104 results on '"L. Lauro"'
Search Results
2. Overcoming Biopharmaceutical Interferents for Quantitation of Host Cell DNA Using an Automated, High-Throughput Methodology
- Author
-
Mackenzie L. Lauro, Amy M. Bowman, Joseph P. Smith, Susannah N. Gaye, Jillian Acevedo-Skrip, Pete A. DePhillips, and John W. Loughney
- Subjects
Biological Products ,Vaccines ,Research Design ,Pharmaceutical Science ,DNA - Abstract
The rapid development of biologics and vaccines in response to the current pandemic has highlighted the need for robust platform assays to characterize diverse biopharmaceuticals. A critical aspect of biopharmaceutical development is achieving a highly pure product, especially with respect to residual host cell material. Specifically, two important host cell impurities of focus within biopharmaceuticals are residual DNA and protein. In this work, a novel high-throughput host cell DNA quantitation assay was developed for rapid screening of complex vaccine drug substance samples. The developed assay utilizes the commercially available, fluorescent-sensitive Picogreen dye within a 96-well plate configuration to allow for a cost effective and rapid analysis. The assay was applied to in-process biopharmaceutical samples with known interferences to the dye, including RNA and protein. An enzymatic digestion pre-treatment was found to overcome these interferences and thus allow this method to be applied to wide-ranging, diverse analyses. In addition, the use of deoxycholate in the digestion treatment allowed for disruption of interactions in a given sample matrix in order to more accurately and selectively quantitate DNA. Critical analytical figures of merit for assay performance, such as precision and spike recovery, were evaluated and successfully demonstrated. This new analytical method can thus be successfully applied to both upstream and downstream process analysis for biologics and vaccines using an innovative and automated high-throughput approach.
- Published
- 2022
3. FAST: A European ITER satellite experiment in the view of DEMO
- Author
-
Crisanti, F., Cucchiaro, A., Albanese, R., Artaserse, G., Baruzzo, M., Bolzonella, T., Brolatti, G., Calabrò, G., Crescenzi, F., Coletti, R., Costa, P., Corte, A. della, Di Zenobio, A., Frosi, P., Harting, D., Taroni, L. Lauro, Maddaluno, G., Marcuzzi, D., Maviglia, F., Muzzi, L., Pericoli-Ridolfini, V., Pizzuto, A., Polli, G., Ramogida, G., Reccia, L., Rigato, V., Rita, C., Roccella, S., Santinelli, M., Sonato, P., Subba, F., Turtù, S., Valisa, M., Villari, R., Viola, B., and Wiesen, S.
- Published
- 2011
- Full Text
- View/download PDF
4. Novel Approaches for Aligning Geospatial Vector Maps
- Author
-
M. A. Cherif, S. Tripodi, Y. Tarabalka, I. Manighetti, and L. Laurore
- Subjects
Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Applied optics. Photonics ,TA1501-1820 - Abstract
The surge in data across diverse fields presents an essential need for advanced techniques to merge and interpret this information. With a special emphasis on compiling geospatial data, this integration is crucial for unlocking new insights from geographic data, enhancing our ability to map and analyze trends that span across different locations and environments with more authenticity and reliability. Existing techniques have made progress in addressing data fusion; however, challenges persist in fusing and harmonizing data from different sources, scales, and modalities. This research presents a comprehensive investigation into the challenges and solutions in vector map alignment, focusing on developing methods that enhance the precision and usability of geospatial data. We explored and developed three distinct methodologies for polygonal vector map alignment: ProximityAlign, which excels in precision within urban layouts but faces computational challenges; the Optical Flow Deep Learning-Based Alignment, noted for its efficiency and adaptability; and the Epipolar Geometry-Based Alignment, effective in data-rich contexts but sensitive to data quality. In practice, the proposed approaches serve as tools to benefit from as much as possible from existing datasets while respecting a spatial reference source. It also serves as a paramount step for the data fusion task to reduce its complexity.
- Published
- 2024
- Full Text
- View/download PDF
5. Quantitation and speciation of residual protein within active pharmaceutical ingredients using image analysis with SDS-PAGE
- Author
-
Fengqiang Wang, Zhijian Liu, Ian Mangion, Narayan Variankaval, Erik Hoyt, Xiaodong Bu, John A. McIntosh, Joseph P. Smith, Mackenzie L. Lauro, Nicole M. Ralbovsky, and Erik D. Guetschow
- Subjects
Active ingredient ,Chromatography ,Chemistry ,Clinical Biochemistry ,Pharmaceutical Science ,Residual ,Small molecule ,Protein detection ,Analytical Chemistry ,Protein content ,Pharmaceutical Preparations ,Biocatalysis ,Drug Discovery ,Genetic algorithm ,Solvents ,Electrophoresis, Polyacrylamide Gel ,Polyacrylamide gel electrophoresis ,Spectroscopy - Abstract
Recent advances in biocatalysis and directed enzyme evolution has led to a variety of enzymatically-driven, elegant processes for active pharmaceutical ingredient (API) production. For biocatalytic processes, quantitation of any residual protein within a given API is of great importance to ensure process robustness and quality, pure pharmaceutical products. Typical analytical methods for analyzing residual enzymes within an API, such as enzyme-linked immunosorbent assays (ELISA), colorimetric assays, and liquid chromatographic techniques, are limited for determining only the concentration of known proteins and require harsh solvents with high API levels for analysis. For the first time, total residual protein content in a small molecule API was quantitated using image analysis applied to SDS-PAGE. Herein, a proposed methodology for residual protein detection, quantitation, and size-based speciation is presented, in which an orthogonal technique is offered to traditional analysis methods, such as ELISA. Results indicate that our application of the analytical methodology is able to reliably quantitate both protein standards and the total residual protein present within a final API, with good agreement as compared to traditional ELISA results. Further, speciation of the residual protein within the API provides key information concerning the individual residual proteins present, including their molecular weight, which can lead to improved process development efforts for residual protein rejection and control. This analytical methodology thus offers an alternative tool for easily identifying, quantitating, and speciating residual protein content in the presence of small molecule APIs, with potential for wide applicability across industry for biocatalytic or directed enzyme evolution efforts within process development.
- Published
- 2021
6. Recent Incarceration Among Individuals Infected With Hepatitis A Virus During Person-to-Person Community Outbreaks, United States, 2016-2020
- Author
-
Liesl M. Hagan, Martha P. Montgomery, Priscilla L. Lauro, Michael Cima, Ginger Stringer, Nikki M. Kupferman, Andrea Leapley, Ami P. Gandhi, Dawn Nims, Jenna Iberg Johnson, Lindsay Bouton, Cole Burkholder, Genny A. Grilli, Theresa Kittle, Katrina Hansen, Marla M. Sievers, Alexandra P. Newman, Justin P. Albertson, Brandi Taylor, Michael Pietrowski, Sarah Stous, Zuwen Qiu-Shultz, Cassandra Jones, Bree Barbeau, Laura Ann Nicolai, Katherine McCombs, Mary Chan, Laura Cooley, Neil Gupta, and Noele Nelson
- Subjects
Public Health, Environmental and Occupational Health - Abstract
Objectives: Although many people who are incarcerated have risk factors for hepatitis A virus (HAV) infection, the proportion of hepatitis A cases among people with a recent incarceration is unknown. We examined the relationship between recent incarceration and HAV infection during community-based, person-to-person outbreaks to inform public health recommendations. Methods: The Centers for Disease Control and Prevention surveyed health departments in 33 jurisdictions reporting person-to-person HAV outbreaks during 2016-2020 on the number of outbreak-associated cases, HAV-infected people recently incarcerated, and HAV-associated hospitalizations and deaths. Results: Twenty-five health departments reported 18 327 outbreak-associated hepatitis A cases during January 11, 2016–January 24, 2020. In total, 2093 (11.4%) HAV-infected people had been recently incarcerated. Of those with complete data, 1402 of 1462 (95.9%) had been held in a local jail, and 1513 of 1896 (79.8.%) disclosed hepatitis A risk factors. Eighteen jurisdictions reported incarceration timing relative to the exposure period. Of 9707 cases in these jurisdictions, 991 (10.2%) were among recently incarcerated people; 451 of 688 (65.6%) people with complete data had been incarcerated during all (n = 55) or part (n = 396) of their exposure period. Conclusions: Correctional facilities are important settings for reaching people with risk factors for HAV infection and can also be venues where transmission occurs. Providing HAV vaccination to incarcerated people, particularly people housed in jails, can be an effective component of community-wide outbreak response.
- Published
- 2022
- Full Text
- View/download PDF
7. Raman hyperspectral imaging with multivariate analysis for investigating enzyme immobilization
- Author
-
Shane T. Grosser, Timothy Rhodes, Madhumitha Balasubramanian, Melinda Liu, Karl S. Booksh, Jacob Forstater, Mackenzie L. Lauro, Joseph P. Smith, Xiaodong Bu, and Zachary E. X. Dance
- Subjects
Immobilized enzyme ,Nanotechnology ,01 natural sciences ,Biochemistry ,Analytical Chemistry ,symbols.namesake ,Enzyme Stability ,Electrochemistry ,Environmental Chemistry ,Spectroscopy ,Reusability ,chemistry.chemical_classification ,010405 organic chemistry ,Chemistry ,Biomolecule ,010401 analytical chemistry ,Hyperspectral imaging ,Microporous material ,Hyperspectral Imaging ,Enzymes, Immobilized ,0104 chemical sciences ,Chemical species ,Biocatalysis ,Multivariate Analysis ,symbols ,Raman spectroscopy - Abstract
Directed enzyme evolution has led to significant application of biocatalysis for improved chemical transformations throughout the scientific and industrial communities. Biocatalytic reactions utilizing evolved enzymes immobilized within microporous supports have realized unique advantages, including notably higher enzyme stability, higher enzyme load, enzyme reusability, and efficient product-enzyme separation. To date, limited analytical methodology is available to discern the spatial and chemical distribution of immobilized enzymes, in which techniques for surface visualization, enzyme stability, or activity are instead employed. New analytical tools to investigate enzyme immobilization are therefore needed. In this work, development, application, and evaluation of an analytical methodology to study enzyme immobilization is presented. Specifically, Raman hyperspectral imaging with principal component analysis, a multivariate method, is demonstrated for the first time to investigate evolved enzymes immobilized onto microporous supports for biocatalysis. Herein we demonstrate the ability to spatially and spectrally resolve evolved pantothenate kinase (PanK) immobilized onto two commercially-available, chemically-diverse porous resins. This analytical methodology is able to chemically distinguish evolved enzyme, resin, and chemical species pertinent to immobilization. As such, a new analytical approach to study immobilized biocatalysts is demonstrated, offering potential wide application for analysis of protein or biomolecule immobilization.
- Published
- 2020
8. Differential Peptidoglycan Recognition Assay Using Varied Surface Presentations
- Author
-
Mackenzie L. Lauro, Catherine L. Grimes, Elizabeth A. D'Ambrosio, and Klare L. Bersch
- Subjects
Nod2 Signaling Adaptor Protein ,NLR Proteins ,Peptidoglycan ,Leucine-rich repeat ,010402 general chemistry ,Ligands ,01 natural sciences ,Biochemistry ,Catalysis ,Article ,chemistry.chemical_compound ,Colloid and Surface Chemistry ,Immune system ,Molecular recognition ,Humans ,Amino Acid Sequence ,Surface plasmon resonance ,Receptor ,Adaptor Proteins, Signal Transducing ,Innate immune system ,General Chemistry ,Surface Plasmon Resonance ,Ligand (biochemistry) ,0104 chemical sciences ,chemistry ,Apoptosis Regulatory Proteins ,Acetylmuramyl-Alanyl-Isoglutamine ,Protein Binding - Abstract
Bacterial peptidoglycan (PG) is recognized by the human innate immune system to generate an appropriate downstream response. In order to gain an appreciation of how this essential polymer is sensed, a surface plasmon resonance (SPR) assay using varied PG surface presentation was developed. PG derivatives were synthesized and immobilized on the surface at different positions on the molecule to assess effects of ligand orientation on the binding affinities of NOD-like receptors (NLRs). NLRP1 and NOD2 are cytosolic innate immune proteins known to generate an immune response to PG. Both possess conserved leucine rich repeat domains (LRR) as proposed site of molecular recognition, though limited biochemical evidence exists regarding the mechanisms of PG recognition. Here we show direct biochemical evidence for the association of PG fragments to NOD2 and NLRP1 with nanomolar affinity. The orientations in which the fragments were presented on the SPR surface greatly influenced the strength of PG recognition by both NLRs. This assay displays fundamental differences in binding preferences for PG by innate immune receptors and reveals unique recognition mechanisms between the LRRs. Each receptor uses specific ligand structural features to achieve optimal binding, which will be critical information to manipulate these responses and combat diseases. This assay will be valuable in teasing apart subtle but critical structural features of a variety of receptors with therapeutic potential.
- Published
- 2020
9. Conformational sampling and kinetics changes across a non-Arrhenius break point in the enzyme thermolysin
- Author
-
Timothy J. Koblish, Ming Dong, Mackenzie L. Lauro, and Brian J. Bahnson
- Subjects
Kinetics ,02 engineering and technology ,01 natural sciences ,Theory and Modelling ,Enzyme catalysis ,symbols.namesake ,ARTICLES ,Thermolysin ,0103 physical sciences ,Side chain ,lcsh:QD901-999 ,010306 general physics ,Instrumentation ,Spectroscopy ,Arrhenius equation ,Radiation ,Chemistry ,Protein dynamics ,Transition temperature ,Atmospheric temperature range ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,symbols ,Biophysics ,lcsh:Crystallography ,0210 nano-technology - Abstract
Numerous studies have suggested a significant role that protein dynamics play in optimizing enzyme catalysis, and changes in conformational sampling offer a window to explore this role. Thermolysin from Bacillus thermoproteolyticus rokko, which is a heat-stable zinc metalloproteinase, serves here as a model system to study changes of protein function and conformational sampling across a temperature range of 16–36 °C. The temperature dependence of kinetics of thermolysin showed a biphasic transition at 26 °C that points to potential conformational and dynamic differences across this temperature. The non-Arrhenius behavior observed resembled results from previous studies of a thermophilic alcohol dehydrogenase enzyme, which also indicated a biphasic transition at ambient temperatures. To explore the non-Arrhenius behavior of thermolysin, room temperature crystallography was applied to characterize structural changes in a temperature range across the biphasic transition temperature. The alternate conformation of side chain fitting to electron density of a group of residues showed a higher variability in the temperature range from 26 to 29 °C, which indicated a change in conformational sampling that correlated with the non-Arrhenius break point.Numerous studies have suggested a significant role that protein dynamics play in optimizing enzyme catalysis, and changes in conformational sampling offer a window to explore this role. Thermolysin from Bacillus thermoproteolyticus rokko, which is a heat-stable zinc metalloproteinase, serves here as a model system to study changes of protein function and conformational sampling across a temperature range of 16–36 °C. The temperature dependence of kinetics of thermolysin showed a biphasic transition at 26 °C that points to potential conformational and dynamic differences across this temperature. The non-Arrhenius behavior observed resembled results from previous studies of a thermophilic alcohol dehydrogenase enzyme, which also indicated a biphasic transition at ambient temperatures. To explore the non-Arrhenius behavior of thermolysin, room temperature crystallography was applied to characterize structural changes in a temperature range across the biphasic transition temperature. The alternate conformatio...
- Published
- 2020
10. Maternal circulating Vitamin D-3 levels during pregnancy and behaviour across childhood
- Author
-
Lopez-Vicente, M, Sunyer, J. (Jordi), Lertxundi, N., Gonzalez, L. (Lauro), Rodriguez-Dehli, C., Saenz-Torre, M.E., Vrijheid, M. (Martine), Tardon, A, Llop, S, Torrent, M. (Maties), Ibarluzea, J, Guxens Junyent, M. (Mònica), Lopez-Vicente, M, Sunyer, J. (Jordi), Lertxundi, N., Gonzalez, L. (Lauro), Rodriguez-Dehli, C., Saenz-Torre, M.E., Vrijheid, M. (Martine), Tardon, A, Llop, S, Torrent, M. (Maties), Ibarluzea, J, and Guxens Junyent, M. (Mònica)
- Published
- 2019
- Full Text
- View/download PDF
11. Molecular Recognition of Muramyl Dipeptide Occurs in the Leucine-rich Repeat Domain of Nod2
- Author
-
Mackenzie L. Lauro, Elizabeth A. D'Ambrosio, Brian J. Bahnson, and Catherine L. Grimes
- Subjects
Models, Molecular ,0301 basic medicine ,Protein Conformation ,Nod2 Signaling Adaptor Protein ,chemical and pharmacologic phenomena ,Plasma protein binding ,Leucine-rich repeat ,Biology ,Article ,03 medical and health sciences ,chemistry.chemical_compound ,Protein structure ,Adjuvants, Immunologic ,Leucine ,NOD2 ,Escherichia coli ,Humans ,Binding site ,Receptor ,Binding Sites ,030102 biochemistry & molecular biology ,Circular Dichroism ,Surface Plasmon Resonance ,Molecular biology ,030104 developmental biology ,Infectious Diseases ,chemistry ,Biochemistry ,Peptidoglycan ,Acetylmuramyl-Alanyl-Isoglutamine ,Muramyl dipeptide ,Protein Binding - Abstract
Genetic mutations in the innate immune receptor nucleotide-binding oligomerization domain-containing 2 (Nod2) have demonstrated increased susceptibility to Crohn’s disease, an inflammatory bowel disease which is hypothesized to be accompanied by changes in the gut microbiota. Nod2 responds to the presence of bacteria, specifically a fragment of the bacterial cell wall, muramyl dipeptide (MDP). The proposed site of this interaction is the leucine-rich repeat (LRR) domain. Surface plasmon resonance and molecular modeling were used to investigate the interaction of the LRR domain with MDP. A functional and pure LRR domain was obtained from E. coli expression in high yield. The LRR domain binds to MDP with high affinity, with a KD of 212 ± 24 nM. Critical portions of the receptor were determined by alanine scanning mutagenesis of putative binding residues. Fragment analysis of MDP revealed that both the peptide and carbohydrate portion contribute to the binding interaction.
- Published
- 2016
- Full Text
- View/download PDF
12. Redefining the Defensive Line: Critical Components of the Innate Immune System
- Author
-
Catherine L. Grimes, Ching-Wen Hou, and Mackenzie L. Lauro
- Subjects
Cognitive science ,Innate immune system ,animal diseases ,Toll-Like Receptors ,chemical and pharmacologic phenomena ,biochemical phenomena, metabolism, and nutrition ,Biology ,Article ,Immunity, Innate ,Infectious Diseases ,Immune System ,Immunology ,Humans ,bacteria ,Signal Transduction - Abstract
The human body harbors over a trillion microorganisms; the innate immune system is charged with a tremendous task, to recognize “the needle in the haystack” or in other words to sense the pathogen in this milieu. In this viewpoint, three recent discoveries in the field of innate immunity are discussed and we highlight how in each case multiple disciplines worked together to expand the elements of the innate immune system.
- Published
- 2016
- Full Text
- View/download PDF
13. Crohn’s disease variants of Nod2 are stabilized by critical contact region of Hsp70
- Author
-
Hannah C. Wastyk, Catherine L. Grimes, Vishnu Mohanan, Amy K. Schaefer, Jason Burch, James E. Melnyk, Ching-Wen Hou, and Mackenzie L. Lauro
- Subjects
0301 basic medicine ,Proteolysis ,Mutant ,Mutation, Missense ,Nod2 Signaling Adaptor Protein ,Biology ,medicine.disease_cause ,Biochemistry ,Article ,03 medical and health sciences ,chemistry.chemical_compound ,Immune system ,Crohn Disease ,Protein Domains ,NOD2 ,medicine ,Humans ,HSP70 Heat-Shock Proteins ,Receptor ,Mutation ,Innate immune system ,medicine.diagnostic_test ,Protein Stability ,Molecular biology ,digestive system diseases ,030104 developmental biology ,chemistry ,Amino Acid Substitution ,Muramyl dipeptide - Abstract
Nod2 is a cytosolic, innate immune receptor responsible for binding to bacterial cell wall fragments such as muramyl dipeptide (MDP). Upon binding, subsequent downstream activation of the NF-κB pathway leads to an immune response. Nod2 mutations are correlated with an increased susceptibility to Crohn's disease (CD) and ultimately result in a misregulated immune response. Previous work had demonstrated that Nod2 interacts with and is stabilized by the molecular chaperone Hsp70. In this work, it is shown using purified protein and in vitro biochemical assays that the critical Nod2 CD mutations (G908R, R702W, and 1007fs) preserve the ability to bind bacterial ligands. A limited proteolysis assay and luciferase reporter assay reveal regions of Hsp70 that are capable of stabilizing Nod2 and rescuing CD mutant activity. A minimal 71-amino acid subset of Hsp70 that stabilizes the CD-associated variants of Nod2 and restores a proper immune response upon activation with MDP was identified. This work suggests that CD-associated Nod2 variants could be stabilized in vivo with a molecular chaperone.
