19 results on '"Kwon GR"'
Search Results
2. Diagnosis of Alzheimer's disease via optimized lightweight convolution-attention and structural MRI.
- Author
-
Khatri U and Kwon GR
- Subjects
- Humans, Aged, Magnetic Resonance Imaging methods, Neuroimaging methods, Brain diagnostic imaging, Image Interpretation, Computer-Assisted methods, Alzheimer Disease diagnostic imaging, Cognitive Dysfunction diagnostic imaging
- Abstract
Alzheimer's disease (AD) poses a substantial public health challenge, demanding accurate screening and diagnosis. Identifying AD in its early stages, including mild cognitive impairment (MCI) and healthy control (HC), is crucial given the global aging population. Structural magnetic resonance imaging (sMRI) is essential for understanding the brain's structural changes due to atrophy. While current deep learning networks overlook voxel long-term dependencies, vision transformers (ViT) excel at recognizing such dependencies in images, making them valuable in AD diagnosis. Our proposed method integrates convolution-attention mechanisms in transformer-based classifiers for AD brain datasets, enhancing performance without excessive computing resources. Replacing multi-head attention with lightweight multi-head self-attention (LMHSA), employing inverted residual (IRU) blocks, and introducing local feed-forward networks (LFFN) yields exceptional results. Training on AD datasets with a gradient-centralized optimizer and Adam achieves an impressive accuracy rate of 94.31% for multi-class classification, rising to 95.37% for binary classification (AD vs. HC) and 92.15% for HC vs. MCI. These outcomes surpass existing AD diagnosis approaches, showcasing the model's efficacy. Identifying key brain regions aids future clinical solutions for AD and neurodegenerative diseases. However, this study focused exclusively on the AD Neuroimaging Initiative (ADNI) cohort, emphasizing the need for a more robust, generalizable approach incorporating diverse databases beyond ADNI in future research., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: The authors declare that data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The patients/participant provided their written informed consent to participate in this study. As such, the funder, and the investigators within ADNI contributed to the data collection, but did not participate in analysis, interpretation of data, the writing of this article or the decision to submit it for publication., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Explainable Vision Transformer with Self-Supervised Learning to Predict Alzheimer's Disease Progression Using 18F-FDG PET.
- Author
-
Khatri U and Kwon GR
- Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide. Early and accurate prediction of AD progression is crucial for early intervention and personalized treatment planning. Although AD does not yet have a reliable therapy, several medications help slow down the disease's progression. However, more study is still needed to develop reliable methods for detecting AD and its phases. In the recent past, biomarkers associated with AD have been identified using neuroimaging methods. To uncover biomarkers, deep learning techniques have quickly emerged as a crucial methodology. A functional molecular imaging technique known as fluorodeoxyglucose positron emission tomography (18F-FDG-PET) has been shown to be effective in assisting researchers in understanding the morphological and neurological alterations to the brain associated with AD. Convolutional neural networks (CNNs) have also long dominated the field of AD progression and have been the subject of substantial research, while more recent approaches like vision transformers (ViT) have not yet been fully investigated. In this paper, we present a self-supervised learning (SSL) method to automatically acquire meaningful AD characteristics using the ViT architecture by pretraining the feature extractor using the self-distillation with no labels (DINO) and extreme learning machine (ELM) as classifier models. In this work, we examined a technique for predicting mild cognitive impairment (MCI) to AD utilizing an SSL model which learns powerful representations from unlabeled 18F-FDG PET images, thus reducing the need for large-labeled datasets. In comparison to several earlier approaches, our strategy showed state-of-the-art classification performance in terms of accuracy (92.31%), specificity (90.21%), and sensitivity (95.50%). Then, to make the suggested model easier to understand, we highlighted the brain regions that significantly influence the prediction of MCI development. Our methods offer a precise and efficient strategy for predicting the transition from MCI to AD. In conclusion, this research presents a novel Explainable SSL-ViT model that can accurately predict AD progress based on 18F-FDG PET scans. SSL, attention, and ELM mechanisms are integrated into the model to make it more predictive and interpretable. Future research will enable the development of viable treatments for neurodegenerative disorders by combining brain areas contributing to projection with observed anatomical traits.
- Published
- 2023
- Full Text
- View/download PDF
4. Resting-State Functional Connectivity Difference in Alzheimer's Disease and Mild Cognitive Impairment Using Threshold-Free Cluster Enhancement.
