19 results on '"Léo Lacour"'
Search Results
2. Wildfire aerosol deposition likely amplified a summertime Arctic phytoplankton bloom
- Author
-
Mathieu Ardyna, Douglas S. Hamilton, Tristan Harmel, Léo Lacour, Diana N. Bernstein, Julien Laliberté, Christopher Horvat, Rémi Laxenaire, Matthew M. Mills, Gert van Dijken, Igor Polyakov, Hervé Claustre, Natalie Mahowald, and Kevin Robert Arrigo
- Subjects
Geology ,QE1-996.5 ,Environmental sciences ,GE1-350 - Abstract
Deposition of Siberian wildfire aerosols, which contained nitrogen, enhanced phytoplankton growth in the eastern Eurasian Basin of the Arctic Ocean in summer 2014, suggest satellite-based ocean color data and atmospheric transport modeling.
- Published
- 2022
- Full Text
- View/download PDF
3. Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export
- Author
-
Emilia Trudnowska, Léo Lacour, Mathieu Ardyna, Andreas Rogge, Jean Olivier Irisson, Anya M. Waite, Marcel Babin, and Lars Stemmann
- Subjects
Science - Abstract
Marine snow is a major route through which photosynthetically fixed carbon is transported to the deep ocean, but the factors affecting flux are largely unknown. Here the authors use high frequency imaging of marine snow particles collected during phytoplankton blooms to categorize and quantify transport.
- Published
- 2021
- Full Text
- View/download PDF
4. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean
- Author
-
Mathieu Ardyna, Léo Lacour, Sara Sergi, Francesco d’Ovidio, Jean-Baptiste Sallée, Mathieu Rembauville, Stéphane Blain, Alessandro Tagliabue, Reiner Schlitzer, Catherine Jeandel, Kevin Robert Arrigo, and Hervé Claustre
- Subjects
Science - Abstract
Hydrothermal activity is recognized to be significant in regulating the dynamics of trace elements in the ocean. Here the authors report the first observational evidence of upwelled hydrothermally influenced deep waters stimulating massive phytoplankton blooms in the Southern Ocean.
- Published
- 2019
- Full Text
- View/download PDF
5. Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean
- Author
-
Mathieu Ardyna, C. J. Mundy, Matthew M. Mills, Laurent Oziel, Pierre-Luc Grondin, Léo Lacour, Gauthier Verin, Gert Van Dijken, Joséphine Ras, Eva Alou-Font, Marcel Babin, Michel Gosselin, Jean-Éric Tremblay, Patrick Raimbault, Philipp Assmy, Marcel Nicolaus, Hervé Claustre, and Kevin R. Arrigo
- Subjects
under-ice phytoplankton blooms ,biogeochemical cycles ,nutrients ,sea ice ,climate change ,arctic ocean ,Environmental sciences ,GE1-350 - Abstract
The decline of sea-ice thickness, area, and volume due to the transition from multi-year to first-year sea ice has improved the under-ice light environment for pelagic Arctic ecosystems. One unexpected and direct consequence of this transition, the proliferation of under-ice phytoplankton blooms (UIBs), challenges the paradigm that waters beneath the ice pack harbor little planktonic life. Little is known about the diversity and spatial distribution of UIBs in the Arctic Ocean, or the environmental drivers behind their timing, magnitude, and taxonomic composition. Here, we compiled a unique and comprehensive dataset from seven major research projects in the Arctic Ocean (11 expeditions, covering the spring sea-ice-covered period to summer ice-free conditions) to identify the environmental drivers responsible for initiating and shaping the magnitude and assemblage structure of UIBs. The temporal dynamics behind UIB formation are related to the ways that snow and sea-ice conditions impact the under-ice light field. In particular, the onset of snowmelt significantly increased under-ice light availability (>0.1–0.2 mol photons m–2 d–1), marking the concomitant termination of the sea-ice algal bloom and initiation of UIBs. At the pan-Arctic scale, bloom magnitude (expressed as maximum chlorophyll a concentration) was predicted best by winter water Si(OH)4 and PO43– concentrations, as well as Si(OH)4:NO3– and PO43–:NO3– drawdown ratios, but not NO3– concentration. Two main phytoplankton assemblages dominated UIBs (diatoms or Phaeocystis), driven primarily by the winter nitrate:silicate (NO3–:Si(OH)4) ratio and the under-ice light climate. Phaeocystis co-dominated in low Si(OH)4 (i.e., NO3:Si(OH)4 molar ratios >1) waters, while diatoms contributed the bulk of UIB biomass when Si(OH)4 was high (i.e., NO3:Si(OH)4 molar ratios
- Published
- 2020
- Full Text
- View/download PDF
6. Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry
- Author
-
Cédric Jamet, Amir Ibrahim, Ziauddin Ahmad, Federico Angelini, Marcel Babin, Michael J. Behrenfeld, Emmanuel Boss, Brian Cairns, James Churnside, Jacek Chowdhary, Anthony B. Davis, Davide Dionisi, Lucile Duforêt-Gaurier, Bryan Franz, Robert Frouin, Meng Gao, Deric Gray, Otto Hasekamp, Xianqiang He, Chris Hostetler, Olga V. Kalashnikova, Kirk Knobelspiesse, Léo Lacour, Hubert Loisel, Vanderlei Martins, Eric Rehm, Lorraine Remer, Idriss Sanhaj, Knut Stamnes, Snorre Stamnes, Stéphane Victori, Jeremy Werdell, and Peng-Wang Zhai