- Published
- 2017
14. Overview of the JET results in support to ITER
- Author
-
Alfredo Pironti, J. Simpson-Hutchinson, Sean Conroy, J. Uljanovs, D. Middleton-Gear, G. Possnert, C. Angioni, R. McAdams, Nicholas Watkins, E. Fortuna-Zalesna, A. Garcia-Carrasco, K. Gałązka, D. Nodwell, Pasquale Gaudio, R.A. Pitts, Svetlana V. Ratynskaia, Seppo Koivuranta, O. J. Kwon, C. Boyd, A. Boboc, M. Reinhart, Igor Lengar, Jarrod Leddy, Hiroyasu Utoh, J. H. Ahn, A. Stevens, J. Lönnroth, U. Kruezi, C. Guillemaut, N. Fonnesu, W. Studholme, Marek Rubel, P. Cahyna, O. McCormack, A. S. Jacobsen, D. Mazon, Gunta Kizane, N. Ashikawa, William Tang, J. Goff, F. Nespoli, Thomas Giegerich, G. Petravich, Angela Busse, Corneliu Porosnicu, M. Bigi, M. Wheatley, Christopher N. Bowman, J. Zacks, Ivan Calvo, U. Losada, H. Weisen, B. Bauvir, Stanislas Pamela, Sylvain Brémond, M.F. Stamp, Scott W. McIntosh, A. Rakha, S. Glöggler, V. Braic, C. Bottereau, S. Murphy, S. Knott, Luigi Fortuna, P. Bunting, N. Vora, S. D. Scott, A. Lazaros, R. Dejarnac, P. Buratti, H.R. Strauss, Gabriele Croci, M. Nocente, A. Hollingsworth, S. Reynolds, D. J. Wilson, D. D. Brown, T.C. Luce, S. Zoletnik, E. Nilsson, L. Laguardia, O. Marchuk, F.P. Orsitto, E. Cecil, V. Huber, J. B. Girardo, Stylianos Varoutis, M. D. Axton, Hyun-Tae Kim, E. Safi, Ch. Day, S. Arshad, J. Rzadkiewicz, P. Prior, A. Meigs, S. Esquembri, P. Gohil, K. Purahoo, Torbjörn Hellsten, N. Tipton, R. Guirlet, E. Joffrin, V. Aldred, Calin Besliu, M. Valentinuzzi, G. T. Jones, J. Edwards, Giuseppe Ambrosino, Laurent Marot, N. Lam, F. Crisanti, G. Verona Rinati, R. Marshal, Michael L. Brown, D. Frigione, D. Chandra, Michaele Freisinger, R. Olney, Jari Varje, S. Whetham, F. Parra Diaz, M. R. Hough, P. Dinca, F. Salzedas, A. Goodyear, R. Gowland, J. A. Wilson, J. Horacek, D. King, K. Flinders, I. R. Merrigan, M. Ghate, R. Michling, F. Saint-Laurent, G. Kocsis, D. Van Eester, C. Young, R. O. Dendy, A. Meakins, N. Pace, C. L. Hunter, D. Alegre, S. Foster, V. Riccardo, M. Bulman, C. Jeong, Marek Szawlowski, B. D. Whitehead, Vasily Kiptily, James Harrison, Hiroshi Tojo, G. T. A. Huijsmans, J. W. Coenen, X. Litaudon, Justin Williams, C. Hidalgo, S. Lesnoj, I.E. Day, A. W. Morris, R. Mooney, Yann Corre, S. Brezinsek, B. Gonçalves, M. Kresina, D. Coombs, F. Köchl, J. L. Gardarein, W. Davis, Aqsa Shabbir, Kanti M. Aggarwal, L. Colas, A. B. Kukushkin, Seppo Sipilä, Elisabeth Rachlew, Leena Aho-Mantila, O. G. Pompilian, E. Viezzer, Shane Cooper, Fabio Villone, P. Blanchard, Patrick Tamain, P. Camp, T. Szabolics, C. Luna, Kalle Heinola, H. G. Esser, V. Bobkov, James Buchanan, Andrew West, Hajime Urano, Roberta Lima Gomes, J.P. Coad, Th. Pütterich, A. Sinha, S. Hollis, R. D. Wood, G. D. Ewart, F. S. Griph, T. Kobuchi, X. Lefebvre, S. Warder, A.J. Thornton, S. Peschanyi, B. Graham, Giuseppe Telesca, M. Kempenaars, J. Bernardo, M. Hughes, Eva Belonohy, S. Schmuck, Kai Nordlund, T. J. Smith, P. Hertout, K. D. Lawson, M. Brix, Matthew Sibbald, Grégoire Hornung, C. Tame, Matthew Carr, S. Wray, P. T. Doyle, A. Somers, Giuseppe Chitarin, D. C. Campling, Mitul Abhangi, I. Jepu, David A. Wood, J. Miettunen, A. Sopplesa, Raffaele Fresa, S. Saarelma, M. Bacharis, J. Pozzi, P. Vallejos Olivares, Teddy Craciunescu, Raffaele Albanese, S. Knipe, Jason P. Byrne, A. C. C. Sips, S. Hazel, V. Kazantzidis, G. Stankūnas, A. Kundu, J. Mailloux, C. Guerard, Pramit Dutta, J. E. Boom, Eduardo Alves, P. Grazier, Saskia Mordijck, V.S. Neverov, Kazuo Hoshino, A. P. Vadgama, P. D. Brennan, P. Innocente, Piergiorgio Sonato, M. Irishkin, M. Berry, D. W. Robson, Dieter Leichtle, Fabio Pisano, P. McCullen, T. M. Huddleston, Kensaku Kamiya, D. Pacella, Tommy Ahlgren, A. Kirschner, B. Magesh, A. Ash, J. Mlynář, C. Castaldo, C. Marchetto, D. L. Hillis, M. Incelli, B. Viola, R. J. Robins, E. Andersson Sundén, G. Ramogida, Matthew Reinke, Gerd Meisl, Yannis Kominis, R. Proudfoot, C. Noble, N. J. Conway, V. P. Lo Schiavo, Jorge Luis Rodriguez, Hugo Bufferand, C. H. A. Hogben, B. Evans, R. Sartori, H. Greuner, M. G. Dunne, K. Schöpf, M. I. K. Santala, E. Giovannozzi, A. E. Shevelev, C. Gil, P. Boulting, P. Sagar, A.E. Shumack, P. A. Coates, C. Ayres, R. Prakash, C. Giroud, M. Parsons, J. C. Giacalone, S. Meshchaninov, A. Peackoc, G. De Temmerman, A.C.A. Figueiredo, D. Gallart, P. Santa, Sergey Popovichev, Ivan Lupelli, M. Valovic, Thomas Johnson, Y. Martynova, M. Rack, Olivier Sauter, J. Garcia, P. Siren, I. Balboa, S. Lee, Hans Nordman, R. Roccella, M. Faitsch, Julien Hillairet, Patrick J. McCarthy, C. Reux, Irena Ivanova-Stanik, V. Coccorese, Ye. O. Kazakov, R. El-Jorf, C. Hamlyn-Harris, Matthias Weiszflog, C. F. Maggi, Panagiotis Tolias, N. C. Hawkes, E. Clark, Bruno Santos, B. Sieglin, R. Rodionov, Roch Kwiatkowski, P. Denner, C. Woodley, Hugh Summers, Francesco Pizzo, G. Pucella, D. Croft, F. Di Maio, M. Tomes, D. Molina, A. Fernades, L. Amicucci, Marco Cecconello, A. Bisoffi, Z. Ul-Abidin, J. Wilkinson, H. Maier, S. Rowe, M. Beckers, P.J. Knight, E. Pajuste, Choong-Seock Chang, K. Deakin, M. Enachescu, A. Cobalt, D. Tskhakaya Jun, Michela Gelfusa, Rémy Nouailletas, R. Ragona, N. Bonanomi, D. A. Homfray, K. Riddle, Yann Camenen, J. D. Thomas, R.P. Doerner, Timothy P. Robinson, Y. Miyoshi, Ph. Jacquet, H. T. Lambertz, D. Pulley, A. Bécoulet, E. Tholerus, O. Bogar, M. Peterka, R. Crowe, C. Sommariva, A. R. Talbot, N. K. Butler, N. Reid, R. Zagórski, Gerald Pintsuk, Juri Romazanov, Andre Neto, G. L. Ravera, Paolo Arena, A. Manning, F. Durodié, Maryna Chernyshova, D. Karkinsky, Štefan Matejčík, J. P. Thomas, A. Wilson, L. Joita, R. Naish, P. Strand, M. Balden, M. Kaufman, T. Powell, V. Schmidt, D. Barnes, José Vicente, S. Doswon, Daniel F. Valcarcel, Claudia Corradino, R. Warren, Annette M. Hynes, J. D. Strachan, A. M. Messiaen, M. Kovari, O. Omolayo, D. M. Witts, R. C. Felton, C. Fleming, C. A. Marren, Patrick Maget, J. Galdon-Quiroga, H. R. Koslowski, Bruce Lipschultz, Ana Elisa Bauer de Camargo Silva, J. Waterhouse, R. J. Dumont, M. Schneider, Sara Moradi, K. J. Nicholls, M. Beldishevski, Benedikt Geiger, A. Jardin, A. Ekedahl, A. Lyssoivan, C. Waldon, Davide Galassi, F. Jaulmes, A. Kirk, Yannick Marandet, F. Hasenbeck, Gabor Szepesi, R. C. Pereira, J. Juul Rasmussen, Nobuyuki Aiba, Michelle E. Walker, Gábor Cseh, Scott W. Mosher, R. Bastow, A. Di Siena, E. Lazzaro, M. Curuia, C. D. Challis, Z. Ghani, J. Deane, João M. C. Sousa, Henrik Sjöstrand, T. O'Gorman, H. R. Wilson, P. Devynck, M. Price, C. A. Thompson, Daniele Marocco, A. Cullen, M. Clark, M. Lennholm, D. Carralero, N. Balshaw, Roland Sabot, I. Stepanov, N. Petrella, Filippo Sartori, L. W. Packer, P. Thomas, M. Lungu, A. V. Krasilnikov, R. Young, Jonathan Graves, J. C. Hillesheim, Mǎdǎlina Vlad, Duccio Testa, Pierre Dumortier, Paulo Carvalho, M. Gosk, Yong-Su Na, M. Buckley, Carlos A. Silva, V. Fuchs, K. Vasava, P. A. Tigwell, B. Wakeling, M. Medland, M. Bellinger, K. Gal, Petter Ström, E. Veshchev, F. Nabais, A. Wynn, L. Lauro Taroni, B. Beckett, L. Gil, M. Towndrow, Brian Grierson, Harry M. Meyer, V. Philipps, A. de Castro, D. Kinna, D. Conka, Göran Ericsson, L. Piron, J. Hawkins, D. Cooper, Kenneth Hammond, V.V. Parail, Cristian Ruset, G.J. van Rooij, M. N. A. Beurskens, N. Fawlk, G. Evison, M. Van De Mortel, N. Marcenko, B. Slade, Th. Franke, Simone Peruzzo, N. den Harder, D. Baião, A. Martin de Aguilera, Frederic Imbeaux, Carlo Sozzi, J.L. de Pablos, J. Svensson, A. Withycombe, Ane Lasa, H. Sheikh, V.A. Yavorskij, Nick Walkden, E. Lerche, C. S. Gibson, Roberto Zanino, Y. Peysson, David Hatch, B. Bazylev, E. de la Cal, S. Hacquin, T. D. V. Haupt, S. A. Silburn, T.T.C. Jones, Maria Teresa Porfiri, Walid Helou, S. E. Sharapov, M. Zerbini, Ken W Bell, Marco Marinelli, Kyriakos Hizanidis, J. M. Fontdecaba, N. Teplova, K. K. Kirov, S. Vartanian, W. W. Pires de Sa, T. C. Hender, J. K. Blackburn, I. Monakhov, H. Patten, P. A. Simmons, Y. Austin, J. Regana, Stefano Coda, Amanda J. Page, D. Fuller, António J.N. Batista, A. Horton, P. Heesterman, S. Cramp, J. Hobirk, F. Clairet, A. Burckhart, M. Allinson, Larry R. Baylor, W. Leysen, D. B. Gin, P. Nielsen, A. Kantor, Yueqiang Liu, A.V. Stephen, Jose Ramon Martin-Solis, P. Mantica, B. C. Regan, Aleksander Drenik, A. Lukin, L. Thorne, G. Nemtsev, J. Denis, M. E. Graham, D. Rigamonti, W. Van Renterghem, M. Tardocchi, M. Koubiti, A. Malaquias, M. Tsalas, A. Cufar, Giuseppe Prestopino, D. Kogut, N. Pomaro, J. Keep, Jochen Linke, Shimpei Futatani, Boris Breizman, A. Sirinelli, M. Chandler, M. Fortune, F. Degli Agostini, I. Jenkins, T. Spelzini, G. Calabrò, O. N. Kent, A. Lunniss, Etienne Hodille, Z. Vizvary, Volker Naulin, T. Eich, F. Mink, A. Alkseev, P. W. Haydon, Massimo Angelone, Norberto Catarino, J. Lapins, Roberto Pasqualotto, R. Lawless, T. Schlummer, F. Bonelli, M. Wischmeier, Stéphane Devaux, G. Saibene, Dirk Reiser, Y. R. Martin, H. Bergsåker, Jon Godwin, Alessia Santucci, C. Lane, Justyna Grzonka, Ph. Mertens, Claudio Verona, David Moulton, E. Delabie, Anna Salmi, P. G. Smith, T. Bolzonella, Silvio Ceccuzzi, Ulrich Fischer, G. Liu, M. A. Henderson, M. Marinucci, T. Suzuki, Jakub Bielecki, João Figueiredo, M. Afzal, J. Cane, Robert Hager, Luciano Bertalot, M. Firdaouss, G. Tvalashvili, D. Hepple, D. Esteve, M. De Bock, Y. Baranov, R. D'Inca, G. De Tommasi, Ch. Linsmeier, T. Nicolas, I. J. Pearson, P. Finburg, Ireneusz Książek, S. Talebzadeh, A. Czarnecka, A. Botrugno, M. Gethins, Bohdan Bieg, R. Baughan, I. Borodkina, B. Kos, A. Muraro, T. Vasilopoulou, G. Hermon, S.J. Wukitch, Jari Likonen, D. P. Coster, Guglielmo Rubinacci, I. H. Coffey, Justine M. Kent, S. E. Dorling, J. Dankowski, Geert Verdoolaege, Daisuke Nishijima, R. Clarkson, E. R. Solano, M. Stephen, A. Lescinskis, P. Staniec, Karl Schmid, M. Mayer, Peter Lang, T. Franklin, M.I. Williams, C. G. Elsmore, F. Maviglia, C. Di Troia, C. Penot, A. Zarins, Pierre Manas, D. F. Gear, Yu Gao, Philipp Drews, E. Letellier, A. S. Thompson, L. Forsythe, I. Zychor, E. Khilkevich, A. Manzanares, T. Nakano, Paulo Rodrigues, J. Edmond, Sebastián Dormido-Canto, R. Dux, C. Appelbee, L. Moser, Angelo Cenedese, D. Fagan, N. Richardson, Giuseppe Gorini, V. Rohde, R. Paprok, João P. S. Bizarro, P. Aleynikov, M. Sertoli, Ł. Świderski, Simone Palazzo, O. W. Davies, D. Douai, N. Macdonald, M. Baruzzo, J. López-Razola, M. Lungaroni, D. Clatworthy, R. Bravanec, J. Lovell, Ambrogio Fasoli, S.-P. Pehkonen, M. E. Puiatti, P. Papp, G. Bodnar, V. Aslanyan, A. Weckmann, K. A. Taylor, R. Henriques, I. T. Chapman, Ewa Pawelec, Miles M. Turner, Steven J. Meitner, M. Bernert, Ph. Maquet, R. C. Meadows, A. Shaw, N. Vianello, L. Barrera Orte, Tomas Markovic, A. Fil, A. S. Couchman, Inessa Bolshakova, J. Fyvie, Konstantina Mergia, J. Gallagher, R.V. Budny, Frank Leipold, C. J. Rapson, R. C. Lobel, Gennady V. Miloshevsky, K.-D. Zastrow, Ph. Duckworth, Gianluca Rubino, G. Withenshaw, S. Maruyama, S. P. Hallworth Cook, M. Newman, Jérôme Bucalossi, P. Drewelow, Nuno Cruz, D. Iglesias, I. Nedzelski, T. Donne, P. Leichuer, R. Cesario, M. D. J. Bright, T. Boyce, N. Imazawa, Per Petersson, R. King, A. Loving, L. Garzotti, Jorge Ferreira, G. Corrigan, D. Sandiford, B. Tal, P. Puglia, Daniel Tegnered, J. Karhunen, James S. Wright, Tom Wauters, J. McKehon, K. Rathod, Olivier Février, Alessandro Formisano, Petra Bilkova, M. Groth, Ricardo Magnus Osorio Galvao, F. Medina, S. Collins, H. J. Boyer, Elena Bruno, Horacio Fernandes, M. J. Stead, R. Paccagnella, J. Kaniewski, Ion E. Stamatelatos, F. Causa, M. F. F. Nave, A. Patel, D. C. McDonald, L. Moreira, Mariano Ruiz, K. Dylst, Raymond A. Shaw, A. Brett, Jane Johnston, P. P. Pereira Puglia, J. Ongena, N. A. Benterman, V. N. Amosov, Christian Grisolia, J. Simpson, C. Perez von Thun, Jan Weiland, P. Tonner, F. Belli, T. Odupitan, T. Dittmar, Edmund Highcock, Taina Kurki-Suonio, I. Uytdenhouwen, Estelle Gauthier, M. Oberkofler, B. Alper, Iris D. Young, S. Soare, Yuji Hatano, D. Reece, D. Borodin, M. Moneti, W. Yanling, S. Mianowski, K. Fenton, Stephen J. Bailey, R. Coelho, Sandra C. Chapman, E. Łaszyńska, A. R. Field, F.J. Martínez, Anders Nielsen, M. Smithies, M. J. Mantsinen, A. J. Capel, N. D. Smith, A. Pires dos Reis, M.-L. Mayoral, T. Loarer, P. Carman, N. Grazier, S. Breton, J. M. A. Bradshaw, Alexandre C. Pereira, Fulvio Auriemma, Fulvio Militello, Barbara Cannas, D. Ulyatt, A. Kappatou, P. Blatchford, R. Scannell, B. I. Oswuigwe, Darren Price, Robert E. Grove, D. Guard, M. Leyland, G. Stubbs, J. W. Banks, V.V. Plyusnin, M. S. J. Rainford, Andrea Murari, Sanjeev Ranjan, A. Huber, V. Krasilnikov, C. Bower, H. Leggate, S. Abduallev, P. Tsavalas, G. Giruzzi, K. Maczewa, Colin Roach, P. Beaumont, R. P. Johnson, Anna Widdowson, L. A. Kogan, A. Baron Wiechec, Markus Airila, J. Morris, Robert Skilton, Katarzyna Słabkowska, M. A. Barnard, Jean-Paul Booth, Alessandro Pau, R. Price, R. Bament, M. Tokitani, I. Turner, T. Vu, P. Huynh, S.N. Gerasimov, D. I. Refy, Yunfeng Liang, Anders Hjalmarsson, S. Dalley, Roberto Ambrosino, O. Hemming, T. R. Blackman, Y. Zhou, Vasile Zoita, P. Vincenzi, A. Loarte, C. Rayner, Martin Imrisek, M. Tripsky, C. Mazzotta, A. Uccello, V. Basiuk, Lide Yao, V. Goloborod'ko, S. Villari, B. P. Duval, N. Bulmer, W. Zhang, L. Hackett, D. N. Borba, M. Halitovs, Mario Pillon, H. Arnichand, Alberto Alfier, A. Lawson, A. Masiello, T. Makkonen, A. Vitins, D. Rendell, D. Paton, L. Avotina, A. Krivska, M. Maslov, Richard Verhoeven, Marc Goniche, A. Broslawski, Marica Rebai, E. de la Luna, E. Militello-Asp, V. Cocilovo, L. Carraro, Michael Fitzgerald, Bernardo B. Carvalho, D. Young, C.G. Lowry, F. J. Casson, L.-G. Eriksson, T. M. Biewer, B. Esposito, F.G. Rimini, J. Fessey, G. Kaveney, S. Hall, Robin Barnsley, Michael Lehnen, N. Bekris, L. F. Ruchko, P. Batistoni, E. Alessi, M. G. O'Mullane, D. S. Darrow, C. N. Grundy, N. Hayter, Ivo S. Carvalho, M. Brombin, Enrico Zilli, M. Valisa, M. Reich, S. Panja, C. Gurl, Charles Harrington, Emmanuele Peluso, M. Porton, Michael Walsh, D. Falie, A. Reed, Jacob Eriksson, P. Macheta, J. M. Faustin, S. Cortes, S. Fietz, P. Piovesan, D. Ciric, Eric Nardon, R. Neu, Bojiang Ding, G.A. Rattá, F. Reimold, R. Craven, M. Cox, J. Orszagh, Aaro Järvinen, A. S. Thrysøe, A. Shepherd, I. Ďuran, Andrew M. Edwards, A. Kinch, J. Beal, M. Gherendi, Martin Köppen, D. Samaddar, P. Dalgliesh, I. Vinyar, J. Jansons, Nengchao Wang, J. Wu, John Wright, S. Wiesen, C. King, Alessandra Fanni, L. D. Horton, N. Krawczyk, J. Buch, K. Krieger, Václav Petržílka, D. Schworer, C. Watts, T. Keenan, Andrea Malizia, B. D. Stevens, P. Trimble, C. P. Lungu, V. Prajapati, Marco Ariola, C. Wellstood, S. Gilligan, Mirko Salewski, Michael Barnes, Florin Spineanu, H. Doerk, C. Kennedy, S. Jachmich, J. Caumont, Isabel L. Nunes, A. Petre, A. Kallenbach, M. Anghel, B. Lomanowski, Marco Riva, M. Romanelli, G. De Masi, T. May-Smith, T. Xu, A. Goussarov, S. Romanelli, M. Okabayashi, A. Baker, R. Salmon, T. Tala, Nicolas Fedorczak, S. Lanthaler, Giuliana Sias, J. Risner, Clarisse Bourdelle, M. E. Manso, Fabio Moro, R. Lucock, M. Bassan, M. T. Ogawa, V. Thompson, A. M. Whitehead, S. D. A. Reyes Cortes, Igor Bykov, Gennady Sergienko, E. Stefanikova, Mattia Frasca, H. Dabirikhah, Lorenzo Frassinetti, N. Dzysiuk, D. L. Keeling, Juan Manuel López, M. Turnyanskiy, Daniel Dunai, David Taylor, Arturo Buscarino, Carolina Björkas, A. Baciero, S. Meigh, M. Garcia-Munoz, Massimiliano Mattei, M. Hill, Gwyndaf Evans, S. Minucci, Xiang Gao, A. V. Chankin, Francesco Romanelli, A. Lahtinen, L. Giacomelli, A. Owen, Jesús Vega, Jonathan Citrin, Antti Hakola, Petr Vondracek, Sehyun Kwak, P. Abreu, L. Meneses, S. S. Medley, G. Gervasini, Surya K. Pathak, Kristel Crombé, M. Cleverly, H.S. Kim, C. Stan-Sion, Nobuyuki Asakura, E. Wang, A. Cardinali, L. Fazendeiro, R. Cavazzana, P. J. Lomas, J. Hawes, G. Stables, Silvia Spagnolo, S. P. Hotchin, N. R. Green, Slawomir Jednorog, Ewa Kowalska-Strzęciwilk, A. Martin, Linwei Li, Rajnikant Makwana, Richard Goulding, I. Voitsekhovitch, M. Bowden, I. Kodeli, Peter Hawkins, S. S. Henderson, Ondrej Ficker, Carl Hellesen, D. Yadikin, Fabio Subba, Luka Snoj, Anthony Laing, N. Ben Ayed, Mario Cavinato, M. Goodliffe, C. Clements, D. Kenny, Axel Klix, S. Gee, R. J. E. Smith, P. de Vries, L. Fittill, Min-Gu Yoo, S. Menmuir, K. Cave-Ayland, S. Potzel, D. Grist, K. Blackman, S. A. Robinson, Rodney Walker, David Pfefferlé, W. Broeckx, D. Harting, S. G. J. Tyrrell, F. Binda, L. Horvath, Davide Flammini, P. V. Edappala, Raul Moreno, G. M. D. Hogeweij, P. Card, A. Hagar, Ion Tiseanu, Rita Lorenzini, L. Appel, Jet Contributors, J. Flanagan, C. Paz Soldan, U. Samm, Otto Asunta, F. Eriksson, C. Taliercio, F. S. Zaitsev, G. F. Matthews, Tuomas Koskela, P. J. Howarth, D. Terranova, M. Skiba, Amanda Hubbard, R. Otin, K. G. McClements, M. Park, R. McKean, C. Christopher Klepper, I. Karnowska, Peter J. Pool, G. Ciraolo, Jennifer M. Lehmann, Institut de Mécanique des Fluides et des Solides (IMFS), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), VTT Technical Research Centre of Finland (VTT), Association EURATOM-TEKES, Association EURATOM-TEKES, Helsinki University of Technology, Finland, Assoc. Euratom-ENEA-CREATE, Universita Mediterranea of Reggio Calabria [Reggio Calabria], EURATOM/CCFE Fusion Association, Culham Science Centre [Abingdon], Instituto Tecnológico e Nuclear (ITN), ITN, University of Naples Federico II = Università degli studi di Napoli Federico II, Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Università degli studi di Catania = University of Catania (Unict), National Institute for Fusion Science (NIFS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ITER organization (ITER), Karlsruhe Institute of Technology (KIT), Institut de Chimie des Substances Naturelles (ICSN), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), European Fusion Development Agreement [Garching bei München] ( EFDA-CSU), Institut d'ophtalmologie Hédi-Rais de Tunis, Service Cardiologie [CHU Toulouse], Pôle Cardiovasculaire et Métabolique [CHU Toulouse], Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), H. Niewodniczanski Institute of Nuclear Physics, Polska Akademia Nauk = Polish Academy of Sciences (PAN), Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique (LHEEA), École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Euratom/UKAEA Fusion Assoc., Magnetic Sensor laboratory [Lviv] (MSL), National Polytechnic University of Lviv (LPNU), The National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) [Moscow, Russia], Institute of Energy and Climate Research - Plasma Physics (IEK-4), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Institute for Problems of Material Science, National Academy of Sciences of Ukraine (NASU), Institute of Plasma Physics [Praha], Czech Academy of Sciences [Prague] (CAS), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Département Méthodes et Modèles Mathématiques pour l'Industrie (3MI-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Centre G2I, Department of Hydraulics, Transportations and Roads, Laboratoire de microbiologie et génétique moléculaires - UMR5100 (LMGM), Centre de Biologie Intégrative (CBI), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Metallurgical & Materials Engineering Department (MS 388), University of Nevada [Reno], AUTRES, Institute of Plasma Physics and Laser Microfusion [Warsaw] (IPPLM), Culham Centre for Fusion Energy (CCFE), Astrophysics Research Centre [Belfast] (ARC), Queen's University [Belfast] (QUB), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), School of Mathematics [Cardiff], Cardiff University, Associazone EURATOM ENEA sulla Fusione, EURATOM, Laboratoire de physique des plasmas de l'ERM, Laboratorium voor plasmafysica van de KMS (LPP ERM KMS), Ecole Royale Militaire / Koninklijke Militaire School (ERM KMS), Paul-Drude-Institut für Festkörperelektronik (PDI), Institut für Physik, University of Basel (Unibas), Dutch Institute for Fundamental Energy Research [Nieuwegein] (DIFFER), Dutch Institute for Fundamental Energy Research [Eindhoven] (DIFFER), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), CEA Cadarache, Dipartimento di Energia [Milano], Politecnico di Milano [Milan] (POLIMI), Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Lille économie management - UMR 9221 (LEM), Université d'Artois (UA)-Université catholique de Lille (UCL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Euratom research and training programme 633053, Institut de Mécanique des Fluides et des Solides ( IMFS ), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique ( CNRS ), VTT Technical Research Centre of Finland ( VTT ), Univ. Mediterranea RC, Culham Science Centre, Instituto Tecnológico e Nuclear ( ITN ), Università degli studi di Napoli Federico II, Max-Planck-Institut für Plasmaphysik [Garching] ( IPP ), Università degli studi di Catania [Catania], National Institute for Fusion Science, National Institutes of Natural Sciences, Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), School of Geography, Earth and Environmental Sciences, ITER Organization, Karlsruhe Institute of Technology ( KIT ), Laboratoire de Nanotechnologie et d'Instrumentation Optique ( LNIO ), Institut Charles Delaunay ( ICD ), Université de Technologie de Troyes ( UTT ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Technologie de Troyes ( UTT ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Chimie des Substances Naturelles ( ICSN ), Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche sur la Fusion par confinement Magnétique ( IRFM ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), European Fusion Development Agreement [Garching bei München] ( EFDA-CSU ), Service de cardiologie [Toulouse], Université Paul Sabatier - Toulouse 3 ( UPS ) -CHU Toulouse [Toulouse]-Hôpital de Rangueil, ITER [St. Paul-lez-Durance], ITER, Polska Akademia Nauk ( PAN ), Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique ( LHEEA ), École Centrale de Nantes ( ECN ) -Centre National de la Recherche Scientifique ( CNRS ), MSL, Lviv Polytechnic National University ( MSL ), Lviv Polytechnic National University, Centre d'études et de recherches appliquées à la gestion ( CERAG ), Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Centre National de la Recherche Scientifique ( CNRS ), Institute of Energy and Climate Research - Plasma Physics ( IEK-4 ), Forschungszentrum Jülich GmbH, National Academy of Sciences of Ukraine ( NASU ), Lille - Economie et Management ( LEM ), Université catholique de Lille ( UCL ) -Université de Lille-Centre National de la Recherche Scientifique ( CNRS ), Czech Academy of Sciences [Prague] ( ASCR ), Physique des interactions ioniques et moléculaires ( PIIM ), Aix Marseille Université ( AMU ) -Centre National de la Recherche Scientifique ( CNRS ), Département Méthodes et Modèles Mathématiques pour l'Industrie ( 3MI-ENSMSE ), École des Mines de Saint-Étienne ( Mines Saint-Étienne MSE ), Institut Mines-Télécom [Paris]-Institut Mines-Télécom [Paris]-Centre G2I, Laboratoire de microbiologie et génétique moléculaires ( LMGM ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ), University of Nevada, Institute of Plasma Physics and Laser Microfusion [Warsaw] ( IPPLM ), UCL Department of Space and Climate Physics, University College of London [London] ( UCL ), Astrophysics Research Centre [Belfast] ( ARC ), Queen's University [Belfast] ( QUB ), Laboratoire d'Electronique et des Technologies de l'Information ( CEA-LETI ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Grenoble Alpes [Saint Martin d'Hères], Cardiff School of Mathematics, Laboratoire de physique des plasmas de l'ERM, Laboratorium voor plasmafysica van de KMS ( LPP ERM KMS ), Ecole Royale Militaire / Koninklijke Militaire School ( ERM KMS ), Paul-Drude-Institut für Festkörperelektronik, University of Basel ( Unibas ), Dutch Institute for Fundamental Energy Research [Nieuwegein] ( DIFFER ), Dutch Institute for Fundamental Energy Research [Eindhoven] ( DIFFER ), Institut Jean Lamour ( IJL ), Centre National de la Recherche Scientifique ( CNRS ) -Université de Lorraine ( UL ), Dipartimento di Energia, Politecnico di Milano [Milan], Max Planck Institute for Plasma Physics, Laboratoire de Mécanique, Modélisation et Procédés Propres ( M2P2 ), Aix Marseille Université ( AMU ) -Ecole Centrale de Marseille ( ECM ) -Centre National de la Recherche Scientifique ( CNRS ), Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. ANT - Advanced Nuclear Technologies Research Group, JET Contributors, Litaudon, X, Abduallev, S, Abhangi, M, Abreu, P, Afzal, M, Aggarwal, K, Ahlgren, T, Ahn, J, Aho Mantila, L, Aiba, N, Airila, M, Albanese, R, Aldred, V, Alegre, D, Alessi, E, Aleynikov, P, Alfier, A, Alkseev, A, Allinson, M, Alper, B, Alves, E, Ambrosino, G, Ambrosino, R, Amicucci, L, Amosov, V, Andersson Sundén, E, Angelone, M, Anghel, M, Angioni, C, Appel, L, Appelbee, C, Arena, P, Ariola, M, Arnichand, H, Arshad, S, Ash, A, Ashikawa, N, Aslanyan, V, Asunta, O, Auriemma, F, Austin, Y, Avotina, L, Axton, M, Ayres, C, Bacharis, M, Baciero, A, Baiã¡o, D, Bailey, S, Baker, A, Balboa, I, Balden, M, Balshaw, N, Bament, R, Banks, J, Baranov, Y, Barnard, M, Barnes, D, Barnes, M, Barnsley, R, Baron Wiechec, A, Barrera Orte, L, Baruzzo, M, Basiuk, V, Bassan, M, Bastow, R, Batista, A, Batistoni, P, Baughan, R, Bauvir, B, Baylor, L, Bazylev, B, Beal, J, Beaumont, P, Beckers, M, Beckett, B, Becoulet, A, Bekris, N, Beldishevski, M, Bell, K, Belli, F, Bellinger, M, Belonohy, Ã, Ben Ayed, N, Benterman, N, Bergsã¥ker, H, Bernardo, J, Bernert, M, Berry, M, Bertalot, L, Besliu, C, Beurskens, M, Bieg, B, Bielecki, J, Biewer, T, Bigi, M, Bãlkovã¡, P, Binda, F, Bisoffi, A, Bizarro, J, Bjã¶rkas, C, Blackburn, J, Blackman, K, Blackman, T, Blanchard, P, Blatchford, P, Bobkov, V, Boboc, A, Bodnã¡r, G, Bogar, O, Bolshakova, I, Bolzonella, T, Bonanomi, N, Bonelli, F, Boom, J, Booth, J, Borba, D, Borodin, D, Borodkina, I, Botrugno, A, Bottereau, C, Boulting, P, Bourdelle, C, Bowden, M, Bower, C, Bowman, C, Boyce, T, Boyd, C, Boyer, H, Bradshaw, J, Braic, V, Bravanec, R, Breizman, B, Bremond, S, Brennan, P, Breton, S, Brett, A, Brezinsek, S, Bright, M, Brix, M, Broeckx, W, Brombin, M, Broså‚awski, A, Brown, D, Brown, M, Bruno, E, Bucalossi, J, Buch, J, Buchanan, J, Buckley, M, Budny, R, Bufferand, H, Bulman, M, Bulmer, N, Bunting, P, Buratti, P, Burckhart, A, Buscarino, A, Busse, A, Butler, N, Bykov, I, Byrne, J, Cahyna, P, Calabrã², G, Calvo, I, Camenen, Y, Camp, P, Campling, D, Cane, J, Cannas, B, Capel, A, Card, P, Cardinali, A, Carman, P, Carr, M, Carralero, D, Carraro, L, Carvalho, B, Carvalho, I, Carvalho, P, Casson, F, Castaldo, C, Catarino, N, Caumont, J, Causa, F, Cavazzana, R, Cave Ayland, K, Cavinato, M, Cecconello, M, Ceccuzzi, S, Cecil, E, Cenedese, A, Cesario, R, Challis, C, Chandler, M, Chandra, D, Chang, C, Chankin, A, Chapman, I, Chapman, S, Chernyshova, M, Chitarin, G, Ciraolo, G, Ciric, D, Citrin, J, Clairet, F, Clark, E, Clark, M, Clarkson, R, Clatworthy, D, Clements, C, Cleverly, M, Coad, J, Coates, P, Cobalt, A, Coccorese, V, Cocilovo, V, Coda, S, Coelho, R, Coenen, J, Coffey, I, Colas, L, Collins, S, Conka, D, Conroy, S, Conway, N, Coombs, D, Cooper, D, Cooper, S, Corradino, C, Corre, Y, Corrigan, G, Cortes, S, Coster, D, Couchman, A, Cox, M, Craciunescu, T, Cramp, S, Craven, R, Crisanti, F, Croci, G, Croft, D, Crombã©, K, Crowe, R, Cruz, N, Cseh, G, Cufar, A, Cullen, A, Curuia, M, Czarnecka, A, Dabirikhah, H, Dalgliesh, P, Dalley, S, Dankowski, J, Darrow, D, Davies, O, Davis, W, Day, C, Day, I, De Bock, M, De Castro, A, De La Cal, E, De La Luna, E, De Masi, G, De Pablos, J, De Temmerman, G, De Tommasi, G, De Vries, P, Deakin, K, Deane, J, Degli Agostini, F, Dejarnac, R, Delabie, E, Den Harder, N, Dendy, R, Denis, J, Denner, P, Devaux, S, Devynck, P, Di Maio, F, Di Siena, A, Di Troia, C, Dinca, P, D'Inca, R, Ding, B, Dittmar, T, Doerk, H, Doerner, R, Donnã©, T, Dorling, S, Dormido Canto, S, Doswon, S, Douai, D, Doyle, P, Drenik, A, Drewelow, P, Drews, P, Duckworth, P, Dumont, R, Dumortier, P, Dunai, D, Dunne, M, Äžuran, I, Durodiã©, F, Dutta, P, Duval, B, Dux, R, Dylst, K, Dzysiuk, N, Edappala, P, Edmond, J, Edwards, A, Edwards, J, Eich, T, Ekedahl, A, El Jorf, R, Elsmore, C, Enachescu, M, Ericsson, G, Eriksson, F, Eriksson, J, Eriksson, L, Esposito, B, Esquembri, S, Esser, H, Esteve, D, Evans, B, Evans, G, Evison, G, Ewart, G, Fagan, D, Faitsch, M, Falie, D, Fanni, A, Fasoli, A, Faustin, J, Fawlk, N, Fazendeiro, L, Fedorczak, N, Felton, R, Fenton, K, Fernades, A, Fernandes, H, Ferreira, J, Fessey, J, Fã©vrier, O, Ficker, O, Field, A, Fietz, S, Figueiredo, A, Figueiredo, J, Fil, A, Finburg, P, Firdaouss, M, Fischer, U, Fittill, L, Fitzgerald, M, Flammini, D, Flanagan, J, Fleming, C, Flinders, K, Fonnesu, N, Fontdecaba, J, Formisano, A, Forsythe, L, Fortuna, L, Fortuna Zalesna, E, Fortune, M, Foster, S, Franke, T, Franklin, T, Frasca, M, Frassinetti, L, Freisinger, M, Fresa, R, Frigione, D, Fuchs, V, Fuller, D, Futatani, S, Fyvie, J, Gã¡l, K, Galassi, D, Gaå‚azka, K, Galdon Quiroga, J, Gallagher, J, Gallart, D, Galvã¡o, R, Gao, X, Gao, Y, Garcia, J, Garcia Carrasco, A, GarcÃa Muñoz, M, Gardarein, J, Garzotti, L, Gaudio, P, Gauthier, E, Gear, D, Gee, S, Geiger, B, Gelfusa, M, Gerasimov, S, Gervasini, G, Gethins, M, Ghani, Z, Ghate, M, Gherendi, M, Giacalone, J, Giacomelli, L, Gibson, C, Giegerich, T, Gil, C, Gil, L, Gilligan, S, Gin, D, Giovannozzi, E, Girardo, J, Giroud, C, Giruzzi, G, Glã¶ggler, S, Godwin, J, Goff, J, Gohil, P, Goloborod'Ko, V, Gomes, R, Goncalves, B, Goniche, M, Goodliffe, M, Goodyear, A, Gorini, G, Gosk, M, Goulding, R, Goussarov, A, Gowland, R, Graham, B, Graham, M, Graves, J, Grazier, N, Grazier, P, Green, N, Greuner, H, Grierson, B, Griph, F, Grisolia, C, Grist, D, Groth, M, Grove, R, Grundy, C, Grzonka, J, Guard, D, Guã©rard, C, Guillemaut, C, Guirlet, R, Gurl, C, Utoh, H, Hackett, L, Hacquin, S, Hagar, A, Hager, R, Hakola, A, Halitovs, M, Hall, S, Hallworth Cook, S, Hamlyn Harris, C, Hammond, K, Harrington, C, Harrison, J, Harting, D, Hasenbeck, F, Hatano, Y, Hatch, D, Haupt, T, Hawes, J, Hawkes, N, Hawkins, J, Hawkins, P, Haydon, P, Hayter, N, Hazel, S, Heesterman, P, Heinola, K, Hellesen, C, Hellsten, T, Helou, W, Hemming, O, Hender, T, Henderson, M, Henderson, S, Henriques, R, Hepple, D, Hermon, G, Hertout, P, Hidalgo, C, Highcock, E, Hill, M, Hillairet, J, Hillesheim, J, Hillis, D, Hizanidis, K, Hjalmarsson, A, Hobirk, J, Hodille, E, Hogben, C, Hogeweij, G, Hollingsworth, A, Hollis, S, Homfray, D, Horã¡ä ek, J, Hornung, G, Horton, A, Horton, L, Horvath, L, Hotchin, S, Hough, M, Howarth, P, Hubbard, A, Huber, A, Huber, V, Huddleston, T, Hughes, M, Huijsmans, G, Hunter, C, Huynh, P, Hynes, A, Iglesias, D, Imazawa, N, Imbeaux, F, Imrãå¡ek, M, Incelli, M, Innocente, P, Irishkin, M, Ivanova Stanik, I, Jachmich, S, Jacobsen, A, Jacquet, P, Jansons, J, Jardin, A, Jã¤rvinen, A, Jaulmes, F, Jednorã³g, S, Jenkins, I, Jeong, C, Jepu, I, Joffrin, E, Johnson, R, Johnson, T, Johnston, J, Joita, L, Jones, G, Jones, T, Hoshino, K, Kallenbach, A, Kamiya, K, Kaniewski, J, Kantor, A, Kappatou, A, Karhunen, J, Karkinsky, D, Karnowska, I, Kaufman, M, Kaveney, G, Kazakov, Y, Kazantzidis, V, Keeling, D, Keenan, T, Keep, J, Kempenaars, M, Kennedy, C, Kenny, D, Kent, J, Kent, O, Khilkevich, E, Kim, H, Kinch, A, King, C, King, D, King, R, Kinna, D, Kiptily, V, Kirk, A, Kirov, K, Kirschner, A, Kizane, G, Klepper, C, Klix, A, Knight, P, Knipe, S, Knott, S, Kobuchi, T, Kã¶chl, F, Kocsis, G, Kodeli, I, Kogan, L, Kogut, D, Koivuranta, S, Kominis, Y, Kã¶ppen, M, Kos, B, Koskela, T, Koslowski, H, Koubiti, M, Kovari, M, Kowalska StrzÈ©ciwilk, E, Krasilnikov, A, Krasilnikov, V, Krawczyk, N, Kresina, M, Krieger, K, Krivska, A, Kruezi, U, Ksiaå¼ek, I, Kukushkin, A, Kundu, A, Kurki Suonio, T, Kwak, S, Kwiatkowski, R, Kwon, O, Laguardia, L, Lahtinen, A, Laing, A, Lam, N, Lambertz, H, Lane, C, Lang, P, Lanthaler, S, Lapins, J, Lasa, A, Last, J, Å aszyå„ska, E, Lawless, R, Lawson, A, Lawson, K, Lazaros, A, Lazzaro, E, Leddy, J, Lee, S, Lefebvre, X, Leggate, H, Lehmann, J, Lehnen, M, Leichtle, D, Leichuer, P, Leipold, F, Lengar, I, Lennholm, M, Lerche, E, Lescinskis, A, Lesnoj, S, Letellier, E, Leyland, M, Leysen, W, Li, L, Liang, Y, Likonen, J, Linke, J, Linsmeier, C, Lipschultz, B, Liu, G, Liu, Y, Lo Schiavo, V, Loarer, T, Loarte, A, Lobel, R, Lomanowski, B, Lomas, P, Lã¶nnroth, J, Lã³pez, J, López Razola, J, Lorenzini, R, Losada, U, Lovell, J, Loving, A, Lowry, C, Luce, T, Lucock, R, Lukin, A, Luna, C, Lungaroni, M, Lungu, C, Lungu, M, Lunniss, A, Lupelli, I, Lyssoivan, A, Macdonald, N, Macheta, P, Maczewa, K, Magesh, B, Maget, P, Maggi, C, Maier, H, Mailloux, J, Makkonen, T, Makwana, R, Malaquias, A, Malizia, A, Manas, P, Manning, A, Manso, M, Mantica, P, Mantsinen, M, Manzanares, A, Maquet, P, Marandet, Y, Marcenko, N, Marchetto, C, Marchuk, O, Marinelli, M, Marinucci, M, Markoviä , T, Marocco, D, Marot, L, Marren, C, Marshal, R, Martin, A, Martin, Y, MartÃn De Aguilera, A, Martãnez, F, MartÃn SolÃs, J, Martynova, Y, Maruyama, S, Masiello, A, Maslov, M, Matejcik, S, Mattei, M, Matthews, G, Maviglia, F, Mayer, M, Mayoral, M, May Smith, T, Mazon, D, Mazzotta, C, Mcadams, R, Mccarthy, P, Mcclements, K, Mccormack, O, Mccullen, P, Mcdonald, D, Mcintosh, S, Mckean, R, Mckehon, J, Meadows, R, Meakins, A, Medina, F, Medland, M, Medley, S, Meigh, S, Meigs, A, Meisl, G, Meitner, S, Meneses, L, Menmuir, S, Mergia, K, Merrigan, I, Mertens, P, Meshchaninov, S, Messiaen, A, Meyer, H, Mianowski, S, Michling, R, Middleton Gear, D, Miettunen, J, Militello, F, Militello Asp, E, Miloshevsky, G, Mink, F, Minucci, S, Miyoshi, Y, Mlynã¡å™, J, Molina, D, Monakhov, I, Moneti, M, Mooney, R, Moradi, S, Mordijck, S, Moreira, L, Moreno, R, Moro, F, Morris, A, Morris, J, Moser, L, Mosher, S, Moulton, D, Murari, A, Muraro, A, Murphy, S, Asakura, N, Na, Y, Nabais, F, Naish, R, Nakano, T, Nardon, E, Naulin, V, Nave, M, Nedzelski, I, Nemtsev, G, Nespoli, F, Neto, A, Neu, R, Neverov, V, Newman, M, Nicholls, K, Nicolas, T, Nielsen, A, Nielsen, P, Nilsson, E, Nishijima, D, Noble, C, Nocente, M, Nodwell, D, Nordlund, K, Nordman, H, Nouailletas, R, Nunes, I, Oberkofler, M, Odupitan, T, Ogawa, M, O'Gorman, T, Okabayashi, M, Olney, R, Omolayo, O, O'Mullane, M, Ongena, J, Orsitto, F, Orszagh, J, Oswuigwe, B, Otin, R, Owen, A, Paccagnella, R, Pace, N, Pacella, D, Packer, L, Page, A, Pajuste, E, Palazzo, S, Pamela, S, Panja, S, Papp, P, Paprok, R, Parail, V, Park, M, Parra Diaz, F, Parsons, M, Pasqualotto, R, Patel, A, Pathak, S, Paton, D, Patten, H, Pau, A, Pawelec, E, Paz Soldan, C, Peackoc, A, Pearson, I, Pehkonen, S, Peluso, E, Penot, C, Pereira, A, Pereira, R, Pereira Puglia, P, Perez Von Thun, C, Peruzzo, S, Peschanyi, S, Peterka, M, Petersson, P, Petravich, G, Petre, A, Petrella, N, Petrå¾ilka, V, Peysson, Y, Pfefferlã©, D, Philipps, V, Pillon, M, Pintsuk, G, Piovesan, P, Pires Dos Reis, A, Piron, L, Pironti, A, Pisano, F, Pitts, R, Pizzo, F, Plyusnin, V, Pomaro, N, Pompilian, O, Pool, P, Popovichev, S, Porfiri, M, Porosnicu, C, Porton, M, Possnert, G, Potzel, S, Powell, T, Pozzi, J, Prajapati, V, Prakash, R, Prestopino, G, Price, D, Price, M, Price, R, Prior, P, Proudfoot, R, Pucella, G, Puglia, P, Puiatti, M, Pulley, D, Purahoo, K, Pã¼tterich, T, Rachlew, E, Rack, M, Ragona, R, Rainford, M, Rakha, A, Ramogida, G, Ranjan, S, Rapson, C, Rasmussen, J, Rathod, K, Rattã¡, G, Ratynskaia, S, Ravera, G, Rayner, C, Rebai, M, Reece, D, Reed, A, Rã©fy, D, Regan, B, Regaã±a, J, Reich, M, Reid, N, Reimold, F, Reinhart, M, Reinke, M, Reiser, D, Rendell, D, Reux, C, Reyes Cortes, S, Reynolds, S, Riccardo, V, Richardson, N, Riddle, K, Rigamonti, D, Rimini, F, Risner, J, Riva, M, Roach, C, Robins, R, Robinson, S, Robinson, T, Robson, D, Roccella, R, Rodionov, R, Rodrigues, P, Rodriguez, J, Rohde, V, Romanelli, F, Romanelli, M, Romanelli, S, Romazanov, J, Rowe, S, Rubel, M, Rubinacci, G, Rubino, G, Ruchko, L, Ruiz, M, Ruset, C, Rzadkiewicz, J, Saarelma, S, Sabot, R, Safi, E, Sagar, P, Saibene, G, Saint Laurent, F, Salewski, M, Salmi, A, Salmon, R, Salzedas, F, Samaddar, D, Samm, U, Sandiford, D, Santa, P, Santala, M, Santos, B, Santucci, A, Sartori, F, Sartori, R, Sauter, O, Scannell, R, Schlummer, T, Schmid, K, Schmidt, V, Schmuck, S, Schneider, M, Schã¶pf, K, Schwã¶rer, D, Scott, S, Sergienko, G, Sertoli, M, Shabbir, A, Sharapov, S, Shaw, A, Shaw, R, Sheikh, H, Shepherd, A, Shevelev, A, Shumack, A, Sias, G, Sibbald, M, Sieglin, B, Silburn, S, Silva, A, Silva, C, Simmons, P, Simpson, J, Simpson Hutchinson, J, Sinha, A, Sipilã¤, S, Sips, A, Sirã©n, P, Sirinelli, A, Sjã¶strand, H, Skiba, M, Skilton, R, Slabkowska, K, Slade, B, Smith, N, Smith, P, Smith, R, Smith, T, Smithies, M, Snoj, L, Soare, S, Solano, E, Somers, A, Sommariva, C, Sonato, P, Sopplesa, A, Sousa, J, Sozzi, C, Spagnolo, S, Spelzini, T, Spineanu, F, Stables, G, Stamatelatos, I, Stamp, M, Staniec, P, Stankå«nas, G, Stan Sion, C, Stead, M, Stefanikova, E, Stepanov, I, Stephen, A, Stephen, M, Stevens, A, Stevens, B, Strachan, J, Strand, P, Strauss, H, Strã¶m, P, Stubbs, G, Studholme, W, Subba, F, Summers, H, Svensson, J, Åšwiderski, Å, Szabolics, T, Szawlowski, M, Szepesi, G, Suzuki, T, Tã¡l, B, Tala, T, Talbot, A, Talebzadeh, S, Taliercio, C, Tamain, P, Tame, C, Tang, W, Tardocchi, M, Taroni, L, Taylor, D, Taylor, K, Tegnered, D, Telesca, G, Teplova, N, Terranova, D, Testa, D, Tholerus, E, Thomas, J, Thomas, P, Thompson, A, Thompson, C, Thompson, V, Thorne, L, Thornton, A, Thrysã¸e, A, Tigwell, P, Tipton, N, Tiseanu, I, Tojo, H, Tokitani, M, Tolias, P, Tomeå¡, M, Tonner, P, Towndrow, M, Trimble, P, Tripsky, M, Tsalas, M, Tsavalas, P, Tskhakaya Jun, D, Turner, I, Turner, M, Turnyanskiy, M, Tvalashvili, G, Tyrrell, S, Uccello, A, Ul Abidin, Z, Uljanovs, J, Ulyatt, D, Urano, H, Uytdenhouwen, I, Vadgama, A, Valcarcel, D, Valentinuzzi, M, Valisa, M, Vallejos Olivares, P, Valovic, M, Van De Mortel, M, Van Eester, D, Van Renterghem, W, Van Rooij, G, Varje, J, Varoutis, S, Vartanian, S, Vasava, K, Vasilopoulou, T, Vega, J, Verdoolaege, G, Verhoeven, R, Verona, C, Verona Rinati, G, Veshchev, E, Vianello, N, Vicente, J, Viezzer, E, Villari, S, Villone, F, Vincenzi, P, Vinyar, I, Viola, B, Vitins, A, Vizvary, Z, Vlad, M, Voitsekhovitch, I, Vondrã¡ä ek, P, Vora, N, Vu, T, Pires De Sa, W, Wakeling, B, Waldon, C, Walkden, N, Walker, M, Walker, R, Walsh, M, Wang, E, Wang, N, Warder, S, Warren, R, Waterhouse, J, Watkins, N, Watts, C, Wauters, T, Weckmann, A, Weiland, J, Weisen, H, Weiszflog, M, Wellstood, C, West, A, Wheatley, M, Whetham, S, Whitehead, A, Whitehead, B, Widdowson, A, Wiesen, S, Wilkinson, J, Williams, J, Williams, M, Wilson, A, Wilson, D, Wilson, H, Wilson, J, Wischmeier, M, Withenshaw, G, Withycombe, A, Witts, D, Wood, D, Wood, R, Woodley, C, Wray, S, Wright, J, Wu, J, Wukitch, S, Wynn, A, Xu, T, Yadikin, D, Yanling, W, Yao, L, Yavorskij, V, Yoo, M, Young, C, Young, D, Young, I, Young, R, Zacks, J, Zagorski, R, Zaitsev, F, Zanino, R, Zarins, A, Zastrow, K, Zerbini, M, Zhang, W, Zhou, Y, Zilli, E, Zoita, V, Zoletnik, S, Zychor, I, Materials Physics, Department of Physics, European Commission, Litaudon, X., Abduallev, S., Abhangi, M., Abreu, P., Afzal, M., Aggarwal, K. M., Ahlgren, T., Ahn, J. H., Aho-Mantila, L., Aiba, N., Airila, M., Albanese, R., Aldred, V., Alegre, D., Alessi, E., Aleynikov, P., Alfier, A., Alkseev, A., Allinson, M., Alper, B., Alves, E., Ambrosino, G., Ambrosino, R., Amicucci, L., Amosov, V., Andersson Sundén, E., Angelone, M., Anghel, M., Angioni, C., Appel, L., Appelbee, C., Arena, P., Ariola, M., Arnichand, H., Arshad, S., Ash, A., Ashikawa, N., Aslanyan, V., Asunta, O., Auriemma, F., Austin, Y., Avotina, L., Axton, M. D., Ayres, C., Bacharis, M., Baciero, A., Baião, D., Bailey, S., Baker, A., Balboa, I., Balden, M., Balshaw, N., Bament, R., Banks, J. W., Baranov, Y. F., Barnard, M. A., Barnes, D., Barnes, M., Barnsley, R., Baron Wiechec, A., Barrera Orte, L., Baruzzo, M., Basiuk, V., Bassan, M., Bastow, R., Batista, A., Batistoni, P., Baughan, R., Bauvir, B., Baylor, L., Bazylev, B., Beal, J., Beaumont, P. S., Beckers, M., Beckett, B., Becoulet, A., Bekris, N., Beldishevski, M., Bell, K., Belli, F., Bellinger, M., Belonohy, É., Ben