1. Thermal conductivity of partially graphitized biocarbon obtained by carbonization of medium-density fiberboard in the presence of a Ni-based catalyst
- Author
-
B. I. Smirnov, Joaquín Ramírez-Rico, T. S. Orlova, L. S. Parfen’eva, A. Gutierrez-Pardo, Universidad de Sevilla. Departamento de Física de la Materia Condensada, and Russian Foundation for Basic Research
- Subjects
010302 applied physics ,Materials science ,Carbonization ,Analytical chemistry ,02 engineering and technology ,Atmospheric temperature range ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Nanocrystalline material ,Electronic, Optical and Magnetic Materials ,Catalysis ,Thermal conductivity ,Electrical resistivity and conductivity ,Phase (matter) ,0103 physical sciences ,Graphite ,0210 nano-technology - Abstract
The thermal conductivity k and resistivity ρ of biocarbon matrices, prepared by carbonizing medium-density fiberboard at Tcarb = 850 and 1500°C in the presence of a Ni-based catalyst (samples MDFC( Ni)) and without a catalyst (samples MDF-C), have been measured for the first time in the temperature range of 5–300 K. X-ray diffraction analysis has revealed that the bulk graphite phase arises only at Tcarb = 1500°C. It has been shown that the temperature dependences of the thermal conductivity of samples MDFC- 850 and MDF-C-850(Ni) in the range of 80–300 K are to each other and follow the law of k(T) ~ T1.65, but the use of the Ni-catalyst leads to an increase in the thermal conductivity by a factor of approximately 1.5, due to the formation of a greater fraction of the nanocrystalline phase in the presence of the Ni-catalyst at Tcarb = 850°C. In biocarbon MDF-C-1500 prepared without a catalyst, the dependence is k(T) ~ T1.65, and it is controlled by the nanocrystalline phase. In MDF-C-1500(Ni), the bulk graphite phase formed increases the thermal conductivity by a factor of 1.5–2 compared to the thermal conductivity of MDF-C-1500 in the entire temperature range of 5–300 K; k(T = 300 K) reaches the values of ~10 W m–1 K–1, characteristic of biocarbon obtained without a catalyst only at high temperatures of Tcarb = 2400°C. It has been shown that MDF-C-1500(Ni) in the temperature range of 40‒300 K is characterized by the dependence, k(T) ~ T1.3, which can be described in terms of the model of partially graphitized biocarbon as a composite of an amorphous matrix with spherical inclusions of the graphite phase
- Published
- 2016
- Full Text
- View/download PDF