- Subjects
ocean color ,lidar ,satellite ,profiles ,polarimetry ,Science ,General. Including nature conservation, geographical distribution ,QH1-199.5 - Abstract
Passive ocean color images have provided a sustained synoptic view of the distribution of ocean optical properties and color and biogeochemical parameters for the past 20-plus years. These images have revolutionized our view of the ocean. Remote sensing of ocean color has relied on measurements of the radiance emerging at the top of the atmosphere, thus neglecting the polarization and the vertical components. Ocean color remote sensing utilizes the intensity and spectral variation of visible light scattered upward from beneath the ocean surface to derive concentrations of biogeochemical constituents and inherent optical properties within the ocean surface layer. However, these measurements have some limitations. Specifically, the measured property is a weighted-integrated value over a relatively shallow depth, it provides no information during the night and retrieval are compromised by clouds, absorbing aerosols, and low Sun zenithal angles. In addition, ocean color data provide limited information on the morphology and size distribution of marine particles. Major advances in our understanding of global ocean ecosystems will require measurements from new technologies, specifically lidar and polarimetry. These new techniques have been widely used for atmospheric applications but have not had as much as interest from the ocean color community. This is due to many factors including limited access to in-situ instruments and/or space-borne sensors and lack of attention in university courses and ocean science summer schools curricula. However, lidar and polarimetry technology will complement standard ocean color products by providing depth-resolved values of attenuation and scattering parameters and additional information about particles morphology and chemical composition. This review aims at presenting the basics of these techniques, examples of applications and at advocating for the development of in-situ and space-borne sensors. Recommendations are provided on actions that would foster the embrace of lidar and polarimetry as powerful remote sensing tools by the ocean science community.
- Published
- 2019
- Full Text
- View/download PDF
7. The evolution of light and vertical mixing across a phytoplankton ice-edge bloom
- Author
-
Achim Randelhoff, Laurent Oziel, Philippe Massicotte, Guislain Bécu, Martí Galí, Léo Lacour, Dany Dumont, Anda Vladoiu, Claudie Marec, Flavienne Bruyant, Marie-Noëlle Houssais, Jean-Éric Tremblay, Gabrièle Deslongchamps, and Marcel Babin
- Subjects
Arctic ,Phytoplankton ,Ice edge ,Spring bloom ,Light ,Turbulence ,Environmental sciences ,GE1-350 - Abstract
During summer, phytoplankton can bloom in the Arctic Ocean, both in open water and under ice, often strongly linked to the retreating ice edge. There, the surface ocean responds to steep lateral gradients in ice melt, mixing, and light input, shaping the Arctic ecosystem in unique ways not found in other regions of the world ocean. In 2016, we sampled a high-resolution grid of 135 hydrographic stations in Baffin Bay as part of the Green Edge project to study the ice-edge bloom, including turbulent vertical mixing, the under-ice light field, concentrations of inorganic nutrients, and phytoplankton biomass. We found pronounced differences between an Atlantic sector dominated by the warm West Greenland Current and an Arctic sector with surface waters originating from the Canadian archipelago. Winter overturning and thus nutrient replenishment was hampered by strong haline stratification in the Arctic domain, whereas close to the West Greenland shelf, weak stratification permitted winter mixing with high-nitrate Atlantic-derived waters. Using a space-for-time approach, we linked upper ocean dynamics to the phytoplankton bloom trailing the retreating ice edge. In a band of 60 km (or 15 days) around the ice edge, the upper ocean was especially affected by a freshened surface layer. Light climate, as evidenced by deep 0.415 mol m–2 d–1 isolumes, and vertical mixing, as quantified by shallow mixing layer depths, should have permitted significant net phytoplankton growth more than 100 km into the pack ice at ice concentrations close to 100%. Yet, under-ice biomass was relatively low at 20 mg chlorophyll-a m–2 and depth-integrated total chlorophyll-a (0–80 m) peaked at an average value of 75 mg chlorophyll-a m–2 only around 10 days after ice retreat. This phenological peak may hence have been the delayed result of much earlier bloom initiation and demonstrates the importance of temporal dynamics for constraints of Arctic marine primary production.