Ayed, N., Benterman, N. A., Bergsåker, H., Bernardo, J., Bernert, M., Berry, M., Bertalot, L., Besliu, C., Beurskens, M., Bieg, B., Bielecki, J., Biewer, T., Bigi, M., Bílková, P., Binda, F., Bisoffi, A., Bizarro, J. P. S., Björkas, C., Blackburn, J., Blackman, K., Blackman, T. R., Blanchard, P., Blatchford, P., Bobkov, V., Boboc, A., Bodnár, G., Bogar, O., Bolshakova, I., Bolzonella, T., Bonanomi, N., Bonelli, F., Boom, J., Booth, J., Borba, D., Borodin, D., Borodkina, I., Botrugno, A., Bottereau, C., Boulting, P., Bourdelle, C., Bowden, M., Bower, C., Bowman, C., Boyce, T., Boyd, C., Boyer, H. J., Bradshaw, J. M. A., Braic, V., Bravanec, R., Breizman, B., Bremond, S., Brennan, P. D., Breton, S., Brett, A., Brezinsek, S., Bright, M. D. J., Brix, M., Broeckx, W., Brombin, M., Brosławski, A., Brown, D. P. D., Brown, M., Bruno, E., Bucalossi, J., Buch, J., Buchanan, J., Buckley, M. A., Budny, R., Bufferand, H., Bulman, M., Bulmer, N., Bunting, P., Buratti, P., Burckhart, A., Buscarino, A., Busse, A., Butler, N. K., Bykov, I., Byrne, J., Cahyna, P., Calabrò, G., Calvo, I., Camenen, Y., Camp, P., Campling, D. C., Cane, J., Cannas, B., Capel, A. J., Card, P. J., Cardinali, A., Carman, P., Carr, M., Carralero, D., Carraro, L., Carvalho, B. B., Carvalho, I., Carvalho, P., Casson, F. J., Castaldo, C., Catarino, N., Caumont, J., Causa, F., Cavazzana, R., Cave-Ayland, K., Cavinato, M., Cecconello, M., Ceccuzzi, S., Cecil, E., Cenedese, A., Cesario, R., Challis, C. D., Chandler, M., Chandra, D., Chang, C. S., Chankin, A., Chapman, I. T., Chapman, S. C., Chernyshova, M., Chitarin, G., Ciraolo, G., Ciric, D., Citrin, J., Clairet, F., Clark, E., Clark, M., Clarkson, R., Clatworthy, D., Clements, C., Cleverly, M., Coad, J. P., Coates, P. A., Cobalt, A., Coccorese, V., Cocilovo, V., Coda, S., Coelho, R., Coenen, J. W., Coffey, I., Colas, L., Collins, S., Conka, D., Conroy, S., Conway, N., Coombs, D., Cooper, D., Cooper, S. R., Corradino, C., Corre, Y., Corrigan, G., Cortes, S., Coster, D., Couchman, A. S., Cox, M. P., Craciunescu, T., Cramp, S., Craven, R., Crisanti, F., Croci, G., Croft, D., Crombé, K., Crowe, R., Cruz, N., Cseh, G., Cufar, A., Cullen, A., Curuia, M., Czarnecka, A., Dabirikhah, H., Dalgliesh, P., Dalley, S., Dankowski, J., Darrow, D., Davies, O., Davis, W., Day, C., Day, I. E., De Bock, M., de Castro, A., de la Cal, E., de la Luna, E., De Masi, G., de Pablos, J. L., De Temmerman, G., De Tommasi, G., de Vries, P., Deakin, K., Deane, J., Degli Agostini, F., Dejarnac, R., Delabie, E., den Harder, N., Dendy, R. O., Denis, J., Denner, P., Devaux, S., Devynck, P., Di Maio, F., Di Siena, A., Di Troia, C., Dinca, P., D’Inca, R., Ding, B., Dittmar, T., Doerk, H., Doerner, R. P., Donné, T., Dorling, S. E., Dormido-Canto, S., Doswon, S., Douai, D., Doyle, P. T., Drenik, A., Drewelow, P., Drews, P., Duckworth, Ph., Dumont, R., Dumortier, P., Dunai, D., Dunne, M., Ďuran, I., Durodié, F., Dutta, P., Duval, B. P., Dux, R., Dylst, K., Dzysiuk, N., Edappala, P. V., Edmond, J., Edwards, A. M., Edwards, J., Eich, Th., Ekedahl, A., El-Jorf, R., Elsmore, C. G., Enachescu, M., Ericsson, G., Eriksson, F., Eriksson, J., Eriksson, L. G., Esposito, B., Esquembri, S., Esser, H. G., Esteve, D., Evans, B., Evans, G. E., Evison, G., Ewart, G. D., Fagan, D., Faitsch, M., Falie, D., Fanni, A., Fasoli, A., Faustin, J. M., Fawlk, N., Fazendeiro, L., Fedorczak, N., Felton, R. C., Fenton, K., Fernades, A., Fernandes, H., Ferreira, J., Fessey, J. A., Février, O., Ficker, O., Field, A., Fietz, S., Figueiredo, A., Figueiredo, J., Fil, A., Finburg, P., Firdaouss, M., Fischer, U., Fittill, L., Fitzgerald, M., Flammini, D., Flanagan, J., Fleming, C., Flinders, K., Fonnesu, N., Fontdecaba, J. M., Formisano, A., Forsythe, L., Fortuna, L., Fortuna-Zalesna, E., Fortune, M., Foster, S., Franke, T., Franklin, T., Frasca, M., Frassinetti, L., Freisinger, M., Fresa, R., Frigione, D., Fuchs, V., Fuller, D., Futatani, S., Fyvie, J., Gál, K., Galassi, D., Gałązka, K., Galdon-Quiroga, J., Gallagher, J., Gallart, D., Galvão, R., Gao, X., Gao, Y., Garcia, J., Garcia-Carrasco, A., García-Muñoz, M., Gardarein, J. -L., Garzotti, L., Gaudio, P., Gauthier, E., Gear, D. F., Gee, S. J., Geiger, B., Gelfusa, M., Gerasimov, S., Gervasini, G., Gethins, M., Ghani, Z., Ghate, M., Gherendi, M., Giacalone, J. C., Giacomelli, L., Gibson, C. S., Giegerich, T., Gil, C., Gil, L., Gilligan, S., Gin, D., Giovannozzi, E., Girardo, J. B., Giroud, C., Giruzzi, G., Glöggler, S., Godwin, J., Goff, J., Gohil, P., Goloborod’Ko, V., Gomes, R., Gonçalves, B., Goniche, M., Goodliffe, M., Goodyear, A., Gorini, G., Gosk, M., Goulding, R., Goussarov, A., Gowland, R., Graham, B., Graham, M. E., Graves, J. P., Grazier, N., Grazier, P., Green, N. R., Greuner, H., Grierson, B., Griph, F. S., Grisolia, C., Grist, D., Groth, M., Grove, R., Grundy, C. N., Grzonka, J., Guard, D., Guérard, C., Guillemaut, C., Guirlet, R., Gurl, C., Utoh, H. H., Hackett, L. J., Hacquin, S., Hagar, A., Hager, R., Hakola, A., Halitovs, M., Hall, S. J., Hallworth Cook, S. P., Hamlyn-Harris, C., Hammond, K., Harrington, C., Harrison, J., Harting, D., Hasenbeck, F., Hatano, Y., Hatch, D. R., Haupt, T. D. V., Hawes, J., Hawkes, N. C., Hawkins, J., Hawkins, P., Haydon, P. W., Hayter, N., Hazel, S., Heesterman, P. J. L., Heinola, K., Hellesen, C., Hellsten, T., Helou, W., Hemming, O. N., Hender, T. C., Henderson, M., Henderson, S. S., Henriques, R., Hepple, D., Hermon, G., Hertout, P., Hidalgo, C., Highcock, E. G., Hill, M., Hillairet, J., Hillesheim, J., Hillis, D., Hizanidis, K., Hjalmarsson, A., Hobirk, J., Hodille, E., Hogben, C. H. A., Hogeweij, G. M. D., Hollingsworth, A., Hollis, S., Homfray, D. A., Horáček, J., Hornung, G., Horton, A. R., Horton, L. D., Horvath, L., Hotchin, S. P., Hough, M. R., Howarth, P. J., Hubbard, A., Huber, A., Huber, V., Huddleston, T. M., Hughes, M., Huijsmans, G. T. A., Hunter, C. L., Huynh, P., Hynes, A. M., Iglesias, D., Imazawa, N., Imbeaux, F., Imríšek, M., Incelli, M., Innocente, P., Irishkin, M., Ivanova-Stanik, I., Jachmich, S., Jacobsen, A. S., Jacquet, P., Jansons, J., Jardin, A., Järvinen, A., Jaulmes, F., Jednoróg, S., Jenkins, I., Jeong, C., Jepu, I., Joffrin, E., Johnson, R., Johnson, T., Johnston, Jane, Joita, L., Jones, G., Jones, T. T. C., Hoshino, K. K., Kallenbach, A., Kamiya, K., Kaniewski, J., Kantor, A., Kappatou, A., Karhunen, J., Karkinsky, D., Karnowska, I., Kaufman, M., Kaveney, G., Kazakov, Y., Kazantzidis, V., Keeling, D. L., Keenan, T., Keep, J., Kempenaars, M., Kennedy, C., Kenny, D., Kent, J., Kent, O. N., Khilkevich, E., Kim, H. T., Kim, H. S., Kinch, A., King, C., King, D., King, R. F., Kinna, D. J., Kiptily, V., Kirk, A., Kirov, K., Kirschner, A., Kizane, G., Klepper, C., Klix, A., Knight, P., Knipe, S. J., Knott, S., Kobuchi, T., Köchl, F., Kocsis, G., Kodeli, I., Kogan, L., Kogut, D., Koivuranta, S., Kominis, Y., Köppen, M., Kos, B., Koskela, T., Koslowski, H. R., Koubiti, M., Kovari, M., Kowalska-Strzęciwilk, E., Krasilnikov, A., Krasilnikov, V., Krawczyk, N., Kresina, M., Krieger, K., Krivska, A., Kruezi, U., Książek, I., Kukushkin, A., Kundu, A., Kurki-Suonio, T., Kwak, S., Kwiatkowski, R., Kwon, O. J., Laguardia, L., Lahtinen, A., Laing, A., Lam, N., Lambertz, H. T., Lane, C., Lang, P. T., Lanthaler, S., Lapins, J., Lasa, A., Last, J. R., Łaszyńska, E., Lawless, R., Lawson, A., Lawson, K. D., Lazaros, A., Lazzaro, E., Leddy, J., Lee, S., Lefebvre, X., Leggate, H. J., Lehmann, J., Lehnen, M., Leichtle, D., Leichuer, P., Leipold, F., Lengar, I., Lennholm, M., Lerche, E., Lescinskis, A., Lesnoj, S., Letellier, E., Leyland, M., Leysen, W., Li, L., Liang, Y., Likonen, J., Linke, J., Linsmeier, Ch., Lipschultz, B., Liu, G., Liu, Y., Lo Schiavo, V. P., Loarer, T., Loarte, A., Lobel, R. C., Lomanowski, B., Lomas, P. J., Lönnroth, J., López, J. M., López-Razola, J., Lorenzini, R., Losada, U., Lovell, J. J., Loving, A. B., Lowry, C., Luce, T., Lucock, R. M. A., Lukin, A., Luna, C., Lungaroni, M., Lungu, C. P., Lungu, M., Lunniss, A., Lupelli, I., Lyssoivan, A., Macdonald, N., Macheta, P., Maczewa, K., Magesh, B., Maget, P., Maggi, C., Maier, H., Mailloux, J., Makkonen, T., Makwana, R., Malaquias, A., Malizia, A., Manas, P., Manning, A., Manso, M. E., Mantica, P., Mantsinen, M., Manzanares, A., Maquet, Ph., Marandet, Y., Marcenko, N., Marchetto, C., Marchuk, O., Marinelli, M., Marinucci, M., Markovič, T., Marocco, D., Marot, L., Marren, C. A., Marshal, R., Martin, A., Martin, Y., Martín de Aguilera, A., Martínez, F. J., Martín-Solís, J. R., Martynova, Y., Maruyama, S., Masiello, A., Maslov, M., Matejcik, S., Mattei, M., Matthews, G. F., Maviglia, F., Mayer, M., Mayoral, M. L., May-Smith, T., Mazon, D., Mazzotta, C., Mcadams, R., Mccarthy, P. J., Mcclements, K. G., Mccormack, O., Mccullen, P. A., Mcdonald, D., Mcintosh, S., Mckean, R., Mckehon, J., Meadows, R. C., Meakins, A., Medina, F., Medland, M., Medley, S., Meigh, S., Meigs, A. G., Meisl, G., Meitner, S., Meneses, L., Menmuir, S., Mergia, K., Merrigan, I. R., Mertens, Ph., Meshchaninov, S., Messiaen, A., Meyer, H., Mianowski, S., Michling, R., Middleton-Gear, D., Miettunen, J., Militello, F., Militello-Asp, E., Miloshevsky, G., Mink, F., Minucci, S., Miyoshi, Y., Mlynář, J., Molina, D., Monakhov, I., Moneti, M., Mooney, R., Moradi, S., Mordijck, S., Moreira, L., Moreno, R., Moro, F., Morris, A. W., Morris, J., Moser, L., Mosher, S., Moulton, D., Murari, A., Muraro, A., Murphy, S., Asakura, N. N., Na, Y. S., Nabais, F., Naish, R., Nakano, T., Nardon, E., Naulin, V., Nave, M. F. F., Nedzelski, I., Nemtsev, G., Nespoli, F., Neto, A., Neu, R., Neverov, V. S., Newman, M., Nicholls, K. J., Nicolas, T., Nielsen, A. H., Nielsen, P., Nilsson, E., Nishijima, D., Noble, C., Nocente, M., Nodwell, D., Nordlund, K., Nordman, H., Nouailletas, R., Nunes, I., Oberkofler, M., Odupitan, T., Ogawa, M. T., O’Gorman, T., Okabayashi, M., Olney, R., Omolayo, O., O’Mullane, M., Ongena, J., Orsitto, F., Orszagh, J., Oswuigwe, B. I., Otin, R., Owen, A., Paccagnella, R., Pace, N., Pacella, D., Packer, L. W., Page, A., Pajuste, E., Palazzo, S., Pamela, S., Panja, S., Papp, P., Paprok, R., Parail, V., Park, M., Parra Diaz, F., Parsons, M., Pasqualotto, R., Patel, A., Pathak, S., Paton, D., Patten, H., Pau, A., Pawelec, E., Paz Soldan, C., Peackoc, A., Pearson, I. J., Pehkonen, S. -P., Peluso, E., Penot, C., Pereira, A., Pereira, R., Pereira Puglia, P. P., Perez von Thun, C., Peruzzo, S., Peschanyi, S., Peterka, M., Petersson, P., Petravich, G., Petre, A., Petrella, N., Petržilka, V., Peysson, Y., Pfefferlé, D., Philipps, V., Pillon, M., Pintsuk, G., Piovesan, P., Pires dos Reis, A., Piron, L., Pironti, A., Pisano, F., Pitts, R., Pizzo, F., Plyusnin, V., Pomaro, N., Pompilian, O. G., Pool, P. J., Popovichev, S., Porfiri, M. T., Porosnicu, C., Porton, M., Possnert, G., Potzel, S., Powell, T., Pozzi, J., Prajapati, V., Prakash, R., Prestopino, G., Price, D., Price, M., Price, R., Prior, P., Proudfoot, R., Pucella, G., Puglia, P., Puiatti, M. E., Pulley, D., Purahoo, K., Pütterich, Th., Rachlew, E., Rack, M., Ragona, R., Rainford, M. S. J., Rakha, A., Ramogida, G., Ranjan, S., Rapson, C. J., Rasmussen, J. J., Rathod, K., Rattá, G., Ratynskaia, S., Ravera, G., Rayner, C., Rebai, M., Reece, D., Reed, A., Réfy, D., Regan, B., Regaña, J., Reich, M., Reid, N., Reimold, F., Reinhart, M., Reinke, M., Reiser, D., Rendell, D., Reux, C., Reyes Cortes, S. D. A., Reynolds, S., Riccardo, V., Richardson, N., Riddle, K., Rigamonti, D., Rimini, F. G., Risner, J., Riva, M., Roach, C., Robins, R. J., Robinson, S. A., Robinson, T., Robson, D. W., Roccella, R., Rodionov, R., Rodrigues, P., Rodriguez, J., Rohde, V., Romanelli, F., Romanelli, M., Romanelli, S., Romazanov, J., Rowe, S., Rubel, M., Rubinacci, G., Rubino, G., Ruchko, L., Ruiz, M., Ruset, C., Rzadkiewicz, J., Saarelma, S., Sabot, R., Safi, E., Sagar, P., Saibene, G., Saint-Laurent, F., Salewski, M., Salmi, A., Salmon, R., Salzedas, F., Samaddar, D., Samm, U., Sandiford, D., Santa, P., Santala, M. I. K., Santos, B., Santucci, A., Sartori, F., Sartori, R., Sauter, O., Scannell, R., Schlummer, T., Schmid, K., Schmidt, V., Schmuck, S., Schneider, M., Schöpf, K., Schwörer, D., Scott, S. D., Sergienko, G., Sertoli, M., Shabbir, A., Sharapov, S. E., Shaw, A., Shaw, R., Sheikh, H., Shepherd, A., Shevelev, A., Shumack, A., Sias, G., Sibbald, M., Sieglin, B., Silburn, S., Silva, A., Silva, C., Simmons, P. A., Simpson, J., Simpson-Hutchinson, J., Sinha, A., Sipilä, S. K., Sips, A. C. C., Sirén, P., Sirinelli, A., Sjöstrand, H., Skiba, M., Skilton, R., Slabkowska, K., Slade, B., Smith, N., Smith, P. G., Smith, R., Smith, T. J., Smithies, M., Snoj, L., Soare, S., Solano, E. R., Somers, A., Sommariva, C., Sonato, P., Sopplesa, A., Sousa, J., Sozzi, C., Spagnolo, S., Spelzini, T., Spineanu, F., Stables, G., Stamatelatos, I., Stamp, M. F., Staniec, P., Stankūnas, G., Stan-Sion, C., Stead, M. J., Stefanikova, E., Stepanov, I., Stephen, A. V., Stephen, M., Stevens, A., Stevens, B. D., Strachan, J., Strand, P., Strauss, H. R., Ström, P., Stubbs, G., Studholme, W., Subba, F., Summers, H. P., Svensson, J., Świderski, Ł., Szabolics, T., Szawlowski, M., Szepesi, G., Suzuki, T. T., Tál, B., Tala, T., Talbot, A. R., Talebzadeh, S., Taliercio, C., Tamain, P., Tame, C., Tang, W., Tardocchi, M., Taroni, L., Taylor, D., Taylor, K. A., Tegnered, D., Telesca, G., Teplova, N., Terranova, D., Testa, D., Tholerus, E., Thomas, J., Thomas, J. D., Thomas, P., Thompson, A., Thompson, C. -A., Thompson, V. K., Thorne, L., Thornton, A., Thrysøe, A. S., Tigwell, P. A., Tipton, N., Tiseanu, I., Tojo, H., Tokitani, M., Tolias, P., Tomeš, M., Tonner, P., Towndrow, M., Trimble, P., Tripsky, M., Tsalas, M., Tsavalas, P., Tskhakaya jun, D., Turner, I., Turner, M. M., Turnyanskiy, M., Tvalashvili, G., Tyrrell, S. G. J., Uccello, A., Ul-Abidin, Z., Uljanovs, J., Ulyatt, D., Urano, H., Uytdenhouwen, I., Vadgama, A. P., Valcarcel, D., Valentinuzzi, M., Valisa, M., Vallejos Olivares, P., Valovic, M., Van De Mortel, M., Van Eester, D., Van Renterghem, W., van Rooij, G. J., Varje, J., Varoutis, S., Vartanian, S., Vasava, K., Vasilopoulou, T., Vega, J., Verdoolaege, G., Verhoeven, R., Verona, C., Verona Rinati, G., Veshchev, E., Vianello, N., Vicente, J., Viezzer, E., Villari, S., Villone, F., Vincenzi, P., Vinyar, I., Viola, B., Vitins, A., Vizvary, Z., Vlad, M., Voitsekhovitch, I., Vondráček, P., Vora, N., Vu, T., Pires de Sa, W. W., Wakeling, B., Waldon, C. W. F., Walkden, N., Walker, M., Walker, R., Walsh, M., Wang, E., Wang, N., Warder, S., Warren, R. J., Waterhouse, J., Watkins, N. W., Watts, C., Wauters, T., Weckmann, A., Weiland, J., Weisen, H., Weiszflog, M., Wellstood, C., West, A. T., Wheatley, M. R., Whetham, S., Whitehead, A. M., Whitehead, B. D., Widdowson, A. M., Wiesen, S., Wilkinson, J., Williams, J., Williams, M., Wilson, A. R., Wilson, D. J., Wilson, H. R., Wilson, J., Wischmeier, M., Withenshaw, G., Withycombe, A., Witts, D. M., Wood, D., Wood, R., Woodley, C., Wray, S., Wright, J., Wright, J. C., Wu, J., Wukitch, S., Wynn, A., Xu, T., Yadikin, D., Yanling, W., Yao, L., Yavorskij, V., Yoo, M. G., Young, C., Young, D., Young, I. D., Young, R., Zacks, J., Zagorski, R., Zaitsev, F. S., Zanino, R., Zarins, A., Zastrow, K. D., Zerbini, M., Zhang, W., Zhou, Y., Zilli, E., Zoita, V., Zoletnik, S., Zychor, I., Andersson Sundén, E., Baiã¡o, D., Belonohy, Ã. ., Bergsã¥ker, H., Bãlkovã¡, P., Bjã¶rkas, C., Bodnã¡r, G., Broså awski, A., Calabrã², G., Crombã©, K., De Castro, A., De La Cal, E., De La Luna, E., De Pablos, J. L., De Vries, P., Den Harder, N., D'Inca, R., Donnã©, T., Duckworth, P. h., Ä uran, I., Durodiã©, F., Eich, T. h., Fã©vrier, O., Gã¡l, K., Gaå azka, K., Galvã¡o, R., GarcÃa-Muñoz, M., Gardarein, J. -. L., Glã¶ggler, S., Goloborod'Ko, V., Goncalves, B., Guã©rard, C., Horã¡ä ek, J., Imrãå¡ek, M., Jã¤rvinen, A., Jednorã³g, S., Kã¶chl, F., Kã¶ppen, M., Kowalska-StrzÈ©ciwilk, E., Ksiaå¼ek, I., Å aszyå ska, E., Linsmeier, C. h., Lã¶nnroth, J., Lã³pez, J. M., López-Razola, J., Maquet, P. h., Markoviä , T., MartÃn De Aguilera, A., Martãnez, F. J., MartÃn-SolÃs, J. R., Mertens, P. h., Mlynã¡å , J., O'Gorman, T., O'Mullane, M., Pehkonen, S. -. P., Perez Von Thun, C., Petrå¾ilka, V., Pfefferlã©, D., Pires Dos Reis, A., Pã¼tterich, T. h., Rattã¡, G., Rã©fy, D., Regaã±a, J., Schã¶pf, K., Schwã¶rer, D., Sipilã¤, S. K., Sirã©n, P., Sjã¶strand, H., Stankå«nas, G., Strã¶m, P., Å widerski, Å. ., Tã¡l, B., Thompson, C. -. A., Thrysã¸e, A. S., Tomeå¡, M., Tskhakaya Jun, D., Van Rooij, G. J., Vondrã¡ä ek, P., Pires De Sa, W. W., Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Hôpital de Rangueil, CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse], Laboratoire de microbiologie et génétique moléculaires (LMGM), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Energia [Milano] (DENG), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Research Centre Julich (FZJ), Institute for Plasma Research, Instituto Superior Tecnico Lisboa, Queen's University Belfast, University of Helsinki, CEA, Department of Applied Physics, School services, SCI, National Institutes for Quantum and Radiological Science and Technology, VTT, University of Naples Federico II, Universidad Nacional de Educacion a Distancia, CNR, Russian Research Centre Kurchatov Institute, Universita degli Studi di Napoli Parthenope, Ente Per Le Nuove Tecnologie L'energia e l'ambiente, Troitsk Institute for Innovation and Fusion Research, Uppsala University, National Institute for Cryogenics and Isotopic Technology, Max-Planck-Institut fur Plasmaphysik, University of Catania, Fusion for Energy Joint Undertaking, National Institutes of Natural Sciences - National Institute for Fusion Science, Massachusetts Institute of Technology, University of Latvia, Imperial College London, CIEMAT, University of Oxford, EUROfusion Programme Management Unit, Oak Ridge National Laboratory, Karlsruhe Institute of Technology KIT, University of York, Royal Institute of Technology, Maritime University of Szczecin, H. Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, Czech Academy of Sciences, University of Trento, Ecole Polytechnique Federale de Lausanne (EPFL), Wigner Research Centre for Physics, Comenius University, University of Milan - Bicocca, National Institute for Optoelectronics, Fourth State Research, University of Texas at Austin, Belgian Nuclear Research Center, National Centre for Nuclear Research (NCBJ), Princeton University, CNRS, University of Cagliari, University of Warwick, Soltan Institute for Nuclear Studies, FOM Institute DIFFER, National Institute for Laser, Plasma and Radiation Physics, Ghent University, J. Stefan Institute, Universite de Lorraine, CAS - Institute of Plasma Physics, University of California at San Diego, Koninklijke Militaire School - Ecole Royale Militaire, Horia Hulubei National Institute of Physics and Nuclear Engineering, Chalmers University of Technology, School services, ELEC, Department of Signal Processing and Acoustics, Automaatio- ja systeemitekniik, Universidad Politecnica de Madrid, Second University of Naples, Warsaw University of Technology, Universita della Basilicata, Barcelona Supercomp. Center, Universidad de Sevilla, Centro Brasileiro de Pesquisas Fisicas, Department of Electrical Engineering and Automation, Sähkötekniikan laitos, University of Rome Tor Vergata, RAS - Ioffe Physico Technical Institute, General Atomics, University of Innsbruck, Fusion and Plasma Physics, University of Toyama, University of Strathclyde, National Technical University of Athens, Universita della Tuscia, Technical University of Denmark, Korea Advanced Institute of Science and Technology, Seoul National University, University College Cork, Vienna University of Technology, University of Opole, Daegu University, National Fusion Research Institute, Dublin City University, Universidad Politécnica de Madrid, PELIN LLC, Arizona State University, Universidad Complutense, University of Basel, Universidad Carlos III de Madrid, Consorzio CREATE, Demokritos National Centre for Scientific Research, Purdue University, Universite Libre de Bruxelles, School Services, ARTS, Department of Design, University of California Office of the President, Universidade de Sao Paulo, School Services, BIZ, Department of Information and Service Management, Lithuanian Energy Institute, HRS Fusion, Politecnico di Torino, University of Cassino, University of Electronic Science and Technology of China, Department of Electronics and Nanoengineering, Aalto-yliopisto, Aalto University, and Faculdade de Engenharia
- Subjects
Technology ,fusion ,Física [Ciências exactas e naturais] ,Tokamak ,Nuclear engineering ,DIAGNOSTICS ,01 natural sciences ,ILW ,010305 fluids & plasmas ,law.invention ,Ilw ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Plasma ,H-Mode Plasmas ,law ,ITER ,Disruption Prediction ,COLLISIONALITY ,EDGE LOCALIZED MODES ,Diagnostics ,Operation ,JET ,plasma ,Nuclear and High Energy Physics ,Condensed Matter Physics ,Physics ,Jet (fluid) ,JET, plasma, fusion, ITER ,Divertor ,Settore FIS/01 - Fisica Sperimentale ,Fusion, Plasma and Space Physics ,DENSITY PEAKING ,Carbon Wall ,H-MODE PLASMAS ,[ SPI.MECA.MEFL ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Density Peaking ,Neutron transport ,Facing Components ,Collisionality ,114 Physical sciences ,Física, Física ,Nuclear physics ,Physical sciences [Natural sciences] ,Fusion, plasma och rymdfysik ,Pedestal ,0103 physical sciences ,Nuclear fusion ,ddc:530 ,Neutron ,010306 general physics ,Fusion ,Physics, Physical sciences ,Nuclear and High Energy Physic ,Edge Localized Modes ,QC717 ,Física [Àrees temàtiques de la UPC] ,Reactors de fusió ,Física ,FACING COMPONENTS ,Fusion reactors ,Jet ,CARBON WALL ,DISRUPTION PREDICTION ,OPERATION ,ddc:600 - Abstract
