.A. Cetin, Xu Zhou, M.N. Achasov, Zhiqing Liu, H. S. Chen, G. Chelkov, J. Z. Fan, G.X. Sun, P. W. Luo, Ke Li, I. Boyko, Y. G. Xie, Cheng Li, H. L. Dai, Q.M. Ma, B.X. Zhang, A. Pitka, G. Cibinetto, M. Qi, Li Zhou, Xiaozhong Huang, H. J. Yang, Evelina Gersabeck, A. Dbeyssi, C. Dong, I. Balossino Balossino, J.Y. Zhang, S. Sosio, S. Q. Qu, Z. B. Li, W. Ikegami Andersson, B.C. Ke, L.H. Wu, T. Johansson, J. F. Chang, S. Ahmed, Jens Soeren Lange, Y. Nefedov, Y. Wang, T. Liu, L. Koch, R. Kliemt, S. X. Du, X. Liu, Z. L. Dou, A. Khoukaz, L. Fava, Z. H. Qin, M. Y. Dong, K. Schoenning, Q. Y. Li, Y. Gao, F.F. An, W. J. Zhu, X. D. Shi, A. Guskov, J. Y. Zhang, L. K. Li, Y. F. Wang, T. Y. Qi, X.P. Qin, X.S. Kang, G.F. Xu, S. J. Chen, H.B. Liu, V. Rodin, Andrzej Kupsc, S. Qian, Q. An, X.Q. Hao, Niklaus Berger, I.B. Nikolaev, K. Zhang, M. L. Chen, A. Calcaterra, H. B. Li, T. Hussain, X. Tang, S. L. Yang, Junfeng Sun, X. Y. Ma, X. Cai, F. De Mori, A. G. Denig, W. X. Gong, S. Malde, X. B. Ji, Yang Zhang, X. Y. Zhang, Joachim Pettersson, X. L. Wang, Xiang Zhou, I. K. Keshk, Y. X. Xia, X. K. Zhou, H. Liang, Q. Zhou, F.C. Ma, S. S. Sun, J.C. Chen, P.R. Li, P. Larin, Y. K. Heng, J. B. Liu, Z.X. Meng, Yu Lu, H.W. Wen, X. S. Qin, S. Han, H.Y. Sheng, P.L. Wang, C. X. Lin, M. Rump, Y. J. Sun, Yifan Yang, J. F. Hu, X. N. Li, M. Kurth, B. Wang, M. Fritsch, R.M. Wang, M.G. Alekseev, H. Muramatsu, A. N. Zhu, X. H. Sun, Haiping Peng, R. E. Mitchell, D.H. Wei, Ulrich Wiedner, Zhiyong Zhang, J.C. Li, L. Yang, Tao Zhang, M. Himmelreich, G. Y. Tang, F. Cossio, Jie Zhao, Xu Shan, Ke Liu, A. Mustafa, B.S. Zou, X. N. Ma, B.J. Liu, D. X. Lin, Z.L. Hou, H. M. Hu, J. W. Li, Y. T. Tan, W. Gradl, Y. S. Zhu, Yu Zhang, Z. G. Zhao, L. Z. Liao, Y. J. Xiao, G. Mezzadri, D. Y. Wang, H. H. Zhang, Fang Liu, J. W. Zhang, B. Zhong, Z. J. Sun, Yunlong Zhang, S. Maldaner, C.D. Fu, X. H. Mo, Q. Ji, R. Poling, H. L. Jiang, Jianping Zheng, K. Peters, T. J. Min, M. Destefanis, C. F. Redmer, J. D. Lu, D. Bettoni, X. T. Huang, M. H. Ye, G. Rong, M. Kavatsyuk, Q. Zhao, L.Y. Liu, H. Cai, Jacek Biernat, M. Shao, S.P. Wen, L. D. Liu, L. Y. Dong, Z.Y. Deng, Y. P. Guo, Z. P. Zhang, Z.Y. Wang, Zujian Wang, Y. Bai, S. Nakhoul, C. Sowa, Y. B. Zhao, Dahua Zhang, J. Dong, S. Nisar, C. J. Tang, Y. P. Lu, D. Dedovich, Y. Ding, X. Y. Jiang, M. M. Ma, X. L. Luo, K. Begzsuren, W. P. Wang, F. Bianchi, J. V. Bennett, Li Yan, Ziyuan Li, Y. R. Hou, W. Shan, Z. Jiao, D. Y. Liu, Zongyuan Wang, Y. Yuan, Q. Ouyang, S. S. Fang, F. Nerling, Y. B. Liu, J.L. Zhang, Huanhuan Liu, F.E. Maas, Dong E. Liu, X. H. Li, Q. L. Xiu, Xingchao Dai, Research unit Nuclear & Hadron Physics, Energy and Sustainability Research Institute Groni, and Nuclear Energy
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Electron–positron annihilation ,Analytical chemistry ,01 natural sciences ,lcsh:QC1-999 ,High Energy Physics - Experiment ,Luminosity ,NO ,Subatomär fysik ,Astronomi, astrofysik och kosmologi ,Subatomic Physics ,0103 physical sciences ,Mass spectrum ,Astronomy, Astrophysics and Cosmology ,ddc:530 ,Center of mass ,010306 general physics ,lcsh:Physics - Abstract
We report a study of the $e^{+}e^{-} \to D^{+} D^{-} \pi^{+} \pi^{-}$ process using $e^{+}e^{-}$ collision data samples with an integrated luminosity of $2.5\,\rm{fb}^{-1}$ at center-of-mass energies from 4.36 to $4.60 \rm{GeV}$, collected with the BESIII detector at the BEPCII storage ring. The $D_{1}(2420)^+$ is observed in the $D^{+} \pi^{+} \pi^{-}$ mass spectrum. The mass and width of the $D_{1}(2420)^+$ are measured to be $(2427.2\pm 1.0_{\rm stat.}\pm 1.2_{\rm syst.}) \rm{MeV}/c^2$ and $(23.2\pm 2.3_{\rm stat.} \pm2.3_{\rm syst.}) \rm{MeV}$, respectively. The first errors are statistical and the second ones are systematic. In addition, the Born cross sections of the $e^{+}e^{-} \to D_{1}(2420)^+D^- + c.c. \to D^{+} D^{-} \pi^{+} \pi^{-}$ and $e^{+}e^{-} \to \psi(3770) \pi^{+} \pi^{-} \to D^{+} D^{-} \pi^{+} \pi^{-}$ processes are measured as a function of the center-of-mass energy., Comment: Updated version published in PLB
- Published
- 2020
- Full Text
- View/download PDF
36. Observation of ψ(3686)→η′e+e−
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, M. Albrecht, M. Alekseev, A. Amoroso, F.F. An, Q. An, J.Z. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, K. Begzsuren, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J. Chai, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, P.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, W. Cheng, X.K. Chu, G. Cibinetto, F. Cossio, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, P.F. Duan, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Y.G. Gao, Z. Gao, B. Garillon, I. Garzia, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, A.Q. Guo, R.P. Guo, Y.P. Guo, A. Guskov, Z. Haddadi, S. Han, X.Q. Hao, F.A. Harris, K.L. He, X.Q. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Z.L. Huang, T. Hussain, W. Ikegami Andersson, M. Irshad, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, Y. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.S. Kang, M. Kavatsyuk, B.C. Ke, T. Khan, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuessner, A. Kupsc, M. Kurth, W. Kühn, J.S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, J.W. Li, Jin Li, K.J. Li, Kang Li, Ke Li, Lei Li, P.L. Li, P.R. Li, Q.Y. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, C.X. Lin, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, D.Y. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.L. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L.D. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Zhiqing Liu, Y.F. Long, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, X.L. Luo, S. Lusso, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, N.Yu. Muchnoi, H. Muramatsu, A. Mustafa, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, M. Papenbrock, P. Patteri, M. Pelizaeus, J. Pellegrino, H.P. Peng, Z.Y. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, A. Pitka, R. Poling, V. Prasad, H.R. Qi, M. Qi, T. .Y. Qi, S. Qian, C.F. Qiao, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Richter, M. Ripka, A. Rivetti, M. Rolo, G. Rong, Ch. Rosner, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, X.Y. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, X. Shi, J.J. Song, W.M. Song, X.Y. Song, S. Sosio, C. Sowa, S. Spataro, G.X. Sun, J.F. Sun, L. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, Y.T. Tan, C.J. Tang, G.Y. Tang, X. Tang, I. Tapan, M. Tiemens, B. Tsednee, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, Dan Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, Meng Wang, P. Wang, P.L. Wang, W.P. Wang, X.F. Wang, Y. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.Y. Wang, Zongyuan Wang, T. Weber, D.H. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, Y. Xia, D. Xiao, Y.J. Xiao, Z.J. Xiao, Y.G. Xie, Y.H. Xie, X.A. Xiong, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.H. Yang, Y.X. Yang, Yifan Yang, Z.Q. Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, T.J. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yang Zhang, Yao Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, Q. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, Xiaoyu Zhou, Xu Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, B.S. Zou, and J.H. Zou
- Subjects
Dalitz decay ,Nuclear and High Energy Physics ,Meson ,Electron–positron annihilation ,BESIII ,Charmonium ,e+e− Annihilation ,e + e − Annihilation ,01 natural sciences ,Omega ,NO ,law.invention ,e+e−Annihilation ,Nuclear physics ,law ,0103 physical sciences ,010306 general physics ,Collider ,Physics ,010308 nuclear & particles physics ,Generator (category theory) ,Branching fraction ,Pseudoscalar - Abstract
Using a data sample of 448.1 × 10 6 ψ ( 3686 ) events collected with the BESIII detector at the BEPCII collider, we report the first observation of the electromagnetic Dalitz decay ψ ( 3686 ) → η ′ e + e − , with significances of 7.0σ and 6.3σ when reconstructing the η ′ meson via its decay modes η ′ → γ π + π − and η ′ → π + π − η ( η → γ γ ), respectively. The weighted average branching fraction is determined to be B ( ψ ( 3686 ) → η ′ e + e − ) = ( 1.90 ± 0.25 ± 0.11 ) × 10 − 6 , where the first uncertainty is statistical and the second systematic.
- Published
- 2018
37. Fresh and cryopreserved semen, minerals, hormones and health characteristics in response to reciprocal combinations of vitamin D3 and 25-hydroxyvitamin D3 in the mature and prepubertal Holstein bulls' diet
- Author
-
L.S. Wang, Guanglei Liu, Zhifu Zu, Xing-Yi Zhang, Hongjian Xu, Chengrui Zhang, Guanzhi Feng, Liu Yan, Cong Lin, and Yonggen Zhang
- Subjects
Vitamin ,endocrine system ,Antioxidant ,urogenital system ,Blood biochemistry ,animal diseases ,medicine.medical_treatment ,Semen ,Biology ,Cryopreservation ,chemistry.chemical_compound ,fluids and secretions ,Animal science ,chemistry ,Prepuberty ,medicine ,Animal Science and Zoology ,Dry matter ,reproductive and urinary physiology ,Hormone - Abstract
The objective of this study was to evaluate the effect of supplementation of 25-hydroxyvitamin D3 (25(OH)VD3) instead of vitamin D3 on the quality and seminal plasma antioxidant indicators of fresh and cryopreserved semen, serum minerals, vitamin D3 status, hormone levels, blood biochemistry, antioxidant and immune function in different age of bulls. Thirty-two Holstein bulls (16 bulls aged 24–36 months and weighted 727 ± 99.0 kg; 16 bulls aged 12 months and weighted 332 ± 24.9 kg) randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement with 2 sources of vitamin D3 (vitamin D3 or 25(OH)VD3) fed at 300 IU/kg dry matter intake and two different age of bull (maturity or prepuberty) through a 60 day period. Bulls were tied in individual pens without access to sunlight. Bulls fed 25(OH)VD3 had greater semen concentration (P = 0.03), sperms motility (P = 0.02), viability (P
- Published
- 2021
38. Hydrogen and syngas production by catalytic biomass gasification
- Author
-
H. Ahmadi, Mohammad Javad Esfahani, L.S. Wang, W.X. Peng, Sylvain Fremaux, and Mojtaba Mirzaee
- Subjects
Materials science ,Hydrogen ,Waste management ,Renewable Energy, Sustainability and the Environment ,020209 energy ,Energy Engineering and Power Technology ,chemistry.chemical_element ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Catalysis ,Cracking ,Fuel Technology ,Nuclear Energy and Engineering ,chemistry ,Chemical engineering ,Fluidized bed ,0202 electrical engineering, electronic engineering, information engineering ,0210 nano-technology ,Energy source ,Pyrolysis ,Hydrogen production ,Syngas - Abstract
Air-steam gasification of wood residue was explored in a research scale fluidized bed. Catalytic activity of two different kinds of metal catalysts (Ni/CeO2/Al2O3) with various catalyst loadings (20, 30, and 40%) was also investigated at various residence time (20, 40, and 60 min) and gasification temperature (750, 825, and 900 °C). Non-catalytic experiments were also carried out to determine the optimum conditions for tar cracking and hydrogen/syngas production. Results were revealed that the high temperature (∼900 °C) and high catalyst loading (∼40%) are favorable for tar cracking and high-purity hydrogen production. It was also found that for a residence time of 60 min, the tar cracking at the presence of Ni/CeO2/Al2O3 is 196% more than that of the case without any catalyst, while at the presence of Ni/Al2O3 it drops to 162%. Finally, the experiments were showed that Ni/CeO2/Al2O3 is more suitable for biomass conversion and hydrogen production than Ni/Al2O3.
