1. Metacapacitors: Printed thin film, flexible capacitors for power conversion applications
- Author
-
Van Tassell, B, Yang, S, Le, C, Huang, L, Liu, S, Chando, P, Liu, X, Byro, A, Gerber, DL, Leland, ES, Sanders, SR, Kinget, PR, Kymissis, I, Steingart, D, and O'Brien, S
- Subjects
Electrical & Electronic Engineering ,Electrical and Electronic Engineering - Abstract
The Metacapacitors project aims to improve efficiency, functionality and form factor of offline power converters suitable for LED solid-state lighting, with a view to developing an attractive technology platform for load management and power conversion across a broad range of applications. Based on integrated switched-capacitor (SC) topologies, the project adopts an integrated approach from materials to devices to circuits. We designed capacitors based on high-κ dielectric nanocrystals, that can be prepared using high-throughput microfabrication/ nanotechnology techniques, ink deposition and multilayering. The capacitor dielectric, a nanocomposite composed of (Ba, Sr)TiO3 nanocrystals in polyfurfuryl alcohol (BST/PFA, κ > 20, 100Hz-1 MHz, loss < 0.01, 20 kHz), targets a high volumetric capacitance density and ripple current capability. The Dielectric is demonstrated to function in a finished capacitor >1000 h at 125°C. The capacitors were board integrated with a custom hybrid-switched-capacitor-resonant dc-dc converter IC. The converter integrates a balanced SC front-end with a series resonant tank, enabling nearly lossless current regulation and tranformerless galvanic isolation. The converter IC can be stacked in the voltage domain to interface a range of inputs. The tested driver delivers about 15 Wat 470 mA to a string of 12 LEDs with 90% peak efficiency.
- Published
- 2016