The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at ßN ~ 1.8 and n/nGW ~ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D–T campaign and 14 MeV neutron calibration strategy are reviewed. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053. Peer Reviewed Article signat per 1.173 autors/es: X. Litaudon35, S. Abduallev39, M. Abhangi46, P. Abreu53, M. Afzal7, K.M. Aggarwal29, T. Ahlgren101, J.H. Ahn8, L. Aho-Mantila112, N. Aiba69, M. Airila112, R. Albanese105, V. Aldred7, D. Alegre93, E. Alessi45, P. Aleynikov55, A. Alfier12, A. Alkseev72, M. Allinson7, B. Alper7, E. Alves53, G. Ambrosino105, R. Ambrosino106, L. Amicucci90, V. Amosov88, E. Andersson Sundén22, M. Angelone90, M. Anghel85, C. Angioni62, L. Appel7, C. Appelbee7, P. Arena30, M. Ariola106, H. Arnichand8, S. Arshad41, A. Ash7, N. Ashikawa68, V. Aslanyan64, O. Asunta1, F. Auriemma12, Y. Austin7, L. Avotina103, M.D. Axton7, C. Ayres7, M. Bacharis24, A. Baciero57, D. Baião53, S. Bailey7, A. Baker7, I. Balboa7, M. Balden62, N. Balshaw7, R. Bament7, J.W. Banks7, Y.F. Baranov7, M.A. Barnard7, D. Barnes7, M. Barnes27, R. Barnsley55, A. Baron Wiechec7, L. Barrera Orte34, M. Baruzzo12, V. Basiuk8, M. Bassan55, R. Bastow7, A. Batista53, P. Batistoni90, R. Baughan7, B. Bauvir55, L. Baylor73, B. Bazylev56, J. Beal110, P.S. Beaumont7, M. Beckers39, B. Beckett7, A. Becoulet8, N. Bekris35, M. Beldishevski7, K. Bell7, F. Belli90, M. Bellinger7, É. Belonohy62, N. Ben Ayed7, N.A. Benterman7, H. Bergsåker42, J. Bernardo53, M. Bernert62, M. Berry7, L. Bertalot55, C. Besliu7, M. Beurskens63, B. Bieg61, J. Bielecki47, T. Biewer73, M. Bigi12, P. Bílková50, F. Binda22, A. Bisoffi31, J.P.S. Bizarro53, C. Björkas101, J. Blackburn7, K. Blackman7, T.R. Blackman7, P. Blanchard33, P. Blatchford7, V. Bobkov62, A. Boboc7, G. Bodnár113, O. Bogar18, I. Bolshakova60, T. Bolzonella12, N. Bonanomi97, F. Bonelli56, J. Boom62, J. Booth7, D. Borba35,53, D. Borodin39, I. Borodkina39, A. Botrugno90, C. Bottereau8, P. Boulting7, C. Bourdelle8, M. Bowden7, C. Bower7, C. Bowman110, T. Boyce7, C. Boyd7, H.J. Boyer7, J.M.A. Bradshaw7, V. Braic87, R. Bravanec40, B. Breizman107, S. Bremond8, P.D. Brennan7, S. Breton8, A. Brett7, S. Brezinsek39, M.D.J. Bright7, M. Brix7, W. Broeckx78, M. Brombin12, A. Brosławski65, D.P.D. Brown7, M. Brown7, E. Bruno55, J. Bucalossi8, J. Buch46, J. Buchanan7, M.A. Buckley7, R. Budny76, H. Bufferand8, M. Bulman7, N. Bulmer7, P. Bunting7, P. Buratti90, A. Burckhart62, A. Buscarino30, A. Busse7, N.K. Butler7, I. Bykov42, J. Byrne7, P. Cahyna50, G. Calabrò90, I. Calvo57, Y. Camenen4, P. Camp7, D.C. Campling7, J. Cane7, B. Cannas17, A.J. Capel7, P.J. Card7, A. Cardinali90, P. Carman7, M. Carr7, D. Carralero62, L. Carraro12, B.B. Carvalho53, I. Carvalho53, P. Carvalho53, F.J. Casson7, C. Castaldo90, N. Catarino53, J. Caumont7, F. Causa90, R. Cavazzana12, K. Cave-Ayland7, M. Cavinato12, M. Cecconello22, S. Ceccuzzi90, E. Cecil76, A. Cenedese12, R. Cesario90, C.D. Challis7, M. Chandler7, D. Chandra46, C.S. Chang76, A. Chankin62, I.T. Chapman7, S.C. Chapman28, M. Chernyshova49, G. Chitarin12, G. Ciraolo8, D. Ciric7, J. Citrin38, F. Clairet8, E. Clark7, M. Clark7, R. Clarkson7, D. Clatworthy7, C. Clements7, M. Cleverly7, J.P. Coad7, P.A. Coates7, A. Cobalt7, V. Coccorese105, V. Cocilovo90, S. Coda33, R. Coelho53, J.W. Coenen39, I. Coffey29, L. Colas8, S. Collins7, D. Conka103, S. Conroy22, N. Conway7, D. Coombs7, D. Cooper7, S.R. Cooper7, C. Corradino30, Y. Corre8, G. Corrigan7, S. Cortes53, D. Coster62, A.S. Couchman7, M.P. Cox7, T. Craciunescu86, S. Cramp7, R. Craven7, F. Crisanti90, G. Croci97, D. Croft7, K. Crombé15, R. Crowe7, N. Cruz53, G. Cseh113, A. Cufar81, A. Cullen7, M. Curuia85, A. Czarnecka49, H. Dabirikhah7, P. Dalgliesh7, S. Dalley7, J. Dankowski47, D. Darrow76, O. Davies7, W. Davis55,76, C. Day56, I.E. Day7, M. De Bock55, A. de Castro57, E. de la Cal57, E. de la Luna57, G. De Masi12, J. L. de Pablos57, G. De Temmerman55, G. De Tommasi105, P. de Vries55, K. Deakin7, J. Deane7, F. Degli Agostini12, R. Dejarnac50, E. Delabie73, N. den Harder38, R.O. Dendy7, J. Denis8, P. Denner39, S. Devaux62,104, P. Devynck8, F. Di Maio55, A. Di Siena62, C. Di Troia90, P. Dinca86, R. D’Inca62, B. Ding51, T. Dittmar39, H. Doerk62, R.P. Doerner9, T. Donné34, S.E. Dorling7, S. Dormido-Canto93, S. Doswon7, D. Douai8, P.T. Doyle7, A. Drenik62,81, P. Drewelow63, P. Drews39, Ph. Duckworth55, R. Dumont8, P. Dumortier58, D. Dunai113, M. Dunne62, I. Ďuran50, F. Durodié58, P. Dutta46, B. P. Duval33, R. Dux62, K. Dylst78, N. Dzysiuk22, P.V. Edappala46, J. Edmond7, A.M. Edwards7, J. Edwards7, Th. Eich62, A. Ekedahl8, R. El-Jorf7, C.G. Elsmore7, M. Enachescu84, G. Ericsson22, F. Eriksson16, J. Eriksson22, L.G. Eriksson36, B. Esposito90, S. Esquembri94, H.G. Esser39, D. Esteve8, B. Evans7, G.E. Evans7, G. Evison7, G.D. Ewart7, D. Fagan7, M. Faitsch62, D. Falie86, A. Fanni17, A. Fasoli33, J. M. Faustin33, N. Fawlk7, L. Fazendeiro53, N. Fedorczak8, R.C. Felton7, K. Fenton7, A. Fernades53, H. Fernandes53, J. Ferreira53, J.A. Fessey7, O. Février8, O. Ficker50, A. Field7, S. Fietz62, A. Figueiredo53, J. Figueiredo53,35, A. Fil8, P. Finburg7, M. Firdaouss8, U. Fischer56, L. Fittill7, M. Fitzgerald7, D. Flammini90, J. Flanagan7, C. Fleming7, K. Flinders7, N. Fonnesu90, J. M. Fontdecaba57, A. Formisano79, L. Forsythe7, L. Fortuna30, E. Fortuna-Zalesna19, M. Fortune7, S. Foster7, T. Franke34, T. Franklin7, M. Frasca30, L. Frassinetti42, M. Freisinger39, R. Fresa98, D. Frigione90, V. Fuchs50, D. Fuller35, S. Futatani6, J. Fyvie7, K. Gál34,62, D. Galassi2, K. Gałązka49, J. Galdon-Quiroga92, J. Gallagher7, D. Gallart6, R. Galvão10, X. Gao51, Y. Gao39, J. Garcia8, A. Garcia-Carrasco42, M. García-Muñoz92, J.-L. Gardarein3, L. Garzotti7, P. Gaudio95, E. Gauthier8, D.F. Gear7, S.J. Gee7, B. Geiger62, M. Gelfusa95, S. Gerasimov7, G. Gervasini45, M. Gethins7, Z. Ghani7, M. Ghate46, M. Gherendi86, J.C. Giacalone8, L. Giacomelli45, C.S. Gibson7, T. Giegerich56, C. Gil8, L. Gil53, S. Gilligan7, D. Gin54, E. Giovannozzi90, J.B. Girardo8, C. Giroud7, G. Giruzzi8, S. Glöggler62, J. Godwin7, J. Goff7, P. Gohil43, V. Goloborod’ko102, R. Gomes53, B. Gonçalves53, M. Goniche8, M. Goodliffe7, A. Goodyear7, G. Gorini97, M. Gosk65, R. Goulding76, A. Goussarov78, R. Gowland7, B. Graham7, M.E. Graham7, J. P. Graves33, N. Grazier7, P. Grazier7, N.R. Green7, H. Greuner62, B. Grierson76, F.S. Griph7, C. Grisolia8, D. Grist7, M. Groth1, R. Grove73, C.N. Grundy7, J. Grzonka19, D. Guard7, C. Guérard34, C. Guillemaut8,53, R. Guirlet8, C. Gurl7, H.H. Utoh69, L.J. Hackett7, S. Hacquin8,35, A. Hagar7, R. Hager76, A. Hakola112, M. Halitovs103, S.J. Hall7, S.P. Hallworth Cook7, C. Hamlyn-Harris7, K. Hammond7, C. Harrington7, J. Harrison7, D. Harting7, F. Hasenbeck39, Y. Hatano108, D.R. Hatch107, T.D.V. Haupt7, J. Hawes7, N.C. Hawkes7, J. Hawkins7, P. Hawkins7, P.W. Haydon7, N. Hayter7, S. Hazel7, P.J.L. Heesterman7, K. Heinola101, C. Hellesen22, T. Hellsten42, W. Helou8, O.N. Hemming7, T.C. Hender7, M. Henderson55, S.S. Henderson21, R. Henriques53, D. Hepple7, G. Hermon7, P. Hertout8, C. Hidalgo57, E.G. Highcock27, M. Hill7, J. Hillairet8, J. Hillesheim7, D. Hillis73, K. Hizanidis70, A. Hjalmarsson22, J. Hobirk62, E. Hodille8, C.H.A. Hogben7, G.M.D. Hogeweij38, A. Hollingsworth7, S. Hollis7, D.A. Homfray7, J. Horáček50, G. Hornung15, A.R. Horton7, L.D. Horton36, L. Horvath110, S.P. Hotchin7, M.R. Hough7, P.J. Howarth7, A. Hubbard64, A. Huber39, V. Huber39, T.M. Huddleston7, M. Hughes7, G.T.A. Huijsmans55, C.L. Hunter7, P. Huynh8, A.M. Hynes7, D. Iglesias7, N. Imazawa69, F. Imbeaux8, M. Imríšek50, M. Incelli109, P. Innocente12, M. Irishkin8, I. Ivanova-Stanik49, S. Jachmich58,35, A.S. Jacobsen83, P. Jacquet7, J. Jansons103, A. Jardin8, A. Järvinen1, F. Jaulmes38, S. Jednoróg49, I. Jenkins7, C. Jeong20, I. Jepu86, E. Joffrin8, R. Johnson7, T. Johnson42, Jane Johnston7, L. Joita7, G. Jones7, T.T.C. Jones7, K.K. Hoshino69, A. Kallenbach62, K. Kamiya69, J. Kaniewski7, A. Kantor7, A. Kappatou62, J. Karhunen1, D. Karkinsky7, I. Karnowska7, M. Kaufman73, G. Kaveney7, Y. Kazakov58, V. Kazantzidis70, D.L. Keeling7, T. Keenan7, J. Keep7, M. Kempenaars7, C. Kennedy7, D. Kenny7, J. Kent7, O.N. Kent7, E. Khilkevich54, H.T. Kim35, H.S. Kim80, A. Kinch7, C. king7, D. King7, R.F. King7, D.J. Kinna7, V. Kiptily7, A. Kirk7, K. Kirov7, A. Kirschner39, G. Kizane103, C. Klepper73, A. Klix56, P. Knight7, S.J. Knipe7, S. Knott96, T. Kobuchi69, F. Köchl111, G. Kocsis113, I. Kodeli81, L. Kogan7, D. Kogut8, S. Koivuranta112, Y. Kominis70, M. Köppen39, B. Kos81, T. Koskela1, H.R. Koslowski39, M. Koubiti4, M. Kovari7, E. Kowalska-Strzęciwilk49, A. Krasilnikov88, V. Krasilnikov88, N. Krawczyk49, M. Kresina8, K. Krieger62, A. Krivska58, U. Kruezi7, I. Książek48, A. Kukushkin72, A. Kundu46, T. Kurki-Suonio1, S. Kwak20, R. Kwiatkowski65, O.J. Kwon13, L. Laguardia45, A. Lahtinen101, A. Laing7, N. Lam7, H.T. Lambertz39, C. Lane7, P.T. Lang62, S. Lanthaler33, J. Lapins103, A. Lasa101, J.R. Last7, E. Łaszyńska49, R. Lawless7, A. Lawson7, K.D. Lawson7, A. Lazaros70, E. Lazzaro45, J. Leddy110, S. Lee66, X. Lefebvre7, H.J. Leggate32, J. Lehmann7, M. Lehnen55, D. Leichtle41, P. Leichuer7, F. Leipold55,83, I. Lengar81, M. Lennholm36, E. Lerche58, A. Lescinskis103, S. Lesnoj7, E. Letellier7, M. Leyland110, W. Leysen78, L. Li39, Y. Liang39, J. Likonen112, J. Linke39, Ch. Linsmeier39, B. Lipschultz110, G. Liu55, Y. Liu51, V.P. Lo Schiavo105, T. Loarer8, A. Loarte55, R.C. Lobel7, B. Lomanowski1, P.J. Lomas7, J. Lönnroth1,35, J. M. López94, J. López-Razola57, R. Lorenzini12, U. Losada57, J.J. Lovell7, A.B. Loving7, C. Lowry36, T. Luce43, R.M.A. Lucock7, A. Lukin74, C. Luna5, M. Lungaroni95, C.P. Lungu86, M. Lungu86, A. Lunniss110, I. Lupelli7, A. Lyssoivan58, N. Macdonald7, P. Macheta7, K. Maczewa7, B. Magesh46, P. Maget8, C. Maggi7, H. Maier62, J. Mailloux7, T. Makkonen1, R. Makwana46, A. Malaquias53, A. Malizia95, P. Manas4, A. Manning7, M.E. Manso53, P. Mantica45, M. Mantsinen6, A. Manzanares91, Ph. Maquet55, Y. Marandet4, N. Marcenko88, C. Marchetto45, O. Marchuk39, M. Marinelli95, M. Marinucci90, T. Markovič50, D. Marocco90, L. Marot26, C.A. Marren7, R. Marshal7, A. Martin7, Y. Martin33, A. Martín de Aguilera57, F.J. Martínez93, J. R. Martín-Solís14, Y. Martynova39, S. Maruyama55, A. Masiello12, M. Maslov7, S. Matejcik18, M. Mattei79, G.F. Matthews7, F. Maviglia11, M. Mayer62, M.L. Mayoral34, T. May-Smith7, D. Mazon8, C. Mazzotta90, R. McAdams7, P.J. McCarthy96, K.G. McClements7, O. McCormack12, P.A. McCullen7, D. McDonald34, S. McIntosh7, R. McKean7, J. McKehon7, R.C. Meadows7, A. Meakins7, F. Medina57, M. Medland7, S. Medley7, S. Meigh7, A.G. Meigs7, G. Meisl62, S. Meitner73, L. Meneses53, S. Menmuir7,42, K. Mergia71, I.R. Merrigan7, Ph. Mertens39, S. Meshchaninov88, A. Messiaen58, H. Meyer7, S. Mianowski65, R. Michling55, D. Middleton-Gear7, J. Miettunen1, F. Militello7, E. Militello-Asp7, G. Miloshevsky77, F. Mink62, S. Minucci105, Y. Miyoshi69, J. Mlynář50, D. Molina8, I. Monakhov7, M. Moneti109, R. Mooney7, S. Moradi37, S. Mordijck43, L. Moreira7, R. Moreno57, F. Moro90, A.W. Morris7, J. Morris7, L. Moser26, S. Mosher73, D. Moulton7,1, A. Murari12,35, A. Muraro45, S. Murphy7, N.N. Asakura69, Y.S. Na80, F. Nabais53, R. Naish7, T. Nakano69, E. Nardon8, V. Naulin83, M.F.F. Nave53, I. Nedzelski53, G. Nemtsev88, F. Nespoli33, A. Neto41, R. Neu62, V.S. Neverov72, M. Newman7, K.J. Nicholls7, T. Nicolas33, A.H. Nielsen83, P. Nielsen12, E. Nilsson8, D. Nishijima99, C. Noble7, M. Nocente97, D. Nodwell7, K. Nordlund101, H. Nordman16, R. Nouailletas8, I. Nunes53, M. Oberkofler62, T. Odupitan7, M.T. Ogawa69, T. O’Gorman7, M. Okabayashi76, R. Olney7, O. Omolayo7, M. O’Mullane21, J. Ongena58, F. Orsitto11, J. Orszagh18, B.I. Oswuigwe7, R. Otin7, A. Owen7, R. Paccagnella12, N. Pace7, D. Pacella90, L.W. Packer7, A. Page7, E. Pajuste103, S. Palazzo30, S. Pamela7, S. Panja46, P. Papp18, R. Paprok50, V. Parail7, M. Park66, F. Parra Diaz27, M. Parsons73, R. Pasqualotto12, A. Patel7, S. Pathak46, D. Paton7, H. Patten33, A. Pau17, E. Pawelec48, C. Paz Soldan43, A. Peackoc36, I.J. Pearson7, S.-P. Pehkonen112, E. Peluso95, C. Penot55, A. Pereira57, R. Pereira53, P.P. Pereira Puglia7, C. Perez von Thun35,39, S. Peruzzo12, S. Peschanyi56, M. Peterka50, P. Petersson42, G. Petravich113, A. Petre84, N. Petrella7, V. Petržilka50, Y. Peysson8, D. Pfefferlé33, V. Philipps39, M. Pillon90, G. Pintsuk39, P. Piovesan12, A. Pires dos Reis52, L. Piron7, A. Pironti105, F. Pisano17, R. Pitts55, F. Pizzo79, V. Plyusnin53, N. Pomaro12, O.G. Pompilian86, P.J. Pool7, S. Popovichev7, M.T. Porfiri90, C. Porosnicu86, M. Porton7, G. Possnert22, S. Potzel62, T. Powell7, J. Pozzi7, V. Prajapati46, R. Prakash46, G. Prestopino95, D. Price7, M. Price7, R. Price7, P. Prior7, R. Proudfoot7, G. Pucella90, P. Puglia52, M.E. Puiatti12, D. Pulley7, K. Purahoo7, Th. Pütterich62, E. Rachlew25, M. Rack39, R. Ragona58, M.S.J. Rainford7, A. Rakha6, G. Ramogida90, S. Ranjan46, C.J. Rapson62, J.J. Rasmussen83, K. Rathod46, G. Rattá57, S. Ratynskaia82, G. Ravera90, C. Rayner7, M. Rebai97, D. Reece7, A. Reed7, D. Réfy113, B. Regan7, J. Regaña34, M. Reich62, N. Reid7, F. Reimold39, M. Reinhart34, M. Reinke110,73, D. Reiser39, D. Rendell7, C. Reux8, S.D.A. Reyes Cortes53, S. Reynolds7, V. Riccardo7, N. Richardson7, K. Riddle7, D. Rigamonti97, F.G. Rimini7, J. Risner73, M. Riva90, C. Roach7, R.J. Robins7, S.A. Robinson7, T. Robinson7, D.W. Robson7, R. Roccella55, R. Rodionov88, P. Rodrigues53, J. Rodriguez7, V. Rohde62, F. Romanelli90, M. Romanelli7, S. Romanelli7, J. Romazanov39, S. Rowe7, M. Rubel42, G. Rubinacci105, G. Rubino12, L. Ruchko52, M. Ruiz94, C. Ruset86, J. Rzadkiewicz65, S. Saarelma7, R. Sabot8, E. Safi101, P. Sagar7, G. Saibene41, F. Saint-Laurent8, M. Salewski83, A. Salmi112, R. Salmon7, F. Salzedas53, D. Samaddar7, U. Samm39, D. Sandiford7, P. Santa46, M.I.K. Santala1, B. Santos53, A. Santucci90, F. Sartori41, R. Sartori41, O. Sauter33, R. Scannell7, T. Schlummer39, K. Schmid62, V. Schmidt12, S. Schmuck7, M. Schneider8, K. Schöpf102, D. Schwörer32, S.D. Scott76, G. Sergienko39, M. Sertoli62, A. Shabbir15, S.E. Sharapov7, A. Shaw7, R. Shaw7, H. Sheikh7, A. Shepherd7, A. Shevelev54, A. Shumack38, G. Sias17, M. Sibbald7, B. Sieglin62, S. Silburn7, A. Silva53, C. Silva53, P.A. Simmons7, J. Simpson7, J. Simpson-Hutchinson7, A. Sinha46, S.K. Sipilä1, A.C.C. Sips36, P. Sirén112, A. Sirinelli55, H. Sjöstrand22, M. Skiba22, R. Skilton7, K. Slabkowska49, B. Slade7, N. Smith7, P.G. Smith7, R. Smith7, T.J. Smith7, M. Smithies110, L. Snoj81, S. Soare85, E. R. Solano35,57, A. Somers32, C. Sommariva8, P. Sonato12, A. Sopplesa12, J. Sousa53, C. Sozzi45, S. Spagnolo12, T. Spelzini7, F. Spineanu86, G. Stables7, I. Stamatelatos71, M.F. Stamp7, P. Staniec7, G. Stankūnas59, C. Stan-Sion84, M.J. Stead7, E. Stefanikova42, I. Stepanov58, A.V. Stephen7, M. Stephen46, A. Stevens7, B.D. Stevens7, J. Strachan76, P. Strand16, H.R. Strauss44, P. Ström42, G. Stubbs7, W. Studholme7, F. Subba75, H.P. Summers21, J. Svensson63, Ł. Świderski65, T. Szabolics113, M. Szawlowski49, G. Szepesi7, T.T. Suzuki69, B. Tál113, T. Tala112, A.R. Talbot7, S. Talebzadeh95, C. Taliercio12, P. Tamain8, C. Tame7, W. Tang76, M. Tardocchi45, L. Taroni12, D. Taylor7, K.A. Taylor7, D. Tegnered16, G. Telesca15, N. Teplova54, D. Terranova12, D. Testa33, E. Tholerus42, J. Thomas7, J.D. Thomas7, P. Thomas55, A. Thompson7, C.-A. Thompson7, V.K. Thompson7, L. Thorne7, A. Thornton7, A.S. Thrysøe83, P.A. Tigwell7, N. Tipton7, I. Tiseanu86, H. Tojo69, M. Tokitani67, P. Tolias82, M. Tomeš50, P. Tonner7, M. Towndrow7, P. Trimble7, M. Tripsky58, M. Tsalas38, P. Tsavalas71, D. Tskhakaya jun102, I. Turner7, M.M. Turner32, M. Turnyanskiy34, G. Tvalashvili7, S.G.J. Tyrrell7, A. Uccello45, Z. Ul-Abidin7, J. Uljanovs1, D. Ulyatt7, H. Urano69, I. Uytdenhouwen78, A.P. Vadgama7, D. Valcarcel7, M. Valentinuzzi8, M. Valisa12, P. Vallejos Olivares42, M. Valovic7, M. Van De Mortel7, D. Van Eester58, W. Van Renterghem78, G.J. van Rooij38, J. Varje1, S. Varoutis56, S. Vartanian8, K. Vasava46, T. Vasilopoulou71, J. Vega57, G. Verdoolaege58, R. Verhoeven7, C. Verona95, G. Verona Rinati95, E. Veshchev55, N. Vianello45, J. Vicente53, E. Viezzer62,92, S. Villari90, F. Villone100, P. Vincenzi12, I. Vinyar74, B. Viola90, A. Vitins103, Z. Vizvary7, M. Vlad86, I. Voitsekhovitch34, P. Vondráček50, N. Vora7, T. Vu8, W.W. Pires de Sa52, B. Wakeling7, C.W.F. Waldon7, N. Walkden7, M. Walker7, R. Walker7, M. Walsh55, E. Wang39, N. Wang39, S. Warder7, R.J. Warren7, J. Waterhouse7, N.W. Watkins28, C. Watts55, T. Wauters58, A. Weckmann42, J. Weiland23, H. Weisen33, M. Weiszflog22, C. Wellstood7, A.T. West7, M.R. Wheatley7, S. Whetham7, A.M. Whitehead7, B.D. Whitehead7, A.M. Widdowson7, S. Wiesen39, J. Wilkinson7, J. Williams7, M. Williams7, A.R. Wilson7, D.J. Wilson7, H.R. Wilson110, J. Wilson7, M. Wischmeier62, G. Withenshaw7, A. Withycombe7, D.M. Witts7, D. Wood7, R. Wood7, C. Woodley7, S. Wray7, J. Wright7, J.C. Wright64, J. Wu89, S. Wukitch64, A. Wynn110, T. Xu7, D. Yadikin16, W. Yanling39, L. Yao89, V. Yavorskij102, M.G. Yoo80, C. Young7, D. Young7, I.D. Young7, R. Young7, J. Zacks7, R. Zagorski49, F.S. Zaitsev18, R. Zanino75, A. Zarins103, K.D. Zastrow7, M. Zerbini90, W. Zhang62, Y. Zhou42, E. Zilli12, V. Zoita86, S. Zoletnik113, I. Zychor65 and JET Contributorsa // EUROfusion Consortium JET, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom / 1 Aalto University, PO Box 14100, FIN-00076 Aalto, Finland / 2 Aix Marseille Université, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451, Marseille, France / 3 Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13013 Marseille, France / 4 Aix-Marseille Université, CNRS, PIIM, UMR 7345, 13013 Marseille, France / 5 Arizona State University, Tempe, AZ, United States of America / 6 Barcelona Supercomputing Center, Barcelona, Spain / 7 CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom / 8 CEA, IRFM, F-13108 Saint Paul Lez Durance, France / 9 Center for Energy Research, University of California at San Diego, La Jolla, CA 92093, United States of America / 10 Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud, 160, Rio de Janeiro CEP 22290-180, Brazil / 11 Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 12 Consorzio RFX, corso Stati Uniti 4, 35127 Padova, Italy / 13 Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-174, Republic of Korea / 14 Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain / 15 Department of Applied Physics UG (Ghent University) St-Pietersnieuwstraat 41 B-9000 Ghent, Belgium / 16 Department of Earth and Space Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden / 17 Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi 09123, Cagliari, Italy / 18 Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics Comenius University Mlynska dolina F2, 84248 Bratislava, Slovakia / 19 Department of Materials Science, Warsaw University of Technology, PL-01-152 Warsaw, Poland / 20 Department of Nuclear and Quantum Engineering, KAIST, Daejeon 34141, Korea / 21 Department of Physics and Applied Physics, University of Strathclyde, Glasgow, G4 ONG, United Kingdom / 22 Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden / 23 Department of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden / 24 Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom / 25 Department of Physics, SCI, KTH, SE-10691 Stockholm, Sweden / 26 Department of Physics, University of Basel, Basel, Switzerland / 27 Department of Physics, University of Oxford, Oxford, OX1 2JD, United Kingdom / 28 Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom / 29 Department of Pure and Applied Physics, Queens University, Belfast, BT7 1NN, United Kingdom / 30 Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, 95125 Catania, Italy / 31 Dipartimento di Ingegneria Industriale, University of Trento, Trento, Italy / 32 Dublin City University (DCU), Dublin, Ireland / 33 Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland / 34 EUROfusion Programme Management Unit, Boltzmannstr. 