- Published
- 2019
- Full Text
- View/download PDF
8. Multi-year robotic observations reveal the seasonality of downward carbon export pathways in the Southern Ocean
- Author
-
Philip W. Boyd, Peter G. Strutton, Léo Lacour, Nathan Briggs, and Joan Llort
- Subjects
Oceanography ,chemistry ,fungi ,medicine ,Environmental science ,chemistry.chemical_element ,Seasonality ,medicine.disease ,Carbon - Abstract
At high latitudes, the export of organic matter from the surface to the ocean interior, the biological carbon pump, has conventionally been attributed to the gravitational sinking of particulate organic carbon (POC). Conspicuous deficits in ocean carbon budgets have recently challenged this long-lived paradigm of a sole pathway. Multiple strands of evidence have demonstrated the importance of additional export pathways, including the particle injection pumps (PIPs). Recent model estimates revealed that PIPs have a comparable downward POC flux to the biological gravitational pump (BGP), but with potentially different seasonal signatures. To date, logistical constraints have prevented concomitant and extensive observations of these pumps, and little is known about the seasonality of their fluxes. Here, using year-round robotic observations and recent advances in optical signal analysis, we concurrently investigated the functioning of two PIPs - the mixed layer and eddy subduction pumps - and the BGP in Southern Ocean waters. By comparing three phytoplankton bloom cycles in contrasting environments, we show how physical forcing and phytoplankton phenology influence the magnitude and seasonality of these pumps, with implications for carbon sequestration efficiency.
- Published
- 2021
- Full Text
- View/download PDF
9. The Intraseasonal Dynamics of the Mixed Layer Pump in the Subpolar North Atlantic Ocean: A Biogeochemical‐Argo Float Approach
- Author
-
Hervé Claustre, Nathan Briggs, Mathieu Ardyna, Léo Lacour, and Giorgio Dall'Olmo
- Subjects
0106 biological sciences ,Atmospheric Science ,Global and Planetary Change ,Biogeochemical cycle ,010504 meteorology & atmospheric sciences ,Mixed layer ,010604 marine biology & hydrobiology ,01 natural sciences ,Oceanography ,Environmental Chemistry ,Environmental science ,Argo ,0105 earth and related environmental sciences ,General Environmental Science - Published
- 2019
- Full Text
- View/download PDF
10. Deep Chlorophyll Maxima in the Global Ocean: Occurrences, Drivers and Characteristics
- Author
-
Léo Lacour, Alexandre Mignot, M. Cornec, Antoine Poteau, Fabrizio D'Ortenzio, Lionel Guidi, Hervé Claustre, Catherine Schmechtig, Bernard Gentili, Laboratoire d'océanographie de Villefranche (LOV), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Mercator Océan, Société Civile CNRS Ifremer IRD Météo-France SHOM, Takuvik Joint International Laboratory ULAVAL-CNRS, Université Laval [Québec] (ULaval)-Centre National de la Recherche Scientifique (CNRS), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), and Université Laval [Québec] (ULaval)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,Atmospheric Science ,Chlorophyll a ,010504 meteorology & atmospheric sciences ,irradiance ,Stratification (water) ,01 natural sciences ,nitracline ,chemistry.chemical_compound ,stratification ,Phytoplankton ,Argo floats ,BGC‐ ,Environmental Chemistry ,14. Life underwater ,open ocean ,0105 earth and related environmental sciences ,General Environmental Science ,Global and Planetary Change ,Biomass (ecology) ,Deep chlorophyll maximum ,010604 marine biology & hydrobiology ,Pelagic zone ,deep chlorophyll maximum ,particle backscattering ,Oceanography ,chemistry ,13. Climate action ,Ocean color ,Chlorophyll ,[SDE]Environmental Sciences ,Environmental science - Abstract
International audience; Stratified oceanic systems are characterized by the presence of a so-called Deep Chlorophyll a Maximum (DCM) not detectable by ocean color satellites. A DCM can either be a phytoplankton (carbon) biomass maximum (Deep Biomass Maximum, DBM), or the consequence of photoacclimation processes (Deep photoAcclimation Maximum, DAM) resulting in the increase of chlorophyll a per phytoplankton carbon. Even though these DCM (further qualified as either DBMs or DAMs) have long been studied, no global-scale assessment has yet been undertaken and large knowledge gaps still remain in relation to the environmental drivers responsible for their formation and maintenance. In order to investigate their spatial and temporal variability in the open ocean, we use a global data set acquired by more than 500 Biogeochemical-Argo floats given that DCMs can be detected from the comparative vertical distribution of chlorophyll a concentrations and particulate backscattering coefficients. Our findings show that the seasonal dynamics of the DCMs are clearly region-dependent. High-latitude environments are characterized by a low occurrence of intense DBMs, restricted to summer. Meanwhile, oligotrophic regions host permanent DAMs, occasionally replaced by DBMs in summer, while subequatorial waters are characterized by permanent DBMs benefiting from favorable conditions in terms of both light and nutrients. Overall, the appearance and depth of DCMs are primarily driven by light attenuation in the upper layer. Our present assessment of DCM occurrence and of environmental conditions prevailing in their development lay the basis for a better understanding and quantification of their role in carbon budgets (primary production and export).