- Published
- 2017
39. Measurement of branching fractions for D meson decaying into $ϕ$ meson and a pseudoscalar meson
- Author
-
J. Zhuang, M. X. Luo, Yuyi Wang, Y. Hu, Xu Zhou, I. Boyko, B.J. Liu, Z. G. Zhao, B. Zhong, L. Z. Liao, H. H. Zhang, Fang Liu, Z. J. Sun, H. J. Li, S. Maldaner, Yunlong Zhang, A. Calcaterra, H. B. Li, A. G. Denig, Q. Zhou, H.Y. Sheng, Michael Papenbrock, F. Yan, Bingxuan Liu, G. Wilkinson, M.G. Alekseev, H. Muramatsu, A. N. Zhu, Ulrich Wiedner, Tao Zhang, Xu Shan, W. S. Cheng, Yao Zhang, S.H. Zhu, A. Gilman, B.S. Zou, X. N. Ma, J. B. Jiao, J.F. Qiu, X. A. Xiong, M. Savrié, H. Liang, L. J. Wu, W. C. Yan, C. Sowa, Y. B. Zhao, M. Qi, Z.T. Sun, Q. Ji, Dahua Zhang, J. G. Lu, Guang Zhao, R. Poling, Xinying Song, A. Sarantsev, F. Li, K. Peters, H. L. Jiang, Jianping Zheng, O. Bakina, K. Liu, Y. J. Mo, M. Kuessner, M. Kuemmel, Matthew Glenn Kurth, G.R. Liao, I. Garzia, Q. Liu, G. Felici, W. Imoehl, A. Zhemchugov, I. Uman, P. Patteri, A. A. Zafar, Q. Gao, Xujin Yuan, J. Dong, M. Fritsch, R.M. Wang, H. J. Yang, Jens Soeren Lange, C. Q. Feng, M. Kavatsyuk, J. Y. Liu, Ke Liu, L.L. Wang, Xingguo Li, X.S. Kang, B. Y. Zhang, L. Zhao, Q. A. Malik, T. Liu, L. Koch, Xiang-Gan Liu, K. H. Rashid, P. W. Luo, H.X. Yang, S. B. Liu, T. Hu, Y.X. Yang, Zongyuan Wang, J. J. Xu, W.G. Li, Q. Zhao, L.Y. Liu, M. Albrecht, L. Fava, T. J. Min, X.Q. Hao, Y. K. Sun, Q.P. Ji, Xiao-Rui Lyu, S. Nisar, L. M. Gu, M. G. Zhao, Y. H. Yang, X. X. Ma, J. Zhu, M.H. Ye, L. Xu, L. P. Zhou, C. J. Tang, L. L. Ma, A. Guskov, W. D. Li, O.B. Kolcu, J.S. Huang, Y. M. Ma, H. J. Lu, A. Yuncu, B. T. Tsednee, Xiaoyu Zhou, L. Gong, Y. Zhang, X. F. Cui, S. J. Chen, X. Y. Shen, S. J. Zhao, T. Y. Qi, J.H. Yin, Y. Schelhaas, Libo Guo, F. Weidner, Yang Zhang, Y. H. Xie, L. K. Li, Y. P. Lu, Shan Jin, Gang Chen, S. Spataro, L. G. Xia, Y. Yuan, J. Fang, Cui Li, D. Dedovich, Y. Fu, Q. J. Xu, M. Destefanis, J. Z. Fan, A. Amoroso, J.L. Ping, X. P. Xu, M. Maggiora, W. B. Yan, T. Y. Xing, Y. G. Gao, H.B. Liu, V. Rodin, Xiongfei Wang, Q. Ouyang, Xuanhong Lou, Viktor Thorén, Nasser Kalantar-Nayestanaki, D. Y. Chen, J. Min, Y. X. Xia, B.X. Zhang, H. R. Qi, Q. Q. Song, Y. H. Yan, C. Morales Morales, Yue Pan, P. X. Shen, C.X. Liu, F.H. Liu, X. B. Ji, K.Y. Liu, S.A. Cetin, Ch. Rosner, A. Dbeyssi, Z. G. Wang, M. Rolo, Lei Zhao, H. Y. Zhang, G. Li, L.H. Wu, J. W. Zhao, S. Pacetti, S. S. Fang, F. Nerling, T. Yu, Z. Wu, X. K. Zhou, H.W. Wen, A. Q. Guo, M.N. Achasov, M. Shao, G. S. Huang, Evelina Gersabeck, Y. Fang, Z. Y. You, Z. A. Zhu, S. F. Zhang, Y. C. Zhu, J. Libby, N. Huesken, Y. Ding, W. Kühn, X.P. Qin, M. Greco, T. Weber, J. Y. Zhang, Magnus Wolke, A. Pitka, G. Cibinetto, X. Wang, Ke Li, Lei Li, B. Kopf, X. Y. Jiang, Zhiqing Zhang, K. L. He, C. F. Redmer, J. D. Lu, M. Y. Dong, Y. F. Liang, W. J. Zhu, F. De Mori, T. Held, I.B. Nikolaev, Y. B. Liu, Meng Wang, D. Bettoni, M. Himmelreich, G. Y. Tang, Y.T. Gu, D. P. Jin, M. Richter, R. Farinelli, H. M. Liu, Z. Ning, C. P. Shen, M. M. Ma, Y. K. Heng, Muhammad Irshad, S. Y. Xiao, X. D. Shi, X. T. Huang, Y. H. Zheng, F. Cossio, Cong-Feng Qiao, J. Bloms, Y.J. Lin, G. Rong, M. Z. Wang, K. Schoenning, Q. Y. Li, Y. Gao, I. Denysenko, Y. Jin, Junfeng Sun, J.L. Zhang, M. Bertani, K. Goetzen, C. Z. Yuan, N. Cao, P. Larin, L.S. Wang, Niklaus Berger, N. Qin, D.H. Wei, F.F. An, F.C. Ma, Jie Zhao, D. X. Lin, Z.L. Hou, Huanhuan Liu, S. S. Sun, J.C. Chen, H. M. Hu, J.H. Zou, A. Mangoni, P.R. Li, X. S. Qin, Jimin Zhao, Y.Z. Sun, S. Han, Xiaozhong