1. The genetic and metabolic signature of oncocytic transformation implicates HIF1alpha destabilization
- Author
-
Enrica Ciccarelli, Antonio Melcarne, Anna Bartoletti-Stella, Lucia Fiammetta Pennisi, Valerio Carelli, Michela Rugolo, Martin Lang, Giovanni Tallini, Anna Ghelli, Nunzio Salfi, Giuseppe Gasparre, Giovanna Cenacchi, Giovanni Romeo, Mariantonietta Capristo, Isabella Morra, Anna Maria Porcelli, Marcella Attimonelli, Andrea Martinuzzi, Claudio Ceccarelli, A.M.Porcelli, A. Ghelli, C. Ceccarelli, M. Lang, G. Cenacchi, M.Capristo, L.F. Pennisi, I.Morra, E.Ciccarelli, A.Melcarne, A., Bartoletti-Stella, N .Salfi, G.Tallini, A.Martinuzzi, V.Carelli, M.Attimonelli, M.Rugolo, G. Romeo, and G.Gasparre .
- Subjects
Mitochondrial DNA ,Cell Respiration ,Succinic Acid ,Mitochondrion ,Biology ,medicine.disease_cause ,DNA, Mitochondrial ,Fumarate Hydratase ,chemistry.chemical_compound ,RNA, Transfer ,Genetics ,medicine ,Humans ,Molecular Biology ,Gene ,Genetics (clinical) ,Mutation ,Homoplasmy ,Electron Transport Complex I ,Protein Stability ,NADH Dehydrogenase ,General Medicine ,Hypoxia-Inducible Factor 1, alpha Subunit ,Phenotype ,Cell Hypoxia ,Succinate Dehydrogenase ,Cell Transformation, Neoplastic ,chemistry ,Cytoplasm ,Head and Neck Neoplasms ,Protein Biosynthesis ,Ketoglutaric Acids ,Reactive Oxygen Species ,DNA - Abstract
We previously showed that disruptive complex I mutations in mitochondrial DNA are the main genetic hallmark of oncocytic tumors of the thyroid and kidney. We here report a high frequency of homoplasmic disruptive mutations in a large panel of oncocytic pituitary and head-and-neck tumors. The presence of such mutations implicates disassembly of respiratory complex I in vivo which in turn contributes to the inability of oncocytic tumors to stabilize HIF1alpha and to display pseudo-hypoxia. By utilizing transmitochondrial cytoplasmic hybrids (cybrids), we induced the shift to homoplasmy of a truncating mutation in the mitochondria-coded MTND1 gene. Such shift is associated with a profound metabolic impairment leading to the imbalance of alpha-ketoglutarate and succinate, the Krebs cycle metabolites which are the main responsible for HIF1alpha stabilization. We conclude that the main hallmarks of oncocytic transformation, namely the occurrence of homoplasmic disruptive mutations and complex I disassembly, may explain the benign nature of oncocytic neoplasms through lack of HIF1alpha stabilization.
- Published
- 2009