2, 85748 Garching, Germany / 35 EUROfusion Programme Management Unit, Culham Science Centre, Culham, OX14 3DB, United Kingdom / 36 European Commission, B-1049 Brussels, Belgium / 37 Fluid and Plasma Dynamics, ULB—Campus Plaine—CP 231 Boulevard du Triomphe, 1050 Bruxelles, Belgium / 38 FOM Institute DIFFER, Eindhoven, Netherlands / 39 Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung—Plasmaphysik, 52425 Jülich, Germany / 40 Fourth State Research, 503 Lockhart Dr, Austin, TX, United States of America / 41 Fusion for Energy Joint Undertaking, Josep Pl. 2, Torres Diagonal Litoral B3, 08019, Barcelona, Spain / 42 Fusion Plasma Physics, EES, KTH, SE-10044 Stockholm, Sweden / 43 General Atomics, PO Box 85608, San Diego, CA 92186-5608, United States of America / 44 HRS Fusion, West Orange, NJ, United States of America / 45 IFP-CNR, via R. Cozzi 53, 20125 Milano, Italy / 46 Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat State, India / 47 Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Kraków, Poland / 48 Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland / 49 Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland / 50 Institute of Plasma Physics AS CR, Za Slovankou 1782/3, 182 00 Praha 8, Czechia / 51 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China / 52 Instituto de Física, Universidade de São Paulo, Rua do Matão Travessa R Nr.187 CEP 05508-090 Cidade Universitária, São Paulo, Brasil / 53 Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal / 54 Ioffe Physico-Technical Institute, 26 Politekhnicheskaya, St Petersburg 194021, Russian Federation / 55 ITER Organization, Route de Vinon, CS 90 046, 13067 Saint Paul Lez Durance, France / 56 Karlsruhe Institute of Technology, PO Box 3640, D-76021 Karlsruhe, Germany / 57 Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain / 58 Laboratory for Plasma Physics Koninklijke Militaire School—Ecole Royale Militaire, Renaissancelaan 30 Avenue de la Renaissance B-1000, Brussels, Belgium / 59 Lithuanian energy institute, Breslaujos g. 3, LT-44403, Kaunas, Lithuania / 60 Magnetic Sensor Laboratory, Lviv Polytechnic National University, Lviv, Ukraine / 61 Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin, Poland / 62 Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany / 63 Max-Planck-Institut für Plasmaphysik, Teilinsitut Greifswald, D-17491 Greifswald, Germany / 64 MIT Plasma Science and Fusion Centre, Cambridge, MA 02139, United States of America / 65 National Centre for Nuclear Research (NCBJ), 05-400 Otwock-Świerk, Poland / 66 National Fusion Research Institute (NFRI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea / 67 National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292, Japan / 68 National Institute for Fusion Science, Toki, 509-5292, Japan / 69 National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193, Japan / 70 National Technical University of Athens, Iroon Politechniou 9, 157 73 Zografou, Athens, Greece / 71 NCSR ‘Demokritos’, 153 10, Agia Paraskevi Attikis, Greece / 72 NRC Kurchatov Institute, 1 Kurchatov Square, Moscow 123182, Russian Federation / 73 Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169, United States of America / 74 PELIN LLC, 27a, Gzhatskaya Ulitsa, Saint Petersburg, 195220, Russian Federation / 75 Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy / 76 Princeton Plasma Physics Laboratory, James Forrestal Campus, Princeton, NJ 08543, United States of America / 77 Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, United States of America / 78 SCK-CEN, Nuclear Research Centre, 2400 Mol, Belgium / 79 Second University of Napoli, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 80 Seoul National University, Shilim-Dong, Gwanak-Gu, Republic of Korea / 81 Slovenian Fusion Association (SFA), Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia / 82 Space and Plasma Physics, EES, KTH SE-100 44 Stockholm, Sweden / 83 Technical University of Denmark, Department of Physics, Bldg 309, DK-2800 Kgs Lyngby, Denmark / 84 The ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, Magurele-Bucharest, Romania / 85 The National Institute for Cryogenics and Isotopic Technology, Ramnicu Valcea, Romania / 86 The National Institute for Laser, Plasma and Radiation Physics, Magurele-Bucharest, Romania / 87 The National Institute for Optoelectronics, Magurele-Bucharest, Romania / 88 Troitsk Insitute of Innovating and Thermonuclear Research (TRINITI), Troitsk 142190, Moscow Region, Russian Federation / 89 University of Electronic Science and Technology of China, Chengdu, People’s Republic of China / 90 Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma), Italy / 91 Universidad Complutense de Madrid, Madrid, Spain / 92 Universidad de Sevilla, Sevilla, Spain / 93 Universidad Nacional de Educación a Distancia, Madrid, Spain / 94 Universidad Politécnica de Madrid, Grupo I2A2, Madrid, Spain / 95 Università di Roma Tor Vergata, Via del Politecnico 1, Roma, Italy / 96 University College Cork (UCC), Ireland / 97 University Milano-Bicocca, piazza della Scienza 3, 20126 Milano, Italy / 98 University of Basilicata, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 99 University of California, 1111 Franklin St., Oakland, CA 94607, United States of America / 100 University of Cassino, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 101 University of Helsinki, PO Box 43, FI-00014 University of Helsinki, Finland / 102 University of Innsbruck, Fusion@Österreichische Akademie der Wissenschaften (ÖAW), Innsbruck, Austria / 103 University of Latvia, 19 Raina Blvd., Riga, LV 1586, Latvia / 104 University of Lorraine, CNRS, UMR7198, YIJL, Nancy, France / 105 University of Napoli ‘Federico II’, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 106 University of Napoli Parthenope, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 107 University of Texas at Austin, Institute for Fusion Studies, Austin, TX 78712, United States of America / 108 University of Toyama, Toyama, 930-8555, Japan / 109 University of Tuscia, DEIM, Via del Paradiso 47, 01100 Viterbo, Italy / 110 University of York, Heslington, York YO10 5DD, United Kingdom / 111 Vienna University of Technology, Fusion@Österreichische Akademie der Wissenschaften (ÖAW), Austria / 112 VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT, Finland / 113 Wigner Research Centre for Physics, PO Box 49, H-1525 Budapest, Hungary
- Published
- 2017
- Full Text
- View/download PDF
15. Simulations of the SOL plasma for FAST, a proposed ITER satellite tokamak
- Author
-
R. Zagórski, B. Viola, F. Crisanti, G. Calabrò, L. Lauro-Taroni, G. Maddaluno, G. Corrigan, and V. Pericoli Ridolfini
- Subjects
Range (particle radiation) ,Materials science ,Tokamak ,Separatrix ,Mechanical Engineering ,Nuclear engineering ,Divertor ,Plasma ,law.invention ,Nuclear Energy and Engineering ,Impurity ,law ,Limit (music) ,General Materials Science ,Satellite ,Atomic physics ,Civil and Structural Engineering - Abstract
The first simulations with EDGE2D/EIRENE code of the SOL plasma in the FAST tokamak have been run for the basic H-mode scenario. Its similarity to ITER and relevance for DEMO bring interest to the study. Five different preliminary divertor designs have been examined by varying density at separatrix over the plausible range n s,out = 0.7–1.0 × 10 20 m −3 . Margins exist for optimizing the design and minimizing the impurity injection rate even at the lowest density, with load below the safe limit of 18 MW/m 2 on the monoblock W targets, and to achieve a good degree of detachment at higher density. Both the plate tilting angle and the neutral dynamics are crucial factors. The detachment level can be significantly increased for the higher density scenario, while for the full non-inductive operation the injection of impurities will probably be necessary to reduce the heat load.
- Published
- 2011
- Full Text
- View/download PDF
16. Requirements specification for the Neutral Beam Injector on FAST
- Author
-
T. Bolzonella, M. Schneider, W. Rigato, A. Cardinali, J.F. Artaud, Diego Marcuzzi, G. Calabrò, P. Mantica, F. Crisanti, M. Baruzzo, Frederic Imbeaux, Fulvio Zonca, P. Zaccaria, V. Basiuk, M. Valisa, A. Cucchiaro, M. Marinucci, Piergiorgio Sonato, and L. Lauro Taroni
- Subjects
Coupling ,Tokamak ,Mechanical Engineering ,NBI ,Software requirements specification ,Injector ,Integrated approach ,Neutral beam injection ,law.invention ,Nuclear Energy and Engineering ,Conceptual design ,Neutral beam injector ,law ,FAST ,Systems engineering ,General Materials Science ,Fusion ,Civil and Structural Engineering - Abstract
This paper discusses the scientific and technical requirements for a Neutral Beam Injection system on the FAST tokamak and describes a preliminary conceptual design of a suitable injector. FAST is being proposed as a European experiment in support to the operations on ITER and to the design of DEMO. The specific mission of this device is an integrated approach to a number of outstanding burning plasmas physics and operational issues with an emphasis on the impact of fast particles on turbulent transport. Such scientific requirements set a series of technical challenges regarding the injector and the coupling of the injector to the FAST main chamber that are addressed in the paper. A preliminary conceptual design of the injector is proposed which attempts to meet the stated requirements.
- Published
- 2011
- Full Text
- View/download PDF
17. EDGE2D comparisons of JET tungsten and carbon screening
- Author
-
M. O'Mullane, L. Lauro-Taroni, C. F. Maggi, Jet-Efda Contributors, J. Seebacher, J. D. Strachan, G. Corrigan, D. Reiter, J. Spence, S. Wiesen, D. Harting, G. F. Matthews, and H. Summer
- Subjects
Nuclear and High Energy Physics ,Jet (fluid) ,chemistry.chemical_element ,Plasma ,Tungsten ,Edge (geometry) ,chemistry.chemical_compound ,Nuclear Energy and Engineering ,chemistry ,Impurity ,Ionization ,Physics::Accelerator Physics ,General Materials Science ,Atomic carbon ,Atomic physics ,Carbon - Abstract
This paper studies the effect of bundling groups of contiguous carbon and tungsten ionization stages on the calculated impurity screening. EDGE2D/EIRENE was used to calculate the charge state distribution in the SOL and the edge of the plasma core, which resulted from the puffing of either atomic carbon or tungsten at the JET outer mid-plane. The input parameters were constant for a number of code calculations where the only parameter changed was the number and/or charge states bundled in either carbon or tungsten. In this manner, the effect of bundling on the carbon or tungsten screening or fuelling efficiency was determined. For carbon and tungsten there was only a weak dependence upon the actual bundling scheme used.
- Published
- 2011
- Full Text
- View/download PDF
18. The effect of NOD2 on the microbiota in Crohn's disease
- Author
-
Mackenzie L. Lauro, Catherine L. Grimes, and Jason Burch
- Subjects
0301 basic medicine ,Biomedical Engineering ,Nod2 Signaling Adaptor Protein ,Bioengineering ,Biology ,medicine.disease_cause ,Article ,03 medical and health sciences ,Immune system ,Crohn Disease ,NOD2 ,medicine ,Animals ,Humans ,Microbiome ,Receptor ,Mutation ,Crohn's disease ,Innate immune system ,Microbiota ,medicine.disease ,digestive system diseases ,030104 developmental biology ,Immunology ,Dysbiosis ,Biotechnology - Abstract
Recent advancements toward the treatment of Crohn’s disease (CD) indicate great promise for long-term remission. CD patients suffer from a complex host of dysregulated interactions between their innate immune system and microbiome. The most predominant link to the onset of CD is a genetic mutation in the innate immune receptor nucleotide-binding oligomerization domain-containing 2 (NOD2). NOD2 responds to the presence of bacteria and stimulates the immune response. Mutations to NOD2 promote low diversity and dysbiosis in the microbiome, leading to impaired mucosal barrier function. Current treatments suppress the immune response rather than enhancing the function of this critical protein. New progress towards stabilizing NOD2 signaling through its interactions with chaperone proteins holds potential in the development of novel CD therapeutics.
- Published
- 2015
19. Probing the Inflammatory Response Behind Diabetes and Obesity via the Biochemical Characterization of NOD1, an Innate Immune Receptor
- Author
-
Brian J. Bahnson, Catherine L. Grimes, Thomas Rivas, and Mackenzie L. Lauro
- Subjects
Innate immune system ,business.industry ,Inflammatory response ,medicine.disease ,Biochemistry ,Obesity ,Diabetes mellitus ,Immunology ,NOD1 ,Genetics ,Medicine ,Receptor ,business ,Molecular Biology ,Biotechnology - Published
- 2015
- Full Text
- View/download PDF
20. Molecular Characterization and Structural Determination of Nod2, an Innate Immune Receptor
- Author
-
Catherine L. Grimes, Mackenzie L. Lauro, and Brian J. Bahnson
- Subjects
Innate immune system ,NOD2 ,Genetics ,Pattern recognition receptor ,Biology ,Receptor ,Molecular Biology ,Biochemistry ,Biotechnology ,Cell biology - Published
- 2015
- Full Text
- View/download PDF
21. BRIGHTEARTH: PIPELINE FOR ON-THE-FLY 3D RECONSTRUCTION OF URBAN AND RURAL SCENES FROM ONE SATELLITE IMAGE
- Author
-
S. Tripodi, N. Girard, G. Fonteix, L. Duan, W. Mapurisa, M. Leras, F. Trastour, Y. Tarabalka, and L. Laurore
- Subjects
Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Applied optics. Photonics ,TA1501-1820 - Abstract
With the growth of the availability and quality of satellite images, automatic 3D reconstruction from optical satellite images remains a popular research topic. Numerous applications, such as telecommunications and defence, directly benefit from the use of 3D models of both urban and rural scenes. While most of the state-of-the-art methods use stereo pairs for 3D reconstruction, such pairs are not immediately available anywhere in the world. In this paper, we propose an automatic pipeline for very-large-scale 3D reconstruction of urban and rural scenes from one high-resolution satellite image. Convolutional neural networks are trained to extract key semantic information. The extracted information is then converted into GIS vector format, and enriched by both terrain and object height information. The final classification step is applied, yielding a 16-class 3D map. The presented pipeline is operational and available for commercial purposes under the BrightEarth trademark.
- Published
- 2022
- Full Text
- View/download PDF
22. The Impact of Business Support Services for Small and Medium Enterprises on Firm Performance in Low- and Middle-Income Countries
- Author
-
Piza, C. (Caio), Cravo, T.A. (Tulio), Taylor, L. (Linnet), Gonzalez, L. (Lauro), Musse, I. (Isabel), Furtado, I. (Isabela), Sierra, A.C. (Ana), Abdelnour, S.R. (Samer), Piza, C. (Caio), Cravo, T.A. (Tulio), Taylor, L. (Linnet), Gonzalez, L. (Lauro), Musse, I. (Isabel), Furtado, I. (Isabela), Sierra, A.C. (Ana), and Abdelnour, S.R. (Samer)
- Abstract
Business support interventions in low and middle-income countries (LMICs) direct a large amount of resources to SMEs, with the assumption that institutional constraints impede small and medium-sized enterprises (SMEs) from generating profits and employment at the firm level, which in turn is thought to impede economic growth and poverty reduction. Yet despite this abundance of resources, very little is known about the impact of such interventions. To address this gap, this systematic review analyses evaluations of SME support services in LMICs to help inform policy debates pertaining to SMEs and business support services. This review examines the available evidence on the effects of SME support services in LMICs on firm-level performance indicators (such as revenues, profits, and productivity), employment generation, and labour productivity.
- Published
- 2016
- Full Text
- View/download PDF
23. FAST: A European ITER satellite experiment in the view of DEMO
- Author
-
A. Di Zenobio, Piergiorgio Sonato, G. Ramogida, G. Brolatti, L. Reccia, M. Valisa, L. Lauro Taroni, G. Calabrò, B. Viola, A. della Corte, P. Frosi, M. Baruzzo, G. M. Polli, C. Rita, Fabio Subba, F. Crisanti, V. Rigato, Francesco Maviglia, Diego Marcuzzi, P. Costa, Tommaso Bolzonella, A. Cucchiaro, R. Villari, Luigi Muzzi, Raffaele Albanese, S. Roccella, D. Harting, V. Pericoli-Ridolfini, G. Artaserse, F. Crescenzi, G. Maddaluno, R. Coletti, Aldo Pizzuto, S. Turtu, S. Wiesen, M. Santinelli, F., Crisanti, A., Cucchiaro, Albanese, Raffaele, G., Artaserse, M., Baruzzo, T., Bolzonella, G., Brolatti, G., Calabrò, F., Crescenzi, R., Coletti, P., Costa, A., della Corte, A., Di Zenobio, P., Frosi, D., Harting, L., Lauro Taroni, G., Maddaluno, D., Marcuzzi, F., Maviglia, L., Muzzi, V., Pericoli Ridolfini, A., Pizzuto, G., Polli, G., Ramogida, L., Reccia, V., Rigato, C., Rita, S., Roccella, M., Santinelli, P., Sonato, F., Subba, S., Turtù, M., Valisa, R., Villari, B., Viola, and S., Wiesen
- Subjects
Tokamak ,Helium gas ,Computer science ,Advanced Tokamak regime ,Mechanical Engineering ,Nuclear engineering ,Divertor ,Ripple ,FAST Fusion ,Torus ,Plasma ,FAST Tokamak ,Liquid lithium divertor ,law.invention ,Burning plasma ,Burning plasmas ,Nuclear Energy and Engineering ,law ,Advanced Tokamak regimes ,Range (aeronautics) ,General Materials Science ,Satellite ,Civil and Structural Engineering - Abstract
Fusion Advanced Studies Torus (FAST) aims to contribute to the exploitation of ITER and to explore innovative DEMO technology. FAST has been designed to study, in an integrated scenario: (a) relevant plasma-wall interaction problems, with a large power load (P/R ∼ 22 MW/m; P/R2 ∼ 12 MW/m2) and with a full metallic wall; (b) to tackle operational problems in regimes with relevant fusion parameters; (c) to investigate the non-linear dynamics of fast particles (alpha like) in burning plasmas. FAST will operate on a wide parameters range, namely in high performance H-mode (BT ∼ 8.5 T; IP ∼ 8 MA) as well as in advanced Tokamak operation up to full non-inductive current scenario (IP ∼ 2 MA). The main heating is based on 30 MW ICRH, but the ports have been designed to allocate up to 20 MW of 1 MeV NNBI. Helium gas at 30 K is used for cooling of the full machine, a preliminary analysis shows the possibility of realizing FAST with a complete superconductor set of coils. An innovative active system is under development to reduce and to control the magnetic ripple. Tungsten (W) or liquid lithium (L–Li) has been chosen for the divertor material plates and the code EDGE2D has been used to optimize the divertor geometry.
- Published
- 2011
- Full Text
- View/download PDF
24. Emerging Pathologies in Aquaculture: Effects on Production and Food Safety
- Author
-
G. Petracca, C. Ghittino, C. Panzieri, F. Agnetti, M. Latini, R. Ciappelloni, and L. Lauro
- Subjects
Trout ,Fish farming ,Fisheries ,Zoology ,Vibrio vulnificus ,Infections ,Fish Diseases ,Aquaculture ,Zoonoses ,Vibrio Infections ,Animals ,Humans ,Mariculture ,Streptococcus iniae ,General Veterinary ,biology ,business.industry ,Bacterial Infections ,General Medicine ,biology.organism_classification ,Sea Bream ,Fishery ,Food ,Rainbow trout ,business - Abstract
Infectious diseases represent a limiting factor for the further development of Italian aquaculture. The recent introduction and spreading of new pathogens, along with the global climatic change, has contributed to a considerable decrease in trout production. Emerging pathologies in rainbow trout culture include viral diseases, e.g. infectious haematopoietic necrosis (IHN), bacterial diseases, such as lactococcosis and visceral flavobacteriosis, and parasitical diseases, e.g. proliferative kidney disease (PKD). Higher mortality rates in trout fry and fingerlings are generally induced by visceral flavobacteriosis and IHN, while the main losses in large trout during the warm season are due to lactococcosis and PKD. Mariculture has at present a better sanitary status compared to trout culture, but a rapid dissemination of pathogens, including zoonosis agents, is envisaged also for seabass and seabream. Emerging pathologies in sea bass include VNN, pseudotuberculosis, streptococcosis and tuberculosis. Seabream is much more resistant and is mainly affected by novel Vibrio infections and enteromyxidiosis. A good sanitary management of fish farms is essential for avoiding or limiting losses caused by emerging pathologies. Transmission of zoonosis agents to man, through the consumption of cultured fish, is very remote in Italy. On the contrary, transmission of Streptococcus iniae, Vibrio vulnificus and Mycobacterium marinum by means of improper manipulation of infected fish, could represent a potential hazard for fish farmers and fish processors, as well as for people preparing fish meals.