Huang, R. Kliemt, Stephen Lars Olsen, B. Wang, T. Lenz, D. M. Li, Y. H. Zhang, Jie Yu, P. L. Li, M. Kurth, Zhenjun Xiao, X. L. Ji, R.P. Guo, G. Mezzadri, J. W. Zhang, F. A. Harris, W. L. Chang, S.P. Wen, A. Mustafa, S. Marcello, R. E. Mitchell, G. F. Cao, J. Chai, G.F. Xu, Andrzej Kupsc, Q.M. Ma, F.E. Maas, S. Qian, Q. An, Y. Zeng, M. L. Chen, H. Leithoff, C.C. Zhang, Y. S. Zhu, F. Feldbauer, K. J. Zhu, Yu Zhang, X D Shi, K. Zhang, Zhiqing Liu, Feng Liu, J. W. Li, M. Pelizaeus, N. Yu. Muchnoi, Y. J. Xiao, X. Y. Zhang, M. Ablikim, J. V. Bennett, Li Yan, Ziyuan Li, W. Shan, Y. J. Mao, Y.Q. Wang, T. Johansson, J. F. Chang, X. Liu, K. Zhu, X. L. Wang, X. L. Gao, Dong E. Liu, Y. G. Xie, S. Ahmed, X. H. Li, J. B. Liu, Q. L. Xiu, Z. Jiao, X. Cai, Li Zhou, Y. B. Chen, Xiaofeng Zhu, J. Z. Zhang, Xingchao Dai, I. Balossino, S. X. Du, J.C. Li, C. Dong, J.Y. Zhang, S. Sosio, Z. L. Dou, Y. J. Sun, Yifan Yang, J. J. Song, R. Baldini Ferroli, L. Sun, X. L. Luo, L. Yang, L. Zhang, R. Kappert, Joachim Pettersson, Z.Y. Deng, Y. P. Guo, K. Begzsuren, W. P. Wang, F. Bianchi, Z. P. Zhang, C.D. Fu, B. Garillon, T.C. Zhao, Huihui Liu, Xiang Zhou, I. K. Keshk, J. F. Hu, S. Gu, X. H. Mo, X. Tang, C. X. Lin, S. L. Yang, Z.Y. Wang, Zujian Wang, M. Rump, Z.X. Meng, Yu Lu, D. Y. Liu, M. H. Ye, J. G. Messchendorp, Y. Bai, J. P. Dai, S. Nakhoul, Y. T. Tan, W. Gradl, Z. Q. Yang, Zhiyong Zhang, Z.P. Mao, H. Cai, C. W. Wang, G.X. Sun, D. Y. Wang, Tao Luo, B. X. Yu, H. S. Chen, G. Chelkov, H. L. Dai, Jacek Biernat, Y. Nefedov, A. Khoukaz, S. Malde, P.L. Wang, X. N. Li, Haiping Peng, Ke Wang, Z. H. Qin, S. Lusso, H.L. Ma, B. L. Wang, Z. A. Liu, L. Y. Dong, V. Prasad, Y. Ban, P. Weidenkaff, F. H. Heinsius, X. R. Zhou, Cheng Li, F. F. Sui, M. H. Gu, R. Kiuchi, C. X. Yu, Y.T. Liang, B. Zheng, R. G. Ping, A. Rivetti, Z. Gao, J. Q. Zhang, S. L. Niu, F. Y. Li, Y. F. Long, K. Ravindran, Yi Zhang, S. Q. Qu, Z. B. Li, W. Ikegami Andersson, B.C. Ke, C.L. Luo, P. Kiese, Yuan Hou, R. A. Briere, X. S. Jiang, R. X. Yang, Wei Xu, P. Adlarson, Y. F. Wang, T. Hussain, X. Y. Ma, W. X. Gong, X. H. Sun, and L. Lavezzi
- Subjects
Nuclear and High Energy Physics ,BESIII ,Branching fractions ,D meson ,Hadronic decays ,Meson ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics - Experiment ,Branching (polymer chemistry) ,01 natural sciences ,Pseudoscalar meson ,NO ,Subatomär fysik ,D Meson ,0103 physical sciences ,Subatomic Physics ,Hadronic Decays ,ddc:530 ,010306 general physics ,Astrophysics::Galaxy Astrophysics ,Physics ,010308 nuclear & particles physics ,Branching fraction ,Branching Fractions ,lcsh:QC1-999 ,Isospin ,High Energy Physics::Experiment ,Atomic physics ,lcsh:Physics - Abstract
The four decay modes D0→ϕπ0, D0→ϕη, D+→ϕπ+, and D+→ϕK+ are studied by using a data sample taken at the centre-of-mass energy s=3.773 GeV with the BESIII detector, corresponding to an integrated luminosity of 2.93 fb$^{−1}$. The branching fractions of the first three decay modes are measured to be B(D0→ϕπ0)=(1.168±0.028±0.028)×10−3, B(D0→ϕη)=(1.81±0.46±0.06)×10−4, and B(D+→ϕπ+)=(5.70±0.05±0.13)×10−3, respectively, where the first uncertainties are statistical and the second are systematic. In addition, the upper limit of the branching fraction for D+→ϕK+ is given to be 2.1×10−5 at the 90% confidence level. The ratio of B(D0→ϕπ0) to B(D+→ϕπ+) is calculated to be (20.49±0.50±0.45)%, which is consistent with the theoretical prediction based on isospin symmetry between these two decay modes.