- Author
-
Lama RK and Kwon GR
- Abstract
The disruption of functional connectivity is one of the early events that occurs in the brains of Alzheimer's disease (AD) patients. This paper reports a study on the clustering structure of functional connectivity in eight important brain networks in healthy, AD, and prodromal stage subjects. We used the threshold-free cluster enhancement (TFCE) method to explore the connectivity from resting-state functional MR images (rs-fMRIs). We conducted the study on a total of 32 AD, 32 HC, and 31 MCI subjects. We modeled the brain as a graph-based network to study these impairments, and pairwise Pearson's correlation-based functional connectivity was used to construct the brain network. The study found that connections in the sensory motor network (SMN), dorsal attention network (DAN), salience network (SAN), default mode network (DMN), and cerebral network were severely affected in AD and MCI. The disruption in these networks may serve as potential biomarkers for distinguishing AD and MCI from HC. The study suggests that alterations in functional connectivity in these networks may contribute to cognitive deficits observed in AD and MCI. Additionally, a negative correlation was observed between the global clinical dementia rating (CDR) score and the Z-score of functional connectivity within identified clusters in AD subjects. These findings provide compelling evidence suggesting that the neurodegenerative disruption of functional magnetic resonance imaging (fMRI) connectivity is extensively distributed across multiple networks in individuals diagnosed with AD.
- Published
- 2023
- Full Text
- View/download PDF
5. A novel scaled-gamma-tanh (SGT) activation function in 3D CNN applied for MRI classification.
- Author
-
Khagi B and Kwon GR
- Subjects
- Magnetic Resonance Imaging methods, Neural Networks, Computer, Deep Learning
- Abstract
Activation functions in the neural network are responsible for 'firing' the nodes in it. In a deep neural network they 'activate' the features to reduce feature redundancy and learn the complex pattern by adding non-linearity in the network to learn task-specific goals. In this paper, we propose a simple and interesting activation function based on the combination of scaled gamma correction and hyperbolic tangent function, which we call Scaled Gamma Tanh (SGT) activation. The proposed activation function is applied in two steps, first is the calculation of gamma version as y = f(x) = ax
α for x < 0 and y = f(x) = bxβ for x ≥ 0, second is obtaining the squashed value as z = tanh(y). The variables a and b are user-defined constant values whereas [Formula: see text] and [Formula: see text] are channel-based learnable parameters. We analyzed the behavior of the proposed SGT activation function against other popular activation functions like ReLU, Leaky-ReLU, and tanh along with their role to confront vanishing/exploding gradient problems. For this, we implemented the SGT activation functions in a 3D Convolutional neural network (CNN) for the classification of magnetic resonance imaging (MRIs). More importantly to support our proposed idea we have presented a thorough analysis via histogram of inputs and outputs in activation layers along with weights/bias plot and t-SNE (t-Distributed Stochastic Neighbor Embedding) projection of fully connected layer for the trained CNN models. Our results in MRI classification show SGT outperforms standard ReLU and tanh activation in all cases i.e., final validation accuracy, final validation loss, test accuracy, Cohen's kappa score, and Precision., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