- Published
- 2003
- Full Text
- View/download PDF
25. Island aware JINTRAC simulations of JET pulses with neutron deficit
- Author
-
C. Marchetto (1,2), T. Koskela1,(3), F. Koechl (1,4), A. Snicker (3), H. Weisen (1,6), M. Romanelli (1), L. Lauro Taroni (1,5), and I. Lupelli1and JET EFDA Contributors
- Published
- 2014
26. Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling
- Author
-
P. Belo, N. C. Hawkes, T. Odstrcil, Emily Belli, C. Challis, L. Lauro Taroni, Jet-Efda Contributors, Th. Pütterich, P. Mantica, J. Hobirk, M. Romanelli, P. Drewelow, Matthew Reinke, C. Giroud, Jan Mlynar, T. C. Hender, C. Angioni, F. J. Casson, M. Baruzzo, C. F. Maggi, M. Valisa, Tuomas Koskela, and JET EFDA Contributors
- Subjects
Convection ,Physics ,Nuclear and High Energy Physics ,Jet (fluid) ,H-mode hybrid scenario ,Turbulence ,Mode (statistics) ,chemistry.chemical_element ,neoclassical and turbulent transport ,Plasma ,Mechanics ,Tungsten ,heavy impurity transport ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,chemistry ,13. Climate action ,Phase (matter) ,0103 physical sciences ,Tearing ,Atomic physics ,010306 general physics - Abstract
The behaviour of tungsten in the core of hybrid scenario plasmas in JET with the ITER-like wall is analysed and modelled with a combination of neoclassical and gyrokinetic codes. In these discharges, good confinement conditions can be maintained only for the first 2?3?s of the high power phase. Later W accumulation is regularly observed, often accompanied by the onset of magneto-hydrodynamical activity, in particular neoclassical tearing modes (NTMs), both of which have detrimental effects on the global energy confinement. The dynamics of the accumulation process is examined, taking into consideration the concurrent evolution of the background plasma profiles, and the possible onset of NTMs. Two time slices of a representative discharge, before and during the accumulation process, are analysed with two independent methods, in order to reconstruct the W density distribution over the poloidal cross-section. The same time slices are modelled, computing both neoclassical and turbulent transport components and consistently including the impact of centrifugal effects, which can be significant in these plasmas, and strongly enhance W neoclassical transport. The modelling closely reproduces the observations and identifies inward neoclassical convection due to the density peaking of the bulk plasma in the central region as the main cause of the accumulation. The change in W neoclassical convection is directly produced by the transient behaviour of the main plasma density profile, which is hollow in the central region in the initial part of the high power phase of the discharge, but which develops a significant density peaking very close to the magnetic axis in the later phase. The analysis of a large set of discharges provides clear indications that this effect is generic in this scenario. The unfavourable impact of the onset of NTMs on the W behaviour, observed in several discharges, is suggested to be a consequence of a detrimental combination of the effects of neoclassical transport and of the appearance of an island.
- Published
- 2014
- Full Text
- View/download PDF
27. Study of impurity behaviour during JET radiative boundary experiments
- Author
-
N. C. Hawkes, L. Lauro-Taroni, Hui Chen, N. J. Peacock, M. von Hellerman, and R. Giannella
- Subjects
Physics ,Convection ,Jet (fluid) ,Materials science ,Transport coefficient ,Boundary (topology) ,chemistry.chemical_element ,Plasma ,Condensed Matter Physics ,Computational physics ,Ion ,Neon ,Nuclear Energy and Engineering ,chemistry ,Impurity ,Physics::Plasma Physics ,Radiative transfer ,ddc:530 ,Plasma diagnostics ,Atomic physics - Abstract
The transport of light impurity ions is investigated following neon and nitrogen gas puffing in JET ELMy H-mode. Upon achieving consistency among various ion radiation diagnostics through numerical simulations, the experimental ion transport coefficients are compared with the predictions of neoclassical theory at different regions of the plasma. The convection dominates the transport and, in the core, the transport coefficients approach the neoclassical value.
- Published
- 2000
- Full Text
- View/download PDF
28. Methyl isobutyl amiloride alters regional brain reperfusion after resuscitation from cardiac arrest in rats
- Author
-
Karen L. Lauro, Joseph C. LaManna, and Heidi Kabert
- Subjects
Male ,medicine.medical_specialty ,Resuscitation ,Sodium-Hydrogen Exchangers ,medicine.medical_treatment ,Ischemia ,Hemodynamics ,Brain Ischemia ,Amiloride ,Internal medicine ,Animals ,Medicine ,Cardiopulmonary resuscitation ,Rats, Wistar ,Molecular Biology ,Reactive hyperemia ,business.industry ,General Neuroscience ,medicine.disease ,Cardiopulmonary Resuscitation ,Heart Arrest ,Rats ,Cerebral blood flow ,Blood-Brain Barrier ,Cerebrovascular Circulation ,Anesthesia ,Reperfusion ,Cardiology ,Neurology (clinical) ,business ,Perfusion ,Developmental Biology ,medicine.drug - Abstract
In a rat model of cardiac arrest and resuscitation, [(14)C]-iodoantipyrene (IAP) autoradiography was used to measure the regional variations in cerebral blood flow 15 and 60 min after reperfusion. The purpose of this study was to investigate the hypothesis that the inhibition of the Na+/H+ antiporter with methyl isobutyl amiloride (MIA) would decrease postischemic pericapillary cytotoxic edema and, therefore, improve vascular perfusion dynamics. Vehicle-treated rats responded to cardiac arrest and resuscitation as expected with initial hyperemia after 15 min of reperfusion, except for thalamic and midbrain structures which were hypoperfused. All brain structures were perfused at half the baseline blood flow at 60 min after resuscitation, and the residual blood flow in each region was proportional to the baseline flow of each region. MIA treatment was associated with decreased blood flow in every region examined at both 15 min and 60 min of reperfusion. No hyperemia was observed at 15 min in any region after MIA treatment. Sixty minutes after resuscitation in MIA-treated rats, all structures were hypoperfused (to 25+/-7% of baseline, 48+/-8% of vehicle-treated rats). These effects are unlikely to be due to prevention of cytotoxic edema, but may be due to MIA protection of capillary endothelium by prevention of neutrophil activation.
- Published
- 1999
- Full Text
- View/download PDF
29. Trace tritium and the H-mode density limit
- Author
-
P.C. Stangeby, Philip Andrew, S.K. Erents, J.K. Ehrenberg, Haizhong Guo, N. Jarvis, M. G. O'Mullane, G. F. Matthews, L. Lauro-Taroni, B. Balet, K.-D. Zastrow, A. Taroni, G. Saibene, J. D. Strachan, F.B. Marcus, N. P. Basse, Michael Loughlin, R.D. Monk, G.J. Sadler, and R. Simonini
- Subjects
Tritium illumination ,Nuclear and High Energy Physics ,Trace Amounts ,Chemistry ,Analytical chemistry ,Time evolution ,Penetration (firestop) ,Ion ,Nuclear physics ,Nuclear Energy and Engineering ,Deuterium ,General Materials Science ,Neutron ,Tritium - Abstract
Trace amounts of tritium gas have been injected in short puAs into JET ELMy H-modes with a wide range of deuterium gas-fuelling rates. Analysis of the subsequent time evolution of the neutron profile and extraction of the particle transport coeAcients have allowed us to distinguish between broad classes of mechanism which have been suggested as explanations for the H-mode density limit. The high penetration probability (20%) and rapid transport (sE) of fuel ions are shown to be only weakly influenced by strong gas fuelling ‐ hence mixture control is possible even when the total electron content is clamped. ” 1999 JET Joint Undertaking, published by Elsevier Science B.V. All rights reserved.
- Published
- 1999
- Full Text
- View/download PDF
30. Simulation of helium exhaust in JET and ITER
- Author
-
A. Taroni, E. Springmann, G. Corrigan, R. Simonini, L. Lauro-Taroni, M. Fichtmüller, and J. Spence
- Subjects
Physics ,Nuclear and High Energy Physics ,Jet (fluid) ,Tokamak ,Nuclear engineering ,chemistry.chemical_element ,Plasma ,law.invention ,Nuclear physics ,Cross section (physics) ,Nuclear Energy and Engineering ,chemistry ,Physics::Plasma Physics ,law ,General Materials Science ,Helium - Abstract
The problem of helium exhaust is studied using the integrated code package Combined Code Numerical Utility for Tokamaks (COCONUT): the 2D scrape-off layer code EDGE2D/NIMBUS is coupled with the 11/2D plasma transport codes JETTO and SANCO to allow consistent modelling of the entire plasma cross section. The code is first benchmarked against JET experiments in order to determine the radial helium transport in the core and in the SOL. The findings are then applied in predictive modelling of the ITER design. The results of the simulations are expressed in terms of confinement times and enrichment. For JET, we obtain values consistent with direct experimental measurements. The predictions for ITER are seen to be very sensitive to the model assumptions for the scrape-off layer.
- Published
- 1999
- Full Text
- View/download PDF
31. Soft X ray tomography during ELMs and impurity injection in JET
- Author
-
Julia Fuchs, A. W. Edwards, L. Lauro-Taroni, G. C. Fehmers, R. Giannella, B. Alper, Richard D. Gill, L. C. Ingesson, H. Chen, and M. Romanelli
- Subjects
Physics ,Nuclear and High Energy Physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Plasma ,Condensed Matter Physics ,Laser ,Ion ,law.invention ,Optics ,Physics::Plasma Physics ,law ,Nuclear fusion ,Neutron ,Tomography ,Anisotropy ,business - Abstract
The soft X ray diagnostic at JET views the plasma from six directions with a total of 215 lines of sight. The good coverage of the plasma makes it possible to make detailed tomographic reconstructions of the soft X ray emission during various conditions. One of the tomography methods applied at JET is discussed: a grid based constrained optimization method that uses anisotropic smoothness on flux surfaces as regularization. This method has made it possible to study in detail the transport of heavy trace impurities injected into the plasma by laser blow-off. Impurity injection experiments in hot ion H mode and optimized shear plasmas are presented and discussed. The addition of a number of features to the algorithm, notably a non-negativity constraint, has made it possible to reconstruct very localized soft X ray emission from the wall during edge localized modes (ELMs). The detectors suffer damage from the neutrons produced in deuterium-deuterium (DD) fusion reactions. This damage influences the sensitivity of the detectors, which makes it necessary to cross-calibrate the cameras. A method based on tomographic reconstructions has been developed to achieve the cross-calibration.
- Published
- 1998
- Full Text
- View/download PDF
32. Core-edge coupling and the effect of the EDGE on overall plasma performance
- Author
-
A. Taroni, M. Fichtmüller, J. Spence, G. Corrigan, E. Springmann, L. Lauro-Taroni, and R. Simonini
- Subjects
Core (optical fiber) ,Coupling ,Range (particle radiation) ,Cross section (physics) ,Pedestal ,Materials science ,Code (cryptography) ,General Physics and Astronomy ,Plasma ,Edge (geometry) ,Computational physics - Abstract
Several attempts to model the entire plasma cross section have been reported in the last few years. Two possibilities are to either couple a core code to a scrape-off layer (SOL) code at a specified interface or to extend the computational region of an SOL-code all the way to the plasma centre. The most advanced global code is the code COCONUT which is based on the former principle and comprises the Monte-Carlo code NIMBUS, the 2D scrape-off layer code EDGE2D, the core transport code JETTO and the core impurity transport code SANCO. A main feature of COCONUT is its modular structure which ensures a high degree of flexibility and the capability to cover a large range of time-scales. The influence of the SOL on the core is lllustrated with a range of global simulations carried out with COCONUT. The simulations show that the primary effect of the SOL is the control of the particle sources and sinks with a secondary effect on plasma dilution, radiation and perhaps pedestal temperatures.
- Published
- 1998
- Full Text
- View/download PDF
33. Time-dependent modelling of impurity transport in the jet core and divertor plasma
- Author
-
L. C. Ingesson, G. Corrigan, M. G. O'Mullane, R.D. Monk, C. F. Maggi, R. Simonini, K. D. Lawson, L. D. Horton, P.J. Harbour, R. Giannella, M. von Hellermann, A. Taroni, E Springmann, Philip Andrew, J. Spence, and L. Lauro Taroni
- Subjects
Jet (fluid) ,Materials science ,Divertor ,chemistry.chemical_element ,Plasma ,Edge (geometry) ,Contamination ,Condensed Matter Physics ,Computational physics ,Core (optical fiber) ,Neon ,chemistry ,Impurity ,Atomic physics - Abstract
The analysis of the contamination of the plasma by a puffed recycling impurity, such as neon, is intrinsically time-dependent and requires simultaneous time-dependent modelling of both the core region and the SOL and divertor region. To this end, a new code, combining core and edge codes, has been developed: its main features will be described and its application to the analysis of an L-mode discharge in which neon was puffed will be shown.
- Published
- 1998
- Full Text
- View/download PDF
34. Latest JET results in deuterium and deuterium - tritium plasmas
- Author
-
I. D. Young, N. Bainbridge, N. Dolgetta, R. A. M. Van der Linden, Philip Andrew, S. M. Scott, C. Caldwell-Nichols, R. Reichle, D. Campling, J. Mills, D.F.H. Start, P. G. Doyle, L.-G. Eriksson, A. Taroni, F.G. Rimini, T. Winkel, G. Corrigan, P. Breger, J. J. Davis, W. Zwingmann, M. Cox, L. Scibile, M. Gadeberg, B. Alper, S. Knipe, M.L. Watkins, P. Schild, C. D. Challis, A. Meigs, T. Lovegrove, C. Ingesson, E. Traneus, E. Deksnis, R. Mohanti, P. Miele, D.J. Ward, D. Stork, L. Galbiati, H. E. Clarke, M.A. Pick, B. Fischer, A. M. Edwards, L. Svensson, R. König, W. Parsons, M. De Benedetti, P. Noll, S. Papastergiou, N. C. Hawkes, B. Esposito, D. Ciric, G. McCracken, F. Hurd, A. Burt, R.D. Monk, J.K. Ehrenberg, J.P. Christiansen, A. Vadgama, J. M. Adams, R. D. Gill, J.G. Cordey, A. Gibson, Wolfgang Kerner, P. E. Stott, D. O'Brien, D. Bond, D. Young, T. Elevant, G. Vlases, M. Fichtmuller, R. Ostrom, M. von Hellermann, J. Tait, B. Haist, J.C.M. de Haas, P. Smith, R. Giannella, R. Claesen, N. P. Hawkes, M. Ottaviani, G. Fishpool, A. Howman, P. A. McCullen, A. C. Bell, A. Tabasso, R. Simonini, K. Guenther, N. Zornig, Q. Yu, V. Schmidt, N. Deliyanakis, J. How, Y. Baranov, I. Coffey, Michael Loughlin, S. A. Arshad, B. Patel, B. E. Keen, L. Lauro-Taroni, A. Kaye, P. Kupschus, D. Chiron, Shane Cooper, P. Chuilon, H. Altmann, M. Brandon, T. T. C. Jones, Y. Ul'Haq, D.V. Bartlett, F. Junique, F. Soldner, B. Ingram, C. Terella, R. Smith, G. Newbert, C. Lowry, B. Schunke, B.J.D. Tubbing, L. D. Horton, J. Jacquinot, N. G. Kidd, P. Card, J.P. Coad, P.R. Thomas, P. Barker, F. Nave, A. Sibley, P. Stangeby, T. P. Hughes, R. Parkinson, G.A. Cottrell, C. F. Maggi, S. E. Sharapov, R. Saunders, C. Gowers, A. Gondhalekar, J.A. Hoekzema, D. Wilson, A. Tanga, H. Brelen, E. Springmann, A.W. Edwards, S. J. Davies, K. Fullard, D. Martin, L. Roquemore, Ambrogio Fasoli, R. Walton, P.D. Morgan, A. Peacock, G. Murphy, J. G. Krom, W. Zhang, M. Salisbury, S. Clement, C. Gormezano, P. Nielsen, K. D. Lawson, G. Conway, M. J. Watson, D. Godden, O. Pogutse, G. Saibene, H. Guo, T. Wade, J. W. Farthing, J. L. Hemmerich, P. Svensson, S. Puppin, S. K. Erents, J.A. Dobbing, M. Johnson, P. Strachen, Henrik Bindslev, L. Rossi, P. Twyman, K. Blackler, H. Jaeckel, T. Bonicelli, S. E. Dorling, G. Matthews, M. L. Browne, B. Schokker, P. van Belle, A. C. Maas, J. F. Jaeger, H. Duquenoy, A. Rolfe, H. McBryan, P. Ageladarakis, Filippo Sartori, O.N. Jarvis, S. Ericsson, T. Hender, A. Paynter, T. Businaro, V. Riccardo, M. Huart, M. J. Mantsinen, F. Milani, A. Rossi, M. Keilhacker, P. Brennan, P. J. Lomas, Robin Barnsley, Annika Ekedahl, M. Endler, G. Radford, J. F. Junger, A. V. Chankin, P. Stubberfield, Jan Egedal, E. M. Jones, N. Davies, H.P.L. de Esch, B. Balet, D.D.R. Summers, C. Perry, A. Santagiustina, G. T. A. Huysmans, V. V. Parail, K. Thomsen, D. Bailey, J. Mart, A. Dines, M. Irving, G.J. Sadler, V.P. Bhatnagar, E. Righi, E. Oord, R. Stagg, A. C. C. Sips, W. J. Brewerton, R. T. Ross, H. D. Falter, F. Jensen, Sean Conroy, V. Marchese, Nicholas Watkins, M. Lennholm, J. Spence, M.F. Stamp, T. Budd, P. J. Harbour, M. Schmid, M. Buzio, B. Macklin, S. L. Dmitrenko, P. Smeulders, R. Middleton, D.H.J. Goodall, F.B. Marcus, J. Dorr, S. J. Cox, K.-D. Zastrow, A. Perevezentsev, A. J. Bickley, R. J. H. Pearce, D. N. Borba, M. Tabellini, J. Lingertat, E. Bertolini, R. Cusack, R. Lasser, J. Plancoulaine, N. Peacock, M. Wheatley, J. Ellis, M. Baronian, R. Prentice, A. Haigh, W. Obert, and C. J. Hancock
- Subjects
Jet (fluid) ,Materials science ,Plasma ,Condensed Matter Physics ,Ion ,law.invention ,Nuclear physics ,Shear (sheet metal) ,Ignition system ,Nuclear Energy and Engineering ,Deuterium ,Physics::Plasma Physics ,law ,Tritium ,Neutron - Abstract
All major JET systems have been fully commissioned for D-T and the DTE1 series of experiments has started with the D-T fuel mixture and operating conditions foreseen for ITER. In the area of ITER physics, significant results have been produced in both D-D and D-T. In D-D, the LH threshold power database has been extended, the bounds on edge-electron temperature and density in ELMy H-modes have been defined and the advantages of Types I and III ELMy discharges have been compared. In D-T plasmas, the isotope effect on H-mode threshold power and transport has been determined so that a more accurate assessment can be made of the ignition margin and heating requirements for ITER. Trace tritium experiments have provided first particle transport measurements and an assessment of the ITER reference ion-cyclotron resonance-frequency heating scenarios has been started, In the area of fusion performance, record D-D neutron yields have been obtained by controlling the plasma and current profiles in hot ion ELM-free H-modes and optimized shear modes. In D-T, internal transport barriers have been readily established in optimized shear discharges and Alfven eigenmodes have been observed.
- Published
- 1997
- Full Text
- View/download PDF
35. EFD-C(13)03/19 Neoclassical and Turbulent Transport of W in Toroidally Rotating JET Plasmas
- Author
-
C. Angioni, P. Mantica, M. Valisa, M. Baruzzo, E. Belli, P. Belo, M. Beurskens, F.J. Casson, C. Challis, C. Giroud, N. Hawkes, T.C. Hender, J. Hobirk, E. Joffrin, L. Lauro Taroni, M. Lehnen, J. Mlynar, T. Püetterich, and JET EFDA contributors
- Subjects
Physics::Plasma Physics - Abstract
The physical understanding of the transport of heavy impurities, like W, is important for the achievement of practical fusion energy. Among the plasma parameters which affect impurity transport, rotation has only recently received the deserved consideration. In addition to the off-diagonal contribution related to the presence of a radial gradient of the toroidal rotation (usually dubbed rotodiffusion), even in moderately rotating plasmas, centrifugal effects of heavy impurities become non-negligible. Plasmas obtained in the hybrid scenario in JET with the ITER-like wall (JETILW) can be used to study these effects on W, since the deuterium toroidal rotation reaches central thermal Mach numbers around 0.4 (Mach of W up to 3.8). At the same time, this study allows us to explore the transport mechanisms which are responsible for the central W accumulation which is often observed in this type of discharges.
- Published
- 2013
- Full Text
- View/download PDF
36. EFD-C(13)03/23 Transport Analysis of Tungsten and Beryllium in JET Hybrid Plasmas with the ITER-like Wall
- Author
-
P. Mantica, C. Angioni, M. Valisa, M. Baruzzo, P. Belo, M. Beurskens, C. Challis, E. Delabie, L. Frassinetti, C. Giroud, N. Hawkes, J. Hobirk, E. Joffrin, L. Lauro Taroni, M. Lehnen, J. Mlynar, T. Püetterich, M. Romanelli, and JET EFDA contributors
- Abstract
The reestablishment of the hybrid scenario in JET after installation of the ITER-like wall (ILW) was successful in reaching similar global performances as in CFC wall (H98 ~1.3, bN ~ 3). However, these performances have only been maintained for 23s, after which W accumulation in the core compromises the plasma performance, both due to radiative cooling and to the onset of MHD activity with negative effects on confinement. This paper aims at studying the dynamics of core W accumulation in hybrid plasmas, understanding its origin and possible ways to counteract it, to allow time extension of the improved confinement phase. The focus of the paper will not be on W sources from the edge, which can be regulated by e.g. gas puffing, ELMs pacing, SOL and divertor density control, which are the object of other studies. The focus here will be on core impurity transport and MHD, and how they evolve during the hybrid discharge eventually leading to accumulation.
- Published
- 2013
- Full Text
- View/download PDF
37. EFD-P(13)55 Tungsten Transport in JET H-mode Plasmas in Hybrid Scenario, Experimental Observations and Modelling
- Author
-
C. Angioni, P. Mantica, T. Pütterich, M. Valisa, M. Baruzzo, E.A. Belli, P. Belo, F.J. Casson, C. Challis, P. Drewelow, C. Giroud, N. Hawkes, T.C. Hender, J. Hobirk, T. Koskela, L. Lauro Taroni, C.F. Maggi, J. Mlynar, T. Odstrcil, M.L. Reinke, M. Romanelli, and JET EFDA contributors
- Abstract
The behaviour of tungsten in the core of hybrid scenario plasmas in JET with the ITER-like wall is analyzed and modelled with a combination of neoclassical and gyrokinetic codes. In these discharges, good confinement conditions can be maintained only for the first 2 - 3 seconds of the high power phase. Later W accumulation is regularly observed, often accompanied by the onset of magnetohydrodynamical activity, in particular neoclassical tearing modes (NTMs), both of which have detrimental effects on the global energy confinement. The dynamics of the accumulation process is examined, taking into consideration the concurrent evolution of the background plasma profiles, and the possible onset of NTMs. Two time slices of a representative discharge, before and during the accumulation process, are analysed with two indipendent methods, in order to reconstruct the W density distribution over the poloidal cross-section. The same time slices are modelled, computing both neoclassical and turbulent transport components and consistently including the impact of centrifugal effects, which can be significant in these plasmas, and strongly enhanceW neoclassical transport. The modelling closely reproduces the observations and identifies inward neoclassical convection due to the density peaking of the bulk plasma in the central region as the main cause of the accumulation. The analysis of a large set of discharges provides clear indications that this effect is generic in this scenario. The unfavorable impact of the onset of NTMs on the W behaviour, observed in several discharges, is suggested to be a consequence of a detrimental combination of the effects of neoclassical transport and of the appearance of an island.