- Published
- 2019
40. Dietary linseed oil in the maternal diet affects immunoglobulins, tissue fatty acid composition and expression of lipid metabolism-related genes in piglets
- Author
-
Anshan Shan, T. Liu, Ning Wang, X. L. Chen, L.S. Wang, Baoming Shi, M. L. Tian, and X. W. Zhang
- Subjects
0301 basic medicine ,Immunoglobulin A ,Linseed Oil ,food.ingredient ,Swine ,animal diseases ,Immunoglobulins ,Immunoglobulin G ,03 medical and health sciences ,fluids and secretions ,Animal science ,food ,Food Animals ,Linseed oil ,Pregnancy ,Lactation ,medicine ,Animals ,Prenatal Nutritional Physiological Phenomena ,chemistry.chemical_classification ,030109 nutrition & dietetics ,biology ,Fatty Acids ,0402 animal and dairy science ,food and beverages ,Lipid metabolism ,04 agricultural and veterinary sciences ,Lipid Metabolism ,Animal Feed ,040201 dairy & animal science ,Diet ,Fatty acid synthase ,medicine.anatomical_structure ,Animals, Newborn ,Gene Expression Regulation ,Biochemistry ,chemistry ,Dietary Supplements ,biology.protein ,Colostrum ,Animal Nutritional Physiological Phenomena ,Female ,Animal Science and Zoology ,Polyunsaturated fatty acid - Abstract
Summary This experiment investigated the effects of supplementing the maternal diet with linseed oil (LSO) and soya bean oil (SBO) on immunoglobulins, the fatty acid composition and hepatic expression of lipid metabolism-related genes in piglets. Multiparous sows (twenty-four per diet) were fed on diets containing a supplement of either SBO or LSO during last week of gestation and lactation. The results indicated that supplementation of maternal diet with LSO could improve the weaning weight of piglets and average daily gain (ADG) (p
- Published
- 2016
41. Solvent Effect on the Fabrication and Mechanical Behavior of Sandwich Structured Poly(vinyl alcohol)/Carbon-nanofiber Buckypaper Composite
- Author
-
Li Sun, M. Lu, Z.X. Bu, L.S. Wang, and Sicong Sun
- Subjects
chemistry.chemical_classification ,Vinyl alcohol ,Nanocomposite ,Materials science ,Fabrication ,Polymers and Plastics ,Carbon nanofiber ,Composite number ,Buckypaper ,02 engineering and technology ,Polymer ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Materials Chemistry ,Ceramics and Composites ,Solvent effects ,Composite material ,0210 nano-technology - Abstract
A solution-casting method has been developed to fabricate polymer/carbon nanofiber (CNF) buckypaper composite/polymer sandwich structures. Such layered nanocomposites can take advantage of the buckypaper's mechanical reinforcement effect and to introduce multi-functionalities including dynamic damping, electrical/thermal conductance and electromechanical responses. By controlling the solution chemistry, the structure, morphology and thus the performances of the composite samples were effectively manipulated. Dimethyl sulfoxide (DMSO) as a solvent was found to greatly enhance the wettability of polyvinyl alcohol (PVA) to carbon nanofiber as compared to water, and it increased polymer penetration in the buckypaper. It was also observed that PVA formed a surface coating layer surrounding individual CNF which behaved differently from bulk polymer. This intermediate layer played a critical role in determining the static mechanical reinforcement effect of buckypaper and further affected the composite dynamic damping characteristics. Incorporating carbon nanofiber buckypaper not only strengthened the PVA static mechanical performance but also lowered the loss modulus and tan d. By introducing the controlled structure of such composite sandwiches, it is possible to tailor the multi-functionalities targeting specific applications.
- Published
- 2016
42. Magnetic properties of [FeCoSiN/SiN ]18 multilayer thin films for applications in GHz range
- Author
-
Qingshui Xie, L.S. Wang, X.J. Liu, Dong-Liang Peng, Qing Luo, Qingfei Zhang, Feiming Bai, and X.L. Liu
- Subjects
010302 applied physics ,Materials science ,Mechanical Engineering ,Metals and Alloys ,02 engineering and technology ,Coercivity ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ferromagnetic resonance ,Grain size ,Magnetic anisotropy ,Mechanics of Materials ,Electrical resistivity and conductivity ,0103 physical sciences ,Materials Chemistry ,Surface roughness ,Crystallite ,Thin film ,Composite material ,0210 nano-technology - Abstract
[FeCoSiN/SiNx]18 multilayer thin films with different SiNx layer thickness (t) ranging from 0.75 to 4 nm were fabricated by reactive magnetron co-sputtering without applying an external induced magnetic field. The grain size, morphology, electrical properties, and static and dynamic magnetic properties of [FeCoSiN/SiNx]18 multilayer thin films were investigated systematically. The results indicated that SiNx layer thickness had a profound impact on the physical properties of the multilayer thin films. The in-plane uniaxial magnetic anisotropy field (from 114 ± 21 to 163 ± 14 Oe), ferromagnetic resonance frequency (from 4.09 to 4.64 GHz) and resistivity (from 188 to 333 μΩ cm) could be tailored effectively by adjusting the SiNx layer thickness from 0.75 to 4 nm. Moreover, when the SiNx layer thickness reached 2 nm, the continuous growth of FeCoSiN polycrystalline layers was to be interrupted completely and it would result in a minimum grain size of 4.9 ± 0.7 nm. The root mean square roughness of multilayer thin films also acquired a minimum value of 0.8 nm and the corresponding easy axis coercivity achieved a minimum value of 2.8 ± 0.1 Oe.
- Published
- 2016
43. Anomalous Hall effect in monodisperse CoO-coated Co nanocluster-assembled films
- Author
-
Junbao Wang, Dong-Liang Peng, Deqian Zeng, Wenbo Mi, Yuanzhi Chen, and L.S. Wang
- Subjects
Materials science ,Dispersity ,Analytical chemistry ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,Volumetric flow rate ,Electrical resistivity and conductivity ,Hall effect ,Quantum mechanics ,0103 physical sciences ,Orders of magnitude (data) ,Oxygen gas ,Thin film ,010306 general physics ,0210 nano-technology ,Scaling - Abstract
We have fabricated the uniform CoO-coated Co nanocluster-assembled films at various oxygen gas flow rates (fO) by using a plasma-gas-condensation method and studied their anomalous Hall effect (AHE). The longitudinal resistivity (ρxx) of all the films exhibits a minimum at a temperature of Tmin. With the increase of fO, Tmin shifts from 150 to 300 K and has no longer change when fO is up to 0.10 sccm. The saturated AHE resistivity ( ρ x y A ) presents a near linear increase as fO rises. The anomalous Hall coefficient (Rs) at fO=0.20 sccm is 4.9×10−9 Ω cm G−1 at 300 K, which is almost three orders of magnitude larger than bulk Co. Moreover, at fO=0 and 0.05 sccm, the scaling exponents γ=1.2 and 1.24 in ρ x y A ∝ ρ x x γ are obtained in the region of 325–375 K; At fO=0.10, 0.15 and 0.20 sccm, ρ x y A decreases with the increase of ρxx on a double-logarithmic scale, following a new scaling relation of log ( ρ x y A / ρ x x ) = a 0 + b 0 log ρ x x in two temperature ranges of 5–300 K and 325–375 K.