6. Alzheimer's Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield and Amygdala Volume of Structural MRI.
- Author
-
Khatri U and Kwon GR
- Abstract
Accurate diagnosis of the initial phase of Alzheimer's disease (AD) is essential and crucial. The objective of this research was to employ efficient biomarkers for the diagnostic analysis and classification of AD based on combining structural MRI (sMRI) and resting-state functional MRI (rs-fMRI). So far, several anatomical MRI imaging markers for AD diagnosis have been identified. The use of cortical and subcortical volumes, the hippocampus, and amygdala volume, as well as genetic patterns, has proven to be beneficial in distinguishing patients with AD from the healthy population. The fMRI time series data have the potential for specific numerical information as well as dynamic temporal information. Voxel and graphical analyses have gained popularity for analyzing neurodegenerative diseases, such as Alzheimer's and its prodromal phase, mild cognitive impairment (MCI). So far, these approaches have been utilized separately for the diagnosis of AD. In recent studies, the classification of cases of MCI into those that are not converted for a certain period as stable MCI (MCIs) and those that converted to AD as MCIc has been less commonly reported with inconsistent results. In this study, we verified and validated the potency of a proposed diagnostic framework to identify AD and differentiate MCIs from MCIc by utilizing the efficient biomarkers obtained from sMRI, along with functional brain networks of the frequency range .01-.027 at the resting state and the voxel-based features. The latter mainly included default mode networks (amplitude of low-frequency fluctuation [ALFF], fractional ALFF [ALFF], and regional homogeneity [ReHo]), degree centrality (DC), and salience networks (SN). Pearson's correlation coefficient for measuring fMRI functional networks has proven to be an efficient means for disease diagnosis. We applied the graph theory to calculate nodal features (nodal degree [ND], nodal path length [NL], and between centrality [BC]) as a graphical feature and analyzed the connectivity link between different brain regions. We extracted three-dimensional (3D) patterns to calculate regional coherence and then implement a univariate statistical t -test to access a 3D mask that preserves voxels showing significant changes. Similarly, from sMRI, we calculated the hippocampal subfield and amygdala nuclei volume using Freesurfer (version 6). Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. We also compared the performance of SVM with Random Forest (RF) classifiers. The obtained results demonstrated the potency of our framework, wherein a combination of the hippocampal subfield, the amygdala volume, and brain networks with multiple measures of rs-fMRI could significantly enhance the accuracy of other approaches in diagnosing AD. The accuracy obtained by the proposed method was reported for binary classification. More importantly, the classification results of the less commonly reported MCIs vs. MCIc improved significantly. However, this research involved only the AD Neuroimaging Initiative (ADNI) cohort to focus on the diagnosis of AD advancement by integrating sMRI and fMRI. Hence, the study's primary disadvantage is its small sample size. In this case, the dataset we utilized did not fully reflect the whole population. As a result, we cannot guarantee that our findings will be applicable to other populations., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Khatri and Kwon.)
- Published
- 2022
- Full Text
- View/download PDF
7. Diagnosis of Alzheimer's Disease Using Brain Network.
- Author
-
Lama RK and Kwon GR
- Abstract
Recent studies suggest the brain functional connectivity impairment is the early event occurred in case of Alzheimer's disease (AD) as well as mild cognitive impairment (MCI). We model the brain as a graph based network to study these impairment. In this paper, we present a new diagnosis approach using graph theory based features from functional magnetic resonance (fMR) images to discriminate AD, MCI, and healthy control (HC) subjects using different classification techniques. These techniques include linear support vector machine (LSVM), and regularized extreme learning machine (RELM). We used pairwise Pearson's correlation-based functional connectivity to construct the brain network. We compare the classification performance of brain network using Alzheimer's disease neuroimaging initiative (ADNI) datasets. Node2vec graph embedding approach is employed to convert graph features to feature vectors. Experimental results show that the SVM with LASSO feature selection method generates better classification accuracy compared to other classification technique., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Lama and Kwon.)
- Published
- 2021
- Full Text
- View/download PDF
8. Classification of Alzheimer's Disease and Mild Cognitive Impairment Based on Cortical and Subcortical Features from MRI T1 Brain Images Utilizing Four Different Types of Datasets.
- Author
-
Toshkhujaev S, Lee KH, Choi KY, Lee JJ, Kwon GR, Gupta Y, and Lama RK
- Subjects
- Aged, Algorithms, Alzheimer Disease classification, Area Under Curve, Databases, Factual, Female, Humans, Male, Middle Aged, Pattern Recognition, Automated, Principal Component Analysis, Reproducibility of Results, Support Vector Machine, United States, Alzheimer Disease diagnosis, Alzheimer Disease physiopathology, Cognition Disorders physiopathology, Image Processing, Computer-Assisted methods, Magnetic Resonance Imaging methods, Neuroimaging methods
- Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative illnesses (dementia) among the elderly. Recently, researchers have developed a new method for the instinctive analysis of AD based on machine learning and its subfield, deep learning. Recent state-of-the-art techniques consider multimodal diagnosis, which has been shown to achieve high accuracy compared to a unimodal prognosis. Furthermore, many studies have used structural magnetic resonance imaging (MRI) to measure brain volumes and the volume of subregions, as well as to search for diffuse changes in white/gray matter in the brain. In this study, T1-weighted structural MRI was used for the early classification of AD. MRI results in high-intensity visible features, making preprocessing and segmentation easy. To use this image modality, we acquired four types of datasets from each dataset's server. In this work, we downloaded 326 subjects from the National Research Center for Dementia homepage, 123 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) homepage, 121 subjects from the Alzheimer's Disease Repository Without Borders homepage, and 131 subjects from the National Alzheimer's Coordinating Center homepage. In our experiment, we used the multiatlas label propagation with expectation-maximization-based refinement segmentation method. We segmented the images into 138 anatomical morphometry images (in which 40 features belonged to subcortical volumes and the remaining 98 features belonged to cortical thickness). The entire dataset was split into a 70 : 30 (training and testing) ratio before classifying the data. A principal component analysis was used for dimensionality reduction. Then, the support vector machine radial basis function classifier was used for classification between two groups-AD versus health control (HC) and early mild cognitive impairment (MCI) (EMCI) versus late MCI (LMCI). The proposed method performed very well for all four types of dataset. For instance, for the AD versus HC group, the classifier achieved an area under curve (AUC) of more than 89% for each dataset. For the EMCI versus LMCI group, the classifier achieved an AUC of more than 80% for every dataset. Moreover, we also calculated Cohen kappa and Jaccard index statistical values for all datasets to evaluate the classification reliability. Finally, we compared our results with those of recently published state-of-the-art methods., Competing Interests: The authors declare that there are no conflicts of interest regarding the publication of this paper., (Copyright © 2020 Saidjalol Toshkhujaev et al.)