- Published
- 2021
- Full Text
- View/download PDF
11. Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export
- Author
-
Mathieu Ardyna, Marcel Babin, Léo Lacour, Jean-Olivier Irisson, Lars Stemmann, Andreas Rogge, Anya M. Waite, Emilia Trudnowska, Institute of Oceanology, Polish Academy of Sciences (IO-PAN), Polska Akademia Nauk = Polish Academy of Sciences (PAN), Takuvik Joint International Laboratory ULAVAL-CNRS, Université Laval [Québec] (ULaval)-Centre National de la Recherche Scientifique (CNRS), Stanford University, Laboratoire d'océanographie de Villefranche (LOV), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Kiel University, Alfred Wegener Institute for Polar and Marine Research (AWI), and Dalhousie University [Halifax]
- Subjects
0106 biological sciences ,Geologic Sediments ,Food Chain ,010504 meteorology & atmospheric sciences ,Science ,Oceans and Seas ,General Physics and Astronomy ,01 natural sciences ,Deep sea ,Algal bloom ,General Biochemistry, Genetics and Molecular Biology ,Zooplankton ,Article ,Carbon cycle ,Spatio-Temporal Analysis ,Phytoplankton ,Animals ,Seawater ,14. Life underwater ,Particle Size ,Ecosystem ,0105 earth and related environmental sciences ,Marine snow ,Total organic carbon ,Marine biology ,Multidisciplinary ,Arctic Regions ,010604 marine biology & hydrobiology ,General Chemistry ,Eutrophication ,Food web ,Oceanography ,13. Climate action ,[SDE]Environmental Sciences ,Environmental science - Abstract
The organic carbon produced in the ocean’s surface by phytoplankton is either passed through the food web or exported to the ocean interior as marine snow. The rate and efficiency of such vertical export strongly depend on the size, structure and shape of individual particles, but apart from size, other morphological properties are still not quantitatively monitored. With the growing number of in situ imaging technologies, there is now a great possibility to analyze the morphology of individual marine snow. Thus, automated methods for their classification are urgently needed. Consequently, here we present a simple, objective categorization method of marine snow into a few ecologically meaningful functional morphotypes using field data from successive phases of the Arctic phytoplankton bloom. The proposed approach is a promising tool for future studies aiming to integrate the diversity, composition and morphology of marine snow into our understanding of the biological carbon pump., Marine snow is a major route through which photosynthetically fixed carbon is transported to the deep ocean, but the factors affecting flux are largely unknown. Here the authors use high frequency imaging of marine snow particles collected during phytoplankton blooms to categorize and quantify transport.
- Published
- 2020
- Full Text
- View/download PDF
12. Arctic mid-winter phytoplankton growth revealed by autonomous profilers
- Author
-
Fabrizio D'Ortenzio, Hervé Claustre, José Lagunas, Makoto Sampei, Claudie Marec, Christophe Penkerc'h, Léo Lacour, Xiaogang Xing, Louis Fortier, Marcel Babin, Edouard Leymarie, Achim Randelhoff, Gérald Darnis, Takuvik International Research Laboratory, Université Laval [Québec] (ULaval)-Centre National de la Recherche Scientifique (CNRS), Takuvik Joint International Laboratory ULAVAL-CNRS, Université Laval [Québec] (ULaval)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'océanographie de Villefranche (LOV), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), State Key Laboratory of Satellite Ocean Environment Dynamics (SOED), State Oceanic Administration (SOA), Faculty of Fisheries Sciences [Hakodate], and Hokkaido University [Sapporo, Japan]
- Subjects
0106 biological sciences ,geography ,Multidisciplinary ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Polar night ,010604 marine biology & hydrobiology ,Irradiance ,Spring bloom ,01 natural sciences ,Oceanography ,Arctic ,13. Climate action ,[SDE]Environmental Sciences ,Phytoplankton ,Sea ice ,Environmental science ,14. Life underwater ,Bay ,[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography ,ComputingMilieux_MISCELLANEOUS ,Snow cover ,0105 earth and related environmental sciences - Abstract
It is widely believed that during winter and spring, Arctic marine phytoplankton cannot grow until sea ice and snow cover start melting and transmit sufficient irradiance, but there is little observational evidence for that paradigm. To explore the life of phytoplankton during and after the polar night, we used robotic ice-avoiding profiling floats to measure ocean optics and phytoplankton characteristics continuously through two annual cycles in Baffin Bay, an Arctic sea that is covered by ice for 7 months a year. We demonstrate that net phytoplankton growth occurred even under 100% ice cover as early as February and that it resulted at least partly from photosynthesis. This highlights the adaptation of Arctic phytoplankton to extreme low-light conditions, which may be key to their survival before seeding the spring bloom.