- Published
- 2016
44. A Successful Case of Liver Transplantation in an Adult With Congenital Hepatic Arteriovenous Fistulae Associated Cardiac Dilatation and Heart Failure
- Author
-
Ke Wang, Xiaoliang Xu, Guoqiang Li, Zhongming Tan, L.S. Wang, Xingxu Huang, Wei Zhang, and Beicheng Sun
- Subjects
medicine.medical_specialty ,medicine.medical_treatment ,Liver transplantation ,Gastroduodenal artery ,Hepatic Artery ,Celiac artery ,medicine.artery ,medicine ,Humans ,Hepatic artery embolization ,Vein ,Heart Failure ,Transplantation ,medicine.diagnostic_test ,business.industry ,Portal Vein ,Middle Aged ,medicine.disease ,Embolization, Therapeutic ,Surgery ,Liver Transplantation ,medicine.anatomical_structure ,Heart failure ,Angiography ,Arteriovenous Fistula ,Portal hypertension ,Female ,business - Abstract
Congenital hepatic arteriovenous fistulae (CHAVF) are direct communications between the hepatic artery and portal vein or hepatic vein. Clinical symptoms of CHAVF depend mainly on the location, duration, and blood flow volume of the fistulae, which are manifested by portal hypertension, hepatic fibrosis, cardiac enlargement, and eventually heart failure. Here we report a female patient aged 54 who was first admitted to our hospital due to recurrent chest tightness and palpitations in March 2014. Metoprolol tartrate and diltiazem hydrochloride were prescribed to control the symptom since nothing unusual was found in coronary angiography and abdominal ultrasound. Until April 2015, the patient's syndrome relapsed and abdominal computed tomography angiography and digital subtraction angiography revealed diffuse arteriovenous fistulae between the branches of hepatic artery and vein. Subsequently, 3 attempts at hepatic arterial embolization were performed; however, her abdominal pain aggravated and her heart discomfort could not be relieved eventually. Therefore, orthotopic liver transplantation as the salvage treatment was performed using a hepatic graft from a 19-year-old cardiac-death donor performed on January 1, 2017. Upon operation, the enlarged right hepatic artery whose diameter was approximately 1.5 cm in this recipient. And we also demonstrated a novel manner that the graft's celiac artery patch was anastomosed to the recipient's proper hepatic artery and gastroduodenal artery patch, which could reduce the blood flow successfully. The patient recovered uneventfully and was discharged home on the postoperatively 15th day. Since her liver transplantation, she has not complained of cardiac discomfort and abdominal pain, and her heart size has returned to normal on echocardiography. The hepatic artery peak velocity reduced to normal and the heart shadow also recovered. Nevertheless, for complex and diffuse intrahepatic vascular fistulae after failed hepatic artery embolization, liver transplantation should be strongly considered as the definitive treatment of choice.
- Published
- 2018
45. Measurement of singly Cabibbo-suppressed decays D-0 → π0π0π0, π0π0η, π0ηη and ηηη
- Author
-
M. Ablikim, M.N. Achasov, S. Ahmed, M. Albrecht, A. Amoroso, F.F. An, Q. An, J.Z. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D.W. Bennett, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, J.M. Bian, F. Bianchi, E. Boger, I. Boyko, R.A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G.F. Cao, S.A. Cetin, J. Chai, J.F. Chang, G. Chelkov, G. Chen, H.S. Chen, J.C. Chen, M.L. Chen, P.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, X.K. Chu, G. Cibinetto, H.L. Dai, J.P. Dai, A. Dbeyssi, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, Z.L. Dou, S.X. Du, P.F. Duan, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C.Q. Feng, E. Fioravanti, M. Fritsch, C.D. Fu, Q. Gao, X.L. Gao, Y. Gao, Y.G. Gao, Z. Gao, B. Garillon, I. Garzia, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, A.Q. Guo, R.P. Guo, Y.P. Guo, Z. Haddadi, S. Han, X.Q. Hao, F.A. Harris, K.L. He, X.Q. He, F.H. Heinsius, T. Held, Y.K. Heng, T. Holtmann, Z.L. Hou, H.M. Hu, T. Hu, Y. Hu, G.S. Huang, J.S. Huang, X.T. Huang, X.Z. Huang, Z.L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, D.P. Jin, S. Jin, Y. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, T. Khan, A. Khoukaz, P. Kiese, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuessner, M. Kuhlmann, A. Kupsc, W. Kühn, J.S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Leng, C. Li, Cheng Li, D.M. Li, F. Li, F.Y. Li, G. Li, H.B. Li, H.J. Li, J.C. Li, Jin Li, K.J. Li, Kang Li, Ke Li, Lei Li, P.L. Li, P.R. Li, Q.Y. Li, W.D. Li, W.G. Li, X.L. Li, X.N. Li, X.Q. Li, Z.B. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, D.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L.D. Liu, P.L. Liu, Q. Liu, S.B. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Zhiqing Liu, Y.F. Long, X.C. Lou, H.J. Lu, J.G. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, T. Ma, X.N. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, Q.A. Malik, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, J. Min, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, C. Morales Morales, N.Yu. Muchnoi, H. Muramatsu, A. Mustafa, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Niu, X.Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, M. Papenbrock, P. Patteri, M. Pelizaeus, J. Pellegrino, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, A. Pitka, R. Poling, V. Prasad, H.R. Qi, M. Qi, S. Qian, C.F. Qiao, N. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, K.H. Rashid, C.F. Redmer, M. Richter, M. Ripka, M. Rolo, G. Rong, Ch. Rosner, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.Y. Sheng, J.J. Song, W.M. Song, X.Y. Song, S. Sosio, C. Sowa, S. Spataro, G.X. Sun, J.F. Sun, L. Sun, S.S. Sun, X.H. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.J. Sun, Z.T. Sun, C.J. Tang, G.Y. Tang, X. Tang, I. Tapan, M. Tiemens, B. Tsednee, I. Uman, G.S. Varner, B. Wang, B.L. Wang, D. Wang, D.Y. Wang, Dan Wang, K. Wang, L.L. Wang, L.S. Wang, M. Wang, Meng Wang, P. Wang, P.L. Wang, W.P. Wang, X.F. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.G. Wang, Z.Y. Wang, Zongyuan Wang, T. Weber, D.H. Wei, P. Weidenkaff, S.P. Wen, U. Wiedner, M. Wolke, L.H. Wu, L.J. Wu, Z. Wu, L. Xia, Y. Xia, D. Xiao, H. Xiao, Y.J. Xiao, Z.J. Xiao, Y.G. Xie, Y.H. Xie, X.A. Xiong, Q.L. Xiu, G.F. Xu, J.J. Xu, L. Xu, Q.J. Xu, Q.N. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Y.H. Yan, H.J. Yang, H.X. Yang, L. Yang, Y.H. Yang, Y.X. Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, J.S. Yu, C.Z. Yuan, Y. Yuan, A. Yuncu, A.A. Zafar, Y. Zeng, Z. Zeng, B.X. Zhang, B.Y. Zhang, C.C. Zhang, D.H. Zhang, H.H. Zhang, H.Y. Zhang, J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, K. Zhang, L. Zhang, S.Q. Zhang, X.Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yang Zhang, Yao Zhang, Yu Zhang, Z.H. Zhang, Z.P. Zhang, Z.Y. Zhang, G. Zhao, J.W. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, T.C. Zhao, Y.B. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, J. Zhu, K. Zhu, K.J. Zhu, S. Zhu, S.H. Zhu, X.L. Zhu, Y.C. Zhu, Y.S. Zhu, Z.A. Zhu, J. Zhuang, B.S. Zou, J.H. Zou, and Research unit Nuclear & Hadron Physics
- Subjects
Nuclear and High Energy Physics ,Electron–positron annihilation ,Analytical chemistry ,01 natural sciences ,NO ,Luminosity ,Subatomär fysik ,Hadronic decays ,E(+)E(-) ,0103 physical sciences ,Subatomic Physics ,BESIII ,Branching fractions ,D0 meson ,ddc:530 ,010306 general physics ,Nuclear Experiment ,Physics ,D 0 meson ,010308 nuclear & particles physics ,Branching fraction ,lcsh:QC1-999 ,D-0 meson ,D0meson ,High Energy Physics::Experiment ,COUPLED-CHANNEL ANALYSIS ,lcsh:Physics - Abstract
Physics letters / B B 781, 368 - 375 (2018). doi:10.1016/j.physletb.2018.04.017, Using a data sample of $e^+e^-$ collision data corresponding to an integrated luminosity of 2.93 $fb^{-1}$ collected with the BESIII detector at a center-of-mass energy of $\sqrt{s}= 3.773~GeV$,we search for the singly Cabibbo-suppressed decays $D^{0}\to\pi^{0}\pi^{0}\pi^{0}$, $\pi^{0}\pi^{0}\eta$, $\pi^{0}\eta\eta$ and $\eta\eta\eta$ using the double tag method. The absolute branching fractions are measured to be $\mathcal{B}(D^{0}\to\pi^{0}\pi^{0}\pi^{0}) = (2.0 \pm 0.4 \pm 0.3)\times 10^{-4}$, $\mathcal{B}(D^{0}\to\pi^{0}\pi^{0}\eta) = (3.8 \pm 1.1 \pm 0.7)\times 10^{-4}$ and $\mathcal{B}(D^{0}\to\pi^{0}\eta\eta) = (7.3 \pm 1.6 \pm 1.5)\times 10^{-4}$ with the statistical significances of $4.8\sigma$, $3.8\sigma$ and $5.5\sigma$, respectively, where the first uncertainties are statistical and the second ones systematic. No significant signal of $D^{0}\to\eta\eta\eta$ is found, and the upper limit on its decay branching fraction is set to be $\mathcal{B}(D^{0}\to\eta\eta\eta) < 1.3 \times 10^{-4}$ at the $90\%$ confidence level., Published by North-Holland Publ., Amsterdam
- Published
- 2018
46. The integrin-associated signal transducer cd47 modulates radiosensitivity by cancer stem cell regulation and emt deactivation in oral squamous cell carcinoma cells
- Author
-
P.Y. Chu, Oluwaseun Adebayo Bamodu, M. Hsiao, L.S. Wang, C.S. Lin, M.H. Chien, C.T. Yeh, S. Pai, and J.T. Tsai
- Subjects
biology ,business.industry ,CD47 ,Integrin ,Signal ,Transducer ,Otorhinolaryngology ,Cancer stem cell ,Cancer research ,biology.protein ,Medicine ,Surgery ,Basal cell ,Radiosensitivity ,Oral Surgery ,business - Published
- 2019
47. Effect of experiment parameters on the structure and magnetic properties of NiZn-ferrite films
- Author
-
X.L. Liu, B.B. Yuan, Junbao Wang, S.J. Nie, Qing Luo, Yuechao Chen, Guanghui Yue, Lei Xu, L.S. Wang, and Dong-Liang Peng
- Subjects
Grain growth ,Crystallinity ,Nuclear magnetic resonance ,Materials science ,Sputtering ,Annealing (metallurgy) ,Ferrite (magnet) ,General Materials Science ,Thin film ,Coercivity ,Composite material ,Condensed Matter Physics ,Grain size - Abstract
NiZn-ferrite thin films were deposited by radio frequency magnetron sputtering. The effects of sputtering pressure, substrate temperature, and annealing temperature on the structure and magnetic properties of the NiZn-ferrite thin films were investigated. The results revealed that the lower sputtering pressure was beneficial for the crystallization and grain growth of the NiZn-ferrite films, and the saturation magnetization and coercivity of the films monotonously decreased with increasing the sputtering pressure. Moreover, it was also suggested that a higher substrate temperature could improve the crystallinity and saturation magnetization of the thin films. Additionally, the saturation magnetization monotonously increased with increasing the annealing temperature, while the coercivity exhibited a minimum at an annealing temperature of about 600 °C. The change of saturation magnetization and coercivity as a function of sputtering pressure, substrate temperature and annealing temperature could be attributed to the varied crystallinity, grain size, cation distribution and the intrinsic stress of the films.