- Published
- 2013
- Full Text
- View/download PDF
38. Neoclassical and turbulent transport of W in toroidally rotating JET plasmas
- Author
-
C. Angioni (1, P. Mantica (2, M. Valisa (3, M. Baruzzo (3, E. Belli (4, P. Belo (5, M. Beurskens (6, F. J. Casson (1, C. Challis (6, C. Giroud (6, N. Hawkes (6, T.C. Hender (6, J. Hobirk (1, E.Joffrin (7, L. Lauro Taroni (3, M. Lehnen (8, J. Mlynar (9, T. P¨utterich (1, and JET EFDA contributors 1
- Published
- 2013
39. Transport analysis of tungsten and beryllium in JET hybrid plasmas with the ITER-like wall
- Author
-
P.Mantica (1, C.Angioni (2, M.Valisa (3, M.Baruzzo (3, P.Belo (4, M.Beurskens (5, C.Challis (5, E.Delabie (6, L.Frassinetti (7, C.Giroud (5, N.Hawkes (5, J.Hobirk (2, E.Joffrin (8, L. Lauro Taroni (3, M. Lehnen (9, J.Mlynar (10, T.Pütterich (2, M.Romanelli (5, and JET EFDA contributors
- Published
- 2013
40. Survey of pellet enhanced performance in JET discharges
- Author
-
T. C. Hender, B. Wolle, J. O'Rourke, D.P. O'Brien, F.B. Marcus, B. Balet, H. W. Morsi, G. L. Schmidt, B. Alper, G.J. Sadler, K. D. Lawson, P. Smeulders, M. Bures, S. Ali-Arshad, P.M. Stubberfield, L. C. Appel, H.J. De Blank, L. Lauro-Taroni, D. Stork, R. Giannella, W. Zwingmann, R. König, B. De Esch, P. Kupschus, and M. Mattioli
- Subjects
Nuclear and High Energy Physics ,Thermal conductivity ,Materials science ,Impurity ,Pellets ,Plasma ,Atomic physics ,Magnetohydrodynamics ,Condensed Matter Physics ,Ballooning ,Bootstrap current ,Marginal stability - Abstract
Pellet enhanced performance (PEP) has been observed in a number of JET discharges at various plasma conditions, in both L and H modes, with the H multiplier (the confinement enhancement factor over the Goldston confinement time) covering the range from 1 to 4, and with plasma currents from 1 MA to 4.1 MA. Most of the PEP plasmas have been created by refuelling with pellets of 4 mm diameter injected at 1.2 km/s. PEPs show an improved central confinement with an effective heat conductivity reduced by factors of approximately 2-5 relative to otherwise comparable discharges. This is possibly related to the inverted shear in the plasma core due to the large local bootstrap current density. The limitations in the PEP performance seem to be set by at least two mechanisms: impurity behaviour, MHD activity or a combination of both. In certain discharges, MHD modes seem to be able to check the often observed impurity accumulation. Too much MHD mode activity, however, easily destroys the enhanced confinement of the PEP discharge. The stability of the ballooning modes has been studied and the PEP plasma core is found to be in the second stability region against ballooning modes or close to marginal stability. In a number of discharges complex high (m,n) modes have been observed with the soft X-ray cameras. The behaviour of the low (m,n) MHD modes can only be understood by considering the detailed evolution of the inverted q profile, which exists in a given discharge
- Published
- 1995
- Full Text
- View/download PDF
41. Review of neutral beam heating on JET for physics experiments and the production of high fusion performance plasmas
- Author
-
R. König, N. Peacock, E. Martin, L. Lauro-Taroni, D.V. Bartlett, B. Ingram, G. Vlases, A. Sibley, C. Terella, C. Lowry, N. A. Gottardi, T. Elevant, G. Saibene, J. Christiansen, M. Baronian, A. Tesini, T. Raimondi, A. J. Bickley, J. How, H. van der Beken, A. Haigh, N. C. Hawkes, M. C. Ramos de Andrade, H. Morsi, G. Murphy, M. Botman, A. Dines, A. Gondhalekar, C. Gormezano, M. Irving, H. Brelen, M. Tabellini, B. Schunke, B.J.D. Tubbing, G. Sadler, P. R. Thomas, C. Gowers, P. E. Stott, G. Corrigan, S. Cooper, W. J. Brewerton, H. D. Falter, M. Keilhacker, A. Korotkov, V. Marchese, M. Cox, P. Breger, M. Nilsen, T. Szabo, M. L. Watkins, R. Claesen, C. J. Hancock, I. D. Young, S. Ali-Arshad, M. J. Watson, O. N. Jarvis, E. Bertolini, C. Walker, S. Clement, Y. Baranov, W. Bailey, G. Celentano, C. Froger, K. D. Lawson, D. Stork, D.F.H. Start, A. Cherubini, R. Monk, S. L. Dmitrenko, H. Jaeckel, S. Richards, C. A. Steed, L. G. Eriksson, S. F. Mills, S. J. Booth, P. G. Doyle, P. Meriguet, R. J. M. Pearce, H. Duquenoy, G. Radford, R. Prentice, F. Jensen, M. A. Pick, C. D. Challis, B. Alper, R. Wolf, J. Lingertat, F. Soldner, M. O'Mullane, N. Deliyanakis, P. Nielsen, A. C. Bell, R. Lasser, E. Deksnis, J. P. Coad, P. J. Harbour, E. M. Jones, T. Budo, F. Marcus, N. Davies, B. Balet, F.G. Rimini, M. Comiskey, T. Wade, P. Burton, T. Bonicelli, P. Gaze, K. Fullard, D. Martin, W. Zwingmann, T. Winkel, M. Ottaviani, P. Massmann, J. O'Rourke, D. Bond, P. Boucquey, P. Barabaschi, R. D. Gill, M. Cooke, B. Patel, W. Suverkroop, A. Kaye, D. Chiron, T. Businaro, D. Goodall, M.F. Stamp, G. B. Denne-Hinnov, R. Ostrom, A. Girard, L. Horton, F. Trevalion, C. Woodward, J. Ehrenberg, M. Johnson, A. Loarte, S. Puppin, R. Simoni, J. Jacquinot, A. Galetsas, W. Obert, M. Schmid, J. F. Junger, J. F. Jaeger, P. Andrew, L. Rossi, K. Borras, P. Smeulders, R. Reichle, A. Rolfe, J. Plancoulaine, P. Chuilon, T. T. C. Jones, R. Barnsley, A. Gibson, P. Card, N. Dolgetta, R. Rookes, M. Rapisarda, A. Colton, P. Schild, H. Buttgereit, M. von Hellermann, C. Perry, Henrik Bindslev, M. Garribba, F. Hurd, J. Mart, C. Sborchia, S. M. Scott, K. Blackler, A. Santagiustina, G. Bosia, C. Cottrell, I. Coffey, G. Newbert, S. Papastergiou, P. Butcher, L. Svensson, G. Vayakis, O. Da Costa, T. Hender, S. Weber, C. F. Maggi, V. V. Parail, P. Froissard, A. Taroni, A.E. Costley, J. P. Poffe, V.P. Bhatnagar, A. C. Maas, Y. Agarici, K. Thomsen, H. McBryan, Francesco Porcelli, H. Altmann, T. J. Wijnands, T. Brown, R. T. Ross, D. O'Brien, R. N. Litunovski, J. J. Davies, R. Russ, P. Kupschus, Annika Ekedahl, G. Magyar, G. Fishpool, H. Deesch, A. C. C. Sips, N. G. Kidd, C. Caldwell-Nichols, T. P. Hughes, M. Newmann, R. Sartori, S. Corti, S. K. Erents, T. Martin, R. Haange, A. M. Edwards, J.A. Dobbing, M. Gadeberg, G. Matthews, Laurie Porte, M. Wykes, D. Wilson, S. J. Davies, J. M. Adams, D. Ward, Wolfgang Kerner, L. Zannelli, J. G. Cordey, A. Tanga, P. Peacock, P. Bertoldi, H. Summers, L. Galbiati, W. J. Dickson, N. P. Hawkes, Michael Loughlin, David Campbell, D. Summers, P. Stangeby, D. Campling, J. L. Hemmerich, G. Benali, S. E. Dorling, J.A. Hoekzema, P. Haynes, J. L. Salanave, F. Junique, M. Salisbury, M. Brusati, J. Wesson, E. Oord, R. Giannella, M. Bures, J. Freiling, G. Janeschitz, M. Huart, E. Righi, G. Sanazzaro, P. J. Lomas, G. Deschamps, P. Stubberfield, M. Lennholm, E. Thompson, B. Macklin, P. J. Howarth, L. P. D. F. Jones, B. E. Keen, P. Noll, M. Brandon, R. Smith, P. Barker, F. Nave, P.D. Morgan, and P. Crawley
- Subjects
Physics ,Fusion ,Jet (fluid) ,Mechanical Engineering ,Nuclear engineering ,Plasma ,Neutral beam injection ,Ion ,Nuclear physics ,Nuclear Energy and Engineering ,Nuclear fusion ,General Materials Science ,Tritium ,Beam (structure) ,Civil and Structural Engineering - Abstract
The JET neutral beam injection system has proved to be both effective and reliable as a plasma heating device. The ion heating and plasma fuelling characteristics of the system are ideally suited to the production of high fusion performance plasmas while the flexibility in the choice of beam species (H, D, T, 3 He or 4 He) and the ability to inject into almost any JET plasma configuration allows a wide variety of related physics experiments to be carried out. The capability to inject (for the first time) tritium beams was essential to the successful execution of the first tritium experiments in which 1.7 MW of power from DT fusion reactions was generated.
- Published
- 1995
- Full Text
- View/download PDF
42. EDELWEISS Read-out Electronics and Future Prospects
- Author
-
L. Lauro, F. Charlieu, Alain Benoit, M. Grollier, R. Guichardaz, J. Minet, B. Paul, A. Juillard, J. Gascon, L. Vagneron, G. Bres, B. Censier, J. Gironnet, Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Hélium : du fondamental aux applications (HELFA), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Electronique (ElecLab), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, EDELWEISS, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), and Electronique (NEEL - ElecLab)
- Subjects
Physics ,Scheme (programming language) ,010308 nuclear & particles physics ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Detector ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Noise ,Parasitic capacitance ,visual_art ,0103 physical sciences ,Electronic component ,Line (geometry) ,Electronic engineering ,visual_art.visual_art_medium ,General Materials Science ,Electronics ,010306 general physics ,computer ,Communication channel ,computer.programming_language - Abstract
The read-out electronics of the EDELWEISS-II experiment is presented. Its implementation has been guided by two important design choices. The first one is putting cold electronics far from the detectors in order to attenuate possible background sources from electronic components. It implies strong constraints on noise optimization, line stray capacitance and thermal load. The second one is acquisition of fully digitized signals to minimize the E.M. noises and to take full advantage of digital processing possibilities for filtering and triggering. The resulting amplification scheme is presented for both ionization and heat channel, as well as performances of the full read-out scheme. Future prospects about the coming EDELWEISS-III experiment electronics are also discussed. This updated design takes advantage of the experience gained in previous steps of the experiment while aiming at fulfilling specific constraints of a future ton-scale experiment.
- Published
- 2012
- Full Text
- View/download PDF
43. Role of current profile in impurity transport in JET L mode discharges
- Author
-
D. Pasini, J. O'Rourke, M. Mattioli, R. Giannella, L. Lauro-Taroni, G. Magyar, B. Denne-Hinnov, and B. Alper
- Subjects
Shear (sheet metal) ,Nuclear and High Energy Physics ,Jet (fluid) ,Materials science ,Anomalous diffusion ,Electron temperature ,Diffusion (business) ,Atomic physics ,Condensed Matter Physics ,Order of magnitude ,Magnetic field ,Dimensionless quantity - Abstract
Results are presented of transport studies conducted on trace impurities injected with the laser blow-off technique in a variety of JET L mode pulses. In the core of the discharge, the transport is much slower, the impurity diffusion coefficient D is more than an order of magnitude below the values it assumes further out, but still above the neoclassical predictions. The extent of the slow transport core region varies with the magnetic field and with the total plasma current and is broadly correlated with the edge value of the safety factor. Closer analysis reveals that the current profile is essential in determining the radial dependence of D. This parameter appears to undergo a rapid transition to highly anomalous levels in the vicinity of the radial position where the dimensionless shear parameter is equal to 0.5. Within that region D stays moderate even when the electron temperature gradient is high. A marked increase of D in the outer region of the discharge is observed when the power per particle is raised or, alternatively, when the temperature and its gradient grow in that region, but no clear dependence of D on plasma density is found when the electron temperature profile is kept constant. Transport modelling based on the critical Del Tc assumption leads to D profiles that are similar, although not in detailed quantitative agreement, to the experimental ones when the temperature profiles are flat in the centre; when the temperature profiles are peaked in the centre, even the radial dependence of the predicted diffusion profiles is very different from the one observed. Recent theoretical attempts to analyse the radial structure of the microturbulent fluctuations predict a strong positive dependence of anomalous diffusion on the magnetic shear as observed in our experiments
- Published
- 1994
- Full Text
- View/download PDF
44. Overview of high performance H-modes in JET
- Author
-
A. C. C. Sips, A.E. Costley, F. Hurd, G. Saibene, M. Salisbury, M. Brusati, C. Perry, P. J. Harbour, T. Martin, J. P. Poffe, Laurie Porte, H. van der Beken, N. C. Hawkes, J. Wesson, M. Bures, G. Janeschitz, M. Huart, A. Santagiustina, G. Bosia, H. Altmann, J. L. Salanave, A. Dines, N. G. Kidd, F. Junique, E. Righi, P. J. Lomas, P. G. Doyle, J. G. Cordey, G. Magyar, V. V. Parail, K. Thomsen, A. Gondhalekar, M. Irving, C. Gowers, R. Ostrom, C. Woodward, A. Galetsas, A. Loarte, P. Card, P. Trevalion, A. M. Edwards, T. P. Hughes, F. Jensen, M. Newman, C. Caldwell-Nichols, N. Peacock, P. Smeulders, A. Korotkov, A. Colton, P. Chuilon, T. T. C. Jones, F.G. Rimini, T. Winkel, P. Stubberfield, M. A. Pick, J.A. Hoekzema, T. Szabo, J. M. Adams, R. Prentice, Wolfgang Kerner, L. Zannelli, M. Rapisarda, D.F.H. Start, L. G. Eriksson, P. Schild, M. Wykes, D. Wilson, S. J. Davies, A. Sibley, P. Haynes, B. Alper, R. Wolf, T. Elevant, R. T. Ross, J. O'Rourke, E. Thompson, C. J. Hancock, R. Haange, P. E. Stott, A. Tesini, B. Macklin, M. Baronian, W. J. Brewerton, M.F. Stamp, L. P. D. F. Jones, A. C. Maas, B. E. Keen, A. Taroni, H. Morsi, G. Murphy, H. D. Falter, M. Keilhacker, I. D. Young, M. von Hellermann, A. Girard, A. Haigh, M. Cooke, A. Cherubini, Henrik Bindslev, D. Goodall, L. Horton, S. K. Erents, J.A. Dobbing, M. Gadeberg, E. Deksnis, G. Matthews, M. Comiskey, T. Wade, F. Marcus, M. Schmid, P. Burton, M. Garribba, G. Newbert, P. Barabaschi, A. Peacock, V. Marchese, C. Froger, K. D. Lawson, P. Noll, M. Brandon, G. Sadler, P. R. Thomas, C. F. Maggi, W. Bailey, D. Ward, K. Blackler, A. Rolfe, T. J. Wijnands, R. Barnsley, G. Celentano, R. Russ, Annika Ekedahl, G. Vayakis, T. Bonicelli, P. Froissard, C. Walker, J. Jacquinot, J. Plancoulaine, P. Kupschus, N. Dolgetta, Y. Agarici, D. Summers, M. Ottaviani, H. Brelen, S. Ali-Arshad, C. Sborchia, R. Claesen, C. A. Steed, S. F. Mills, A. Gibson, R. Smith, B. Schunke, B.J.D. Tubbing, J. Mart, H. McBryan, L. Svensson, J. J. Davis, S. M. Scott, R. J. M. Pearce, J. P. Coad, F. Soldner, T. Budd, P. Stangeby, E. M. Jones, V.P. Bhatnagar, C. D. Challis, R. Rookes, D. Campling, I. Coffey, W. Zwingmann, A. C. Bell, E. Oord, D. O'Brien, P. Gaze, N. Davies, D. Bond, David Campbell, P. Barker, F. Nave, G. B. Denne-Hinnov, S. Papastergiou, R. Monk, S. L. Dmitrenko, B. Balet, P. Butcher, L. Rossi, K. Borras, O. Da Costa, R. Giannella, P. Massmann, R. D. Gill, R. Sartori, J. Lingertat, S. Weber, R. N. Litunovski, H. Buttgereit, J. Ehrenberg, B. Patel, R. Lasser, N. A. Gottardi, A. Kaye, T. Brown, J. Christiansen, T. Businaro, L. Lauro-Taroni, C. Gormezano, O. N. Jarvis, S. Clement, A. J. Bickley, J. Freiling, D.V. Bartlett, D. Chiron, M. Botman, B. Ingram, C. Terella, C. Lowry, W. Obert, M. Tabellini, S. Corti, S. Cooper, P. Bertoldi, E. Bertolini, H. Summers, P.D. Morgan, P. Crawley, R. Reichle, Francesco Porcelli, G. Sanazzaro, G. Corrigan, T. Raimondi, G. Deschamps, M. J. Watson, M. C. Ramos de Andrade, G. Fishpool, H. Deesch, J. L. Hemmerich, G. Benali, Y. Baranov, H. Jaeckel, S. E. Dorling, G. Radford, S. J. Booth, J. F. Junger, H. Duquenoy, M. Lennholm, L. Galbiati, W. J. Dickson, N. P. Hawkes, R. Simonini, Michael Loughlin, T. Hender, M. Cox, P. Breger, W. Suverkropp, M. Nilsen, M. L. Watkins, S. Puppin, D. Stork, S. Richards, P. Nielsen, P. Boucquey, G.A. Cottrell, A. Tanga, P. J. Howarth, K. Fullard, D. Martin, M. Johnson, J. F. Jaeger, P. Andrew, P. Meriguet, Ralf König, M. O'Mullane, N. Deliyanakis, E. Martin, G. Vlases, and J. How
- Subjects
Physics ,Nuclear Energy and Engineering ,Diamagnetism ,Plasma ,Atomic physics ,Condensed Matter Physics ,Phenomenology (particle physics) ,Scaling ,Ion - Abstract
An account is given of the high performance plasmas established by development of the H-mode regime in JET in the experimental campaigns up to 1992. High performance in this case is measured in terms of the confinement enhancement achieved over the L-mode scaling as measured using the plasma diamagnetism. Three JET H-mode regimes have achieved enhancement factors (H G DIA ) over Goldston L-mode scaling of 2.5 < H G DIA < 4.0. These are the Pellet Enhanced Performance (PEP) H-MODE, the high bootstrap fraction (high β POL ) H-mode and the Hot Ion (HI) H-mode. The phenomenology of these three regimes is reviewed and contrasts and common threads are elucidated
- Published
- 1994
- Full Text
- View/download PDF
45. Irradiance-based emissivity correction in infrared thermography for electronic applications
- Author
-
F. Perillo, Xavier Perpiñà, X. Jorda, Miquel Vellvehi, and G. L. Lauro
- Subjects
Materials science ,business.industry ,Infrared ,Irradiance ,Signal ,Optics ,Thermal infrared spectroscopy ,Thermography ,Emissivity ,Black-body radiation ,Image sensor ,business ,Instrumentation ,Remote sensing - Abstract
This work analyzes, discusses, and proposes a solution to the problem of the emissivity correction present in infrared thermography when coatings with known emissivity cannot be deposited on the inspected surface. It is shown that the conventional technique based on two reference thermal images and the linearization of the blackbody radiation dependence on temperature is not a reliable and accurate solution when compared with the coating procedure. In this scenario, a new approach based on the direct processing of the output signal of the infrared camera (which is proportional to the detected irradiance) is proposed to obtain an accurate emissivity and surrounding reflections map, perfectly compensating the thermal maps. The results obtained have been validated using a module as a test vehicle containing two thermal test chips which incorporate embedded temperature sensors.
- Published
- 2011
46. Metal impurity transport control in JET H-mode plasmas with central ion cyclotron radiofrequency power injection
- Author
-
Volker Naulin, Maria Ester Puiatti, E. Lerche, L. Lauro Taroni, B. Alper, C. Angioni, M. Baruzzo, P. Buratti, P. Belo daSilva, I. H. Coffey, Italo Predebon, T. Tala, Jet-Efda Contributors, M. Tsalas, P. Mantica, L. Garzotti, L. Carraro, D. Van Eester, M. Valisa, and C. Giroud
- Subjects
Nuclear and High Energy Physics ,Materials science ,Turbulence ,Cyclotron ,NM REGION ,CONFINEMENT ,Plasma ,Collisionality ,Condensed Matter Physics ,ASDEX UPGRADE ,law.invention ,Ion ,Radial velocity ,Impurity ,law ,Physics::Plasma Physics ,TOKAMAK ,Atomic physics ,Order of magnitude ,FUSION DEVICES - Abstract
The scan of ion cyclotron resonant heating (ICRH) power has been used to systematically study the pump out effect of central electron heating on impurities such as Ni and Mo in H-mode low collisionality discharges in JET. The transport parameters of Ni and Mo have been measured by introducing a transient perturbation on their densities via the laser blow off technique. Without ICRH Ni and Mo density profiles are typically peaked. The application of ICRH induces on Ni and Mo in the plasma centre (at normalized poloidal flux ρ = 0.2) an outward drift approximately proportional to the amount of injected power. Above a threshold of ICRH power of about 3 MW in the specific case the radial flow of Ni and Mo changes from inwards to outwards and the impurity profiles, extrapolated to stationary conditions, become hollow. At mid-radius the impurity profiles become flat or only slightly hollow. In the plasma centre the variation of the convection-to-diffusivity ratio v/D of Ni is particularly well correlated with the change in the ion temperature gradient in qualitative agreement with the neoclassical theory. However, the experimental radial velocity is larger than the neoclassical one by up to one order of magnitude. Gyrokinetic simulations of the radial impurity fluxes induced by electrostatic turbulence do not foresee a flow reversal in the analysed discharges.
- Published
- 2011
- Full Text
- View/download PDF
47. Scenario Development for FAST in the View of ITER and DEMO
- Author
-
F. Crisanti, R. Albanese, F. Artaud, O. Asunta, B. Baiocchi, M. Baruzzo, V. Ba- Siuk, A. Bierwage, R. Bilato, T. Bolzonella, M. Brambilla, G. Breyiannis, S. Briguglio, G. Calabro, A. Cardinali, G. Corrigan, A. Cucchiaro, C. Di Troia, D. Farina, L. Fig- Ini, G. Fogaccia, G. Giruzzi, G. Granucci, F. Imbeaux, T. Johnson, L. Lauro Taroni, G. Maddaluno, R. Maggiora, P. Mantica, M. Marinucci, D. Milanesio, V. Parail, V. Pericoli-Ridolfini, A. Pizzuto, S. Podda, G. Ramogida, A. Salmi, M. Santinelli, M. Schneider, A. Tuccillo, M. Valisa, R. Villari, B. Viola, G. Vlad, X. Wang, R. Zagorski, and F. Zonca
- Published
- 2010
48. Divertor performance on carbon and beryllium targets in JET
- Author
-
D.D.R. Summers, G. F. Matthews, J.A. Tagle, R. König, J.K. Ehrenberg, H.J. Jäckel, W. Eckstein, G. Janeschitz, S. Clement, M.F. Stamp, N. Gottardi, A. Loarte, L. De Kock, M. von Hellermann, L. Lauro-Taroni, David Campbell, G. Saibene, J. Lingertat, J. Roth, P.R. Thomas, L. D. Horton, C.G. Lowry, G. Vlases, M. Lesourd, and P. Harbour
- Subjects
Nuclear and High Energy Physics ,Jet (fluid) ,Heating power ,Divertor ,chemistry.chemical_element ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Nuclear physics ,Power flow ,Nuclear Energy and Engineering ,chemistry ,Physics::Plasma Physics ,Sputtering ,Impurity ,General Materials Science ,Atomic physics ,Beryllium ,Carbon - Abstract
The dependence of impurity production and retention on the divertor density, on the power flow into this region as well as on the X-point to target distance are investigated. Model predictions suggest a good impurity retention above a certain divertor (scrape-off) density threshold, which is dependent on heating power. In our experiments pre-programmed midplane or X-point gas puffs were used to scan the density, as well as to avoid the depletion of particles from the divertor and the scrape-off during H-modes. The gas puffs reduce T e and increase N e in particular at the outer strike zone. In general the Be as well as the C influx increases with density, which is understood from the T e ( T i ) dependence of the sputtering yields. The impurity retention shows the expected improvement with increasing scrape-off (divertor) density as well as with increasing X-point to target distance (connection length).
- Published
- 1992
- Full Text
- View/download PDF
49. Measurements of impurity transport in JET
- Author
-
D. Pasini, R. Giannella, L. Lauro Taroni, G. Magyar, H. Weisen, N. C. Hawkes, B. Denne-Hinnov, and M. Mattioli
- Subjects
Jet (fluid) ,Materials science ,Radius ,Sawtooth wave ,Plasma ,Condensed Matter Physics ,Laser ,law.invention ,Nuclear Energy and Engineering ,Impurity ,law ,Phase (matter) ,Atomic physics ,Ohmic contact - Abstract
Impurity transport has been studied in JET using the laser blow-off technique. Results are presented for Ohmic, L-mode and H-mode plasmas. In all cases impurity transport was found to be small inside r/a approximately 0.3 with values for D approximately 0.03-0.3 m2 s-1 close to neoclassical predictions. Outside r/a approximately 0.4, the transport was faster than neoclassical with values for D approximately 0.3-0.6, 3-5 and 0.8-1.2 m2 s-1 in H-mode, L-mode and Ohmic plasmas, respectively. These values apply only between sawtooth crashes, during the sawtooth phase itself ( approximately 100 mu s) the transport is greatly perturbed over the central region allowing the impurities to quickly leave or enter this region. In an Ohmic plasma the impurity confinement time tau imp was between 250 and 350 ms. This value was reduced to approximately 150-200 ms in the L-mode plasma due to an increase of D in the anomalous transport region. During H-mode plasmas, on the other hand, very long impurity confinement times, of the order of several seconds, were observed. This was explained by a sharp increase of the ratio V/D in a thin region near the plasma edge and a general reduction of D in the outer half of the plasma radius.
- Published
- 1992
- Full Text
- View/download PDF
50. Comparison of impurity and electron particle transport in JET discharges
- Author
-
L. Lauro Taroni, R. Giannella, J O'Rourke, N. C. Hawkes, M. Mattioli, and D. Pasini
- Subjects
Electron density ,Jet (fluid) ,Materials science ,Condensed matter physics ,Electron ,Condensed Matter Physics ,Thermal diffusivity ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,Impurity ,Electron temperature ,Particle ,Atomic physics ,Diffusion (business) - Abstract
A zone of reduced anomalous diffusivity for impurities in the central region of the discharge has been reported from several Tokamaks. In this paper the authors point out that this condition is not an occasional occurrence, but a very general feature. Indeed all JET cases analyzed, where the experimental conditions allow adequate sensitivity and space resolution for the measurement of the impurities diffusion coefficient, show unambiguously that this quantity is close to neoclassical levels within r=0.4a. Furthermore, from the analysis of the electron density profile in sawtooth-free phases of JET discharges with moderate electron temperature, the authors deduce that the electron particle diffusivity Dp is also close to neoclassical in the same region. The values obtained for Dp in that region during the early pre-sawtooth phases are the same as in Ohmic post-pellet phases.
- Published
- 1992
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.