- Published
- 2020
- Full Text
- View/download PDF
13. In situ evaluation of spaceborne CALIOP lidar measurements of the upper-ocean particle backscattering coefficient
- Author
-
Marcel Babin, Raphael Larouche, Léo Lacour, Takuvik Joint International Laboratory ULAVAL-CNRS, and Université Laval [Québec] (ULaval)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
In situ ,business.industry ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,010309 optics ,Root mean square ,Lidar ,Optics ,13. Climate action ,Ocean color ,Approximation error ,0103 physical sciences ,Particle backscattering ,Environmental science ,14. Life underwater ,0210 nano-technology ,business ,Image resolution ,Argo ,ComputingMilieux_MISCELLANEOUS ,[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography ,Remote sensing - Abstract
The spaceborne CALIOP lidar, initially designed for atmospheric measurements, was recently used to retrieve the particulate backscattering coefficient (b bp ) in ocean subsurface layers. However, extensive field evaluation of CALIOP estimates was never conducted due to the scarcity of in situ data. Here, year-round and basin-wide data from Biogeochemical Argo floats (BGC Argo) were used to evaluate CALIOP estimates in the North Atlantic. The high density of BGC Argo float profiles in this region allowed us to test different matchup strategies at different spatio-temporal scales. When averaged over 2° by 2° grid boxes and monthly time resolution, CALIOP data present reasonably good correlation with highly variable float b bp values (correlation r = 0.44, root mean square relative error RMS% = 13.2%), suggesting that seasonal dynamics can be characterized at basin scale.
- Published
- 2020
- Full Text
- View/download PDF
14. Environmental factors influencing the seasonal dynamics of spring algal blooms in and beneath sea ice in western Baffin Bay
- Author
-
Dany Dumont, Patrick Raimbault, Jens K. Ehn, C. J. Mundy, Guislain Bécu, Marcel Babin, P. Coupel, Claudie Marec, Nicole Garcia, Joannie Ferland, Yannis Cuypers, Laurent Oziel, Virginie Galindo, Marie-Hélène Forget, Léo Lacour, Philippe Massicotte, Marie-Noëlle Houssais, Achim Randelhoff, Pascale Bouruet-Aubertot, Simon Lambert-Girard, Anda Vladoiu, Takuvik Joint International Laboratory ULAVAL-CNRS, Université Laval [Québec] (ULaval)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Processus et interactions de fine échelle océanique (PROTEO), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université du Québec à Rimouski (UQAR), University of Manitoba [Winnipeg], Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Institut méditerranéen d'océanologie (MIO), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Variabilité de l'Océan et de la Glace de mer (VOG), CNES (project #131425), IPEV (project #1164), CSA, Fondation Total, ArcticNet, LEFE and the French Arctic Initiative (Green Edge project), ANR-14-CE01-0017,Green Edge,Productivité biologique dans l'Océan Arctique: réponse passée, présente et future aux fluctuations climatiques, et impacts sur les flux de carbone, le réseau trophique et les communautés humaines locales(2014), Université Laval [Québec] (ULaval)-Centre National de la Recherche Scientifique (CNRS), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), and Institut Français de Recherche pour l'Exploitation de la Mer - Brest (IFREMER Centre de Bretagne)
- Subjects
0106 biological sciences ,Atmospheric Science ,Environmental Engineering ,010504 meteorology & atmospheric sciences ,Light and mixing ,Under-ice bloom ,Phytoplankton and sea ice algae ,Arctic Ocean ,Baffin Bay ,Environmental conditions ,Oceanography ,01 natural sciences ,Algal bloom ,Water column ,Phytoplankton ,Sea ice ,14. Life underwater ,lcsh:Environmental sciences ,[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography ,0105 earth and related environmental sciences ,lcsh:GE1-350 ,geography ,geography.geographical_feature_category ,Ecology ,010604 marine biology & hydrobiology ,Geology ,Geotechnical Engineering and Engineering Geology ,Snow ,Arctic ice pack ,Arctic ,13. Climate action ,Environmental science ,Bloom - Abstract
Arctic sea ice is experiencing a shorter growth season and an earlier ice melt onset. The significance of spring microalgal blooms taking place prior to sea ice breakup is the subject of ongoing scientific debate. During the Green Edge project, unique time-series data were collected during two field campaigns held in spring 2015 and 2016, which documented for the first time the concomitant temporal evolution of the sea ice algal and phytoplankton blooms in and beneath the landfast sea ice in western Baffin Bay. Sea ice algal and phytoplankton blooms were negatively correlated and respectively reached 26 (6) and 152 (182) mg of chlorophyll a per m2 in 2015 (2016). Here, we describe and compare the seasonal evolutions of a wide variety of physical forcings, particularly key