1. 3D geometric moment invariants from the point of view of the classical invariant theory
- Author
-
L. P. Bedratyuk and A. I. Bedratyuk
- Subjects
FOS: Computer and information sciences ,Computer Vision and Pattern Recognition (cs.CV) ,General Mathematics ,Image and Video Processing (eess.IV) ,Computer Science - Computer Vision and Pattern Recognition ,FOS: Electrical engineering, electronic engineering, information engineering ,Electrical Engineering and Systems Science - Image and Video Processing - Abstract
The aim of this paper is to clear up the problem of the connection between the 3D geometric moments invariants and the invariant theory, considering a problem of describing of the 3D geometric moments invariants as a problem of the classical invariant theory. Using the remarkable fact that the groups $SO(3)$ and $SL(2)$ are locally isomorphic, we reduced the problem of deriving 3D geometric moments invariants to the well-known problem of the classical invariant theory. We give a precise statement of the 3D geometric invariant moments computation, introducing the notions of the algebras of simultaneous 3D geometric moment invariants, and prove that they are isomorphic to the algebras of joint $SL(2)$-invariants of several binary forms. To simplify the calculating of the invariants we proceed from an action of Lie group $SO(3)$ to an action of its Lie algebra $\mathfrak{sl}_2$. The author hopes that the results will be useful to the researchers in the fields of image analysis and pattern recognition., Comment: 19 pages
- Published
- 2023