- Published
- 2015
48. Effects of dietary electrolyte balance on the performance, plasma biochemistry parameters and immunoglobulin of sows during late gestation and lactation
- Author
-
L.S. Wang, X.L. Chen, S.Y. Cheng, Anshan Shan, and B.M. Shi
- Subjects
Immunoglobulin A ,biology ,animal diseases ,food and beverages ,Urine ,chemistry.chemical_compound ,medicine.anatomical_structure ,chemistry ,Biochemistry ,Lactation ,biology.protein ,medicine ,Weaning ,Colostrum ,Gestation ,Animal Science and Zoology ,Composition (visual arts) ,Lactose - Abstract
An experiment was conducted to investigate the effects of dietary electrolyte balance (dEB) on the performance, urine pH, plasma biochemistry parameters, milk composition and immunoglobulin of sows during late gestation and lactation. Forty-eight sows (Landrace × Large white, mean parity 4.1 ± 1.75) were randomly allocated to four dietary treatments, with twelve replicates per treatment and one sow per replicate according to body weight and parity number. The dietary treatments were with dEB values of −100, 0, 162 (control group), and 300 mEq/kg from day 90 of gestation to farrowing, transitioning to −100, 0, 198 (control group), and 300 mEq/kg dEB, respectively, throughout the subsequent 21 days of lactation. Dietary electrolyte balance values were obtained by manipulating dietary sodium (Na) and chloride (Cl) levels. Calcium (Ca) and phosphorus (P) concentrations were held constant across experimental diets. Blood and urine samples were collected on day 107 of gestation, day of farrowing and weaning (day 21 of lactation). The colostrum and milk samples were obtained on day 0 and day 14 of lactation, respectively. The results showed that average daily feed intake (ADFI) of lactating sows was lower in sows fed a –100 mEq/kg diet compared with the other three groups (P 0.05) among dietary treatments. Urine pH values were lower (P 0.05). The percentages of protein, lactose and fat in the colostrum and milk were similar among dietary treatments (P>0.05). The immunoglobulin in plasma, colostrum and milk was higher in sows fed −100 or 0 mEq/kg diet compared with the control group (P
- Published
- 2015
49. Influence of total film thickness on high-frequency magnetic properties of the [FeCoSiN/SiNx]n multilayer thin films
- Author
-
Qing Luo, Lei Xu, L.S. Wang, Rui Xu, Jinxiao Wang, C.Y. Zou, X.L. Liu, Dong-Liang Peng, and B.B. Yuan
- Subjects
Materials science ,Magnetometer ,business.industry ,Sputter deposition ,Condensed Matter Physics ,Magnetic hysteresis ,Ferromagnetic resonance ,Electronic, Optical and Magnetic Materials ,law.invention ,Magnetic field ,Magnetic anisotropy ,Optics ,law ,Permeability (electromagnetism) ,Composite material ,Thin film ,business - Abstract
[FeCoSiN/SiNx]n multilayer thin films with different number of layers were fabricated by alternating magnetron sputtering at room temperature with no external magnetic field applied on substrates. A well-defined laminated structure consisting of 7 nm FeCoSiN magnetic layer and 2 nm SiNx insulating layer was observed by transmission electron microscopy (TEM). The static magnetic hysteresis loops of the [FeCoSiN/SiNx]n multilayer thin films measured by vibrating sample magnetometer (VSM) presented an obvious in-plane uniaxial magnetic anisotropy. The dynamic magnetic performance of the [FeCoSiN/SiNx]n multilayer films was studied by vector network analyzer and LLG equation. The results indicated that the total film thickness has slightly impact on the high-frequency magnetic performance of the multilayer thin films. When the total thickness of the [FeCoSiN/SiNx]n multilayer thin films increased to micron level, they could still maintain encouraging high-frequency magnetic properties and electrical property: the ferromagnetic resonance frequency fr=3.74 GHz, real permeability µ′=93.73, and electrical resistivity ρ=196 µΩ cm.
- Published
- 2015
50. Effects of conjugated linoleic acid or betaine on the growth performance and fatty acid composition in backfat and belly fat of finishing pigs fed dried distillers grains with solubles
- Author
-
Hong-Bao Wang, Anshan Shan, L.S. Wang, Zhan Shi, B.M. Shi, Binchao Su, and R. Gao
- Subjects
Swine ,Conjugated linoleic acid ,SF1-1100 ,conjugated linoleic acid ,Distillers grains ,chemistry.chemical_compound ,Iodine value ,Betaine ,fatty acid composition ,Animals ,Linoleic Acids, Conjugated ,Food science ,Monounsaturated fatty acid ,chemistry.chemical_classification ,distillers dried grains with solubles ,Chemistry ,Fatty Acids ,food and beverages ,Animal Feed ,Animal culture ,carcass quality ,Adipose Tissue ,Dietary Supplements ,Saturated fatty acid ,Body Composition ,Animal Nutritional Physiological Phenomena ,lipids (amino acids, peptides, and proteins) ,Animal Science and Zoology ,Fatty acid composition ,Polyunsaturated fatty acid - Abstract
The objectives of this study were to determine the effects of conjugated linoleic acid (CLA) or betaine on the growth performance, carcass characteristics and fatty acid composition in backfat and belly fat of pigs fed distillers dried grains with solubles (DDGS). Thirty-two (60±2 kg) crossbred barrows (Duroc×Landrace×Yorkshine) were assigned to one of four diets randomly: (1) the control diet containing no corn DDGS (control group); (2) the diet containing 30% corn DDGS (DDGS-fed group); (3) the diet containing 30% corn DDGS and 10 g/kg CLA (CLA-fed group); (4) the diet containing 30% corn DDGS and 1 g/kg BET (BET-fed group). The pigs fed DDGS showed that the percentages of C18:2, polyunsaturated fatty acid (PUFA) and iodine value (IV) increased, while C18:1, saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) decreased. Pigs fed the DDGS+CLA or DDGS+betaine diets showed the increased percentage of SFA, and the decreased percentage of C18:2, PUFA and IV. In conclusion, results confirmed that the diets containing 30% DDGS had no detrimental effects on growth performance, but increased the percentage of PUFA and IV and decreased the percentage of SFA and MUFA in the backfat and belly fat. However, supplementation with CLA or BET can part reverse these effects on carcass fat in finishing pigs.
- Published
- 2015
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.