components of the atmosphere–snow–ice–ocean system, that influenced microalgal growth during both years. Ice algal growth was observed under low-light conditions before the snow melt period and was much higher in 2015 due to less snowfall. By increasing light availability and water column stratification, the snow melt onset marked the initiation of the phytoplankton bloom and, concomitantly, the termination of the ice algal bloom. This study therefore underlines the major role of snow on the seasonal dynamics of microalgae in western Baffin Bay. The under-ice water column was dominated by Arctic Waters. Just before the sea ice broke up, phytoplankton had consumed most of the nutrients in the surface layer. A subsurface chlorophyll maximum appeared and deepened, favored by spring tide-induced mixing, reaching the best compromise between light and nutrient availability. This deepening evidenced the importance of upper ocean tidal dynamics for shaping vertical development of the under-ice phytoplankton bloom, a major biological event along the western coast of Baffin Bay, which reached similar magnitude to the offshore ice-edge bloom.
- Published
- 2019
- Full Text
- View/download PDF
15. The evolution of light and vertical mixing across a phytoplankton ice-edge bloom
- Author
-
Gabrièle Deslongchamps, Philippe Massicotte, Marie-Noëlle Houssais, Martí Galí, Dany Dumont, Jean-Éric Tremblay, Flavienne Bruyant, Guislain Bécu, Claudie Marec, Anda Vladoiu, Laurent Oziel, Léo Lacour, Marcel Babin, Achim Randelhoff, Université Laval [Québec] (ULaval), Bedford Institute of Oceanography, Institut des Sciences de la MER de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), Processus et interactions de fine échelle océanique (PROTEO), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Laboratoire d'Océanographie Physique et Spatiale (LOPS), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Variabilité de l'Océan et de la Glace de mer (VOG), CNES (project #131425), IPEV (project #1164), ANR-14-CE01-0017,Green Edge,Productivité biologique dans l'Océan Arctique: réponse passée, présente et future aux fluctuations climatiques, et impacts sur les flux de carbone, le réseau trophique et les communautés humaines locales(2014), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,Atmospheric Science ,Environmental Engineering ,010504 meteorology & atmospheric sciences ,Light ,Stratification (water) ,Oceanography ,Spring bloom ,01 natural sciences ,Arctic ,Phytoplankton ,14. Life underwater ,lcsh:Environmental sciences ,[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography ,0105 earth and related environmental sciences ,lcsh:GE1-350 ,Ice edge ,geography ,geography.geographical_feature_category ,Ecology ,010604 marine biology & hydrobiology ,Geology ,Geotechnical Engineering and Engineering Geology ,Arctic ice pack ,Ocean dynamics ,Turbulence ,13. Climate action ,Environmental science ,Bloom ,Hydrography - Abstract
During summer, phytoplankton can bloom in the Arctic Ocean, both in open water and under ice, often strongly linked to the retreating ice edge. There, the surface ocean responds to steep lateral gradients in ice melt, mixing, and light input, shaping the Arctic ecosystem in unique ways not found in other regions of the world ocean. In 2016, we sampled a high-resolution grid of 135 hydrographic stations in Baffin Bay as part of the Green Edge project to study the ice-edge bloom, including turbulent vertical mixing, the under-ice light field, concentrations of inorganic nutrients, and phytoplankton biomass. We found pronounced differences between an Atlantic sector dominated by the warm West Greenland Current and an Arctic sector with surface waters originating from the Canadian archipelago. Winter overturning and thus nutrient replenishment was hampered by strong haline stratification in the Arctic domain, whereas close to the West Greenland shelf, weak stratification permitted winter mixing with high-nitrate Atlantic-derived waters. Using a space-for-time approach, we linked upper ocean dynamics to the phytoplankton bloom trailing the retreating ice edge. In a band of 60 km (or 15 days) around the ice edge, the upper ocean was especially affected by a freshened surface layer. Light climate, as evidenced by deep 0.415 mol m–2 d–1 isolumes, and vertical mixing, as quantified by shallow mixing layer depths, should have permitted significant net phytoplankton growth more than 100 km into the pack ice at ice concentrations close to 100%. Yet, under-ice biomass was relatively low at 20 mg chlorophyll-a m–2 and depth-integrated total chlorophyll-a (0–80 m) peaked at an average value of 75 mg chlorophyll-a m–2 only around 10 days after ice retreat. This phenological peak may hence have been the delayed result of much earlier bloom initiation and demonstrates the importance of temporal dynamics for constraints of Arctic marine primary production.
- Published
- 2019
- Full Text
- View/download PDF
16. Phytoplankton biomass cycles in the North Atlantic subpolar gyre: A similar mechanism for two different blooms in the Labrador Sea
- Author
-
Louis Marie Prieur, Léo Lacour, Hervé Claustre, and Fabrizio D'Ortenzio
- Subjects
geography ,Biomass (ecology) ,geography.geographical_feature_category ,Mixed layer ,Irradiance ,Spring bloom ,Phytoplankton biomass ,Geophysics ,Oceanography ,Ocean gyre ,Climatology ,General Earth and Planetary Sciences ,14. Life underwater ,Bloom ,Geology - Abstract
An analysis of seasonal variations in climatological surface chlorophyll points to distinct biogeographical zones in the North Atlantic subpolar gyre. In particular, the Labrador Sea appears well delineated into two regions on either side of the 60°N parallel, with very different climatological phytoplankton biomass cycles. Indeed, north of 60°N, an early and short spring bloom occurs in late April, while south of 60°N, the bloom gradually develops 1 month later and significant biomass persists all summer long. Nevertheless, at climatological scale, the first-order mechanism that controls the bloom is identical for both bioregions. The light-mixing regime can explain the bloom onset in both bioregions. In the Labrador Sea, the blooms seem to rely on a mean community compensation irradiance threshold value of 2.5 mol photon m−2 d−1 over the mixed layer.
- Published
- 2015
- Full Text
- View/download PDF
17. Unexpected winter phytoplankton blooms in the North Atlantic subpolar gyre
- Author
-
Daniele Iudicone, Mathieu Ardyna, Hervé Claustre, M. Ribera d'Alcalà, Antoine Poteau, Louis Marie Prieur, K. F. Stec, Léo Lacour, Laboratoire d'océanographie de Villefranche (LOV), Observatoire océanologique de Villefranche-sur-mer (OOVM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Stazione Zoologica Anton Dohrn (SZN), Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG), Centre National de la Recherche Scientifique (CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut national des sciences de l'Univers (INSU - CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Nord]), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre Régional de Recherche et d’Expérimentation en Agriculture Biologique de Midi-Pyrénées (CREAB MP), Université du Littoral Côte d'Opale-Université de Lille-Centre National de la Recherche Scientifique (CNRS), and Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Biogeochemical cycle ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,biology ,Mixed layer ,010604 marine biology & hydrobiology ,Spring bloom ,biology.organism_classification ,01 natural sciences ,Oceanography ,Diatom ,Eddy ,13. Climate action ,Ocean gyre ,Nanophytoplankton ,Phytoplankton ,General Earth and Planetary Sciences ,Environmental science ,14. Life underwater ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
In mid- and high-latitude oceans, winter surface cooling and strong winds drive turbulent mixing that carries phytoplankton to depths of several hundred metres, well below the sunlit layer. This downward mixing, in combination with low solar radiation, drastically limits phytoplankton growth during the winter, especially that of the diatoms and other species that are involved in seeding the spring bloom. Here we present observational evidence for widespread winter phytoplankton blooms in a large part of the North Atlantic subpolar gyre from autonomous profiling floats equipped with biogeochemical sensors. These blooms were triggered by intermittent restratification of the mixed layer when mixed-layer eddies led to a horizontal transport of lighter water over denser layers. Combining a bio-optical index with complementary chemotaxonomic and modelling approaches, we show that these restratification events increase phytoplankton residence time in the sunlight zone, resulting in greater light interception and the emergence of winter blooms. Restratification also caused a phytoplankton community shift from pico- and nanophytoplankton to phototrophic diatoms. We conclude that transient winter blooms can maintain active diatom populations throughout the winter months, directly seeding the spring bloom and potentially making a significant contribution to over-winter carbon export. Transient winter restratification events can promote phytoplankton blooms in the North Atlantic subpolar gyre, according to float data. Typical winter conditions feature a deep mixed layer that limits phytoplankton activity.
- Published
- 2017
- Full Text
- View/download PDF
18. A seasonal dipolar eddy near Ras Al Hamra (Sea of Oman)
- Author
-
Rémy Baraille, Xavier Carton, Stéphanie Corréard, Léo Lacour, Guillaume Roullet, Pierre L'Hégaret, Laboratoire de physique des océans (LPO), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Service Hydrographique et Océanographique de la Marine (SHOM), and Ministère de la Défense
- Subjects
010504 meteorology & atmospheric sciences ,010505 oceanography ,Ocean current ,Mesoscale meteorology ,Empirical orthogonal functions ,Thermal wind ,Outflow ,Oceanography ,01 natural sciences ,Sea of Oman ,Eddy ,13. Climate action ,Climatology ,Argo floats ,Submarine pipeline ,14. Life underwater ,Eddies ,[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography ,Argo ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; Trajectories and hydrological data from two Argo floats indicate that warm and salty water at 200-300-m depths was ejected from the coast of Oman, near Ras al Hamra, in spring 2008, 2011, and 2012. This warm and salty water, Persian Gulf Water (PGW), once ejected from the coast, recirculated cyclonically in the western Sea of Oman, but also flowed eastward along the Iranian and Pakistani coasts. There, it was expelled seaward by mesoscale eddies as shown by other float data. Seasonal maps of salinity were computed from all available Argo floats; they showed that, in spring, PGW is present in the middle and north of the Sea of Oman, contrary to fall, when the salinity maxima lie southeast of Ras al Hadd. The ejection of PGW from Ras al Hamra is related here to the influence of a mesoscale dipolar eddy which often appears near this cape in spring. The timeaveraged and empirical orthogonal functions of altimetric maps over 11 years for this season confirm the frequent presence and the persistence of this feature. From surface currents and hydrology, deep currents were computed via thermal wind balance, and the associated shear and strain fields were obtained. This deformation field is intense near Ras al Hamra, with an offshore direction. This flow structure associated with the mesoscale dipole explains PGW ejection from the coast. This observation suggests that PGW distribution in the Northern Arabian Sea can be strongly influenced by seasonal mesoscale eddies.
- Published
- 2013
- Full Text
- View/download PDF
19. Preparing the New Phase of Argo: Scientific Achievements of the NAOS Project
- Author
-
Pierre-Yves Le Traon, Fabrizio D’Ortenzio, Marcel Babin, Edouard Leymarie, Claudie Marec, Sylvie Pouliquen, Virginie Thierry, Cecile Cabanes, Hervé Claustre, Damien Desbruyères, Leo Lacour, Jose-Luis Lagunas, Guillaume Maze, Herle Mercier, Christophe Penkerc’h, Noe Poffa, Antoine Poteau, Louis Prieur, Virginie Racapé, Achim Randelhoff, Eric Rehm, Catherine Marie Schmechtig, Vincent Taillandier, Thibaut Wagener, and Xiaogang Xing
- Subjects
profiling floats ,deep ocean ,biogeochemistry ,Mediterranean Sea ,Arctic ,Atlantic ,Science ,General. Including nature conservation, geographical distribution ,QH1-199.5 - Abstract
Argo, the international array of profiling floats, is a major component of the global ocean and climate observing system. In 2010, the NAOS (Novel Argo Observing System) project was selected as part of the French “Investissements d’Avenir” Equipex program. The objectives of NAOS were to consolidate the French contribution to Argo’s core mission (global temperature and salinity measurements down to 2000 m), and also to develop the future generation of French Argo profiling floats and prepare the next phase of the Argo program with an extension to the deep ocean (Deep Argo), biogeochemistry (BGC-Argo) and polar seas. This paper summarizes how NAOS has met its objectives. The project significantly boosted France’s contribution to Argo’s core mission by deploying more than 100 NAOS standard Argo profiling floats. In addition, NAOS deployed new-generation floats as part of three scientific experiments: biogeochemical floats in the Mediterranean Sea, biogeochemical floats in the Arctic Ocean, and deep floats with oxygen sensors in the North Atlantic. The experiment in the Mediterranean Sea, launched in 2012, implemented and maintained a network of BGC-Argo floats at basin scale for the first time. The 32 BGC-Argo floats deployed and about 4000 BGC profiles collected have vastly improved characterization of the biogeochemical and ecosystem dynamics of the Mediterranean. Meanwhile, experiments in the Arctic and in the North Atlantic, starting in 2015 and deploying 20 Arctic BGC floats and 23 deep floats, have provided unique observations on biogeochemical cycles in the Arctic and deep-water masses, as well as ocean circulation variability in the North Atlantic. NAOS has therefore paved the way to the new operational phase of the Argo program in France that includes BGC and Deep Argo extensions. The objectives and characteristics of this new phase of Argo-France are discussed in the conclusion.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.