- Published
- 2020
- Full Text
- View/download PDF
9. Classification and Graphical Analysis of Alzheimer's Disease and Its Prodromal Stage Using Multimodal Features From Structural, Diffusion, and Functional Neuroimaging Data and the APOE Genotype.
- Author
-
Gupta Y, Kim JI, Kim BC, and Kwon GR
- Abstract
Graphical, voxel, and region-based analysis has become a popular approach to studying neurodegenerative disorders such as Alzheimer's disease (AD) and its prodromal stage [mild cognitive impairment (MCI)]. These methods have been used previously for classification or discrimination of AD in subjects in a prodromal stage called stable MCI (MCIs), which does not convert to AD but remains stable over a period of time, and converting MCI (MCIc), which converts to AD, but the results reported across similar studies are often inconsistent. Furthermore, the classification accuracy for MCIs vs. MCIc is limited. In this study, we propose combining different neuroimaging modalities (sMRI, FDG-PET, AV45-PET, DTI, and rs-fMRI) with the apolipoprotein-E genotype to form a multimodal system for the discrimination of AD, and to increase the classification accuracy. Initially, we used two well-known analyses to extract features from each neuroimage for the discrimination of AD: whole-brain parcelation analysis (or region-based analysis), and voxel-wise analysis (or voxel-based morphometry). We also investigated graphical analysis (nodal and group) for all six binary classification groups (AD vs. HC, MCIs vs. MCIc, AD vs. MCIc, AD vs. MCIs, HC vs. MCIc, and HC vs. MCIs). Data for a total of 129 subjects (33 AD, 30 MCIs, 31 MCIc, and 35 HCs) for each imaging modality were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) homepage. These data also include two APOE genotype data points for the subjects. Moreover, we used the 2-mm AICHA atlas with the NiftyReg registration toolbox to extract 384 brain regions from each PET (FDG and AV45) and sMRI image. For the rs-fMRI images, we used the DPARSF toolbox in MATLAB for the automatic extraction of data and the results for REHO, ALFF, and fALFF. We also used the pyClusterROI script for the automatic parcelation of each rs-fMRI image into 200 brain regions. For the DTI images, we used the FSL (Version 6.0) toolbox for the extraction of fractional anisotropy (FA) images to calculate a tract-based spatial statistic. Moreover, we used the PANDA toolbox to obtain 50 white-matter-region-parcellated FA images on the basis of the 2-mm JHU-ICBM-labeled template atlas. To integrate the different modalities and different complementary information into one form, and to optimize the classifier, we used the multiple kernel learning (MKL) framework. The obtained results indicated that our multimodal approach yields a significant improvement in accuracy over any single modality alone. The areas under the curve obtained by the proposed method were 97.78, 96.94, 95.56, 96.25, 96.67, and 96.59% for AD vs. HC, MCIs vs. MCIc, AD vs. MCIc, AD vs. MCIs, HC vs. MCIc, and HC vs. MCIs binary classification, respectively. Our proposed multimodal method improved the classification result for MCIs vs. MCIc groups compared with the unimodal classification results. Our study found that the (left/right) precentral region was present in all six binary classification groups (this region can be considered the most significant region). Furthermore, using nodal network topology, we found that FDG, AV45-PET, and rs-fMRI were the most important neuroimages, and showed many affected regions relative to other modalities. We also compared our results with recently published results., (Copyright © 2020 Gupta, Kim, Kim and Kwon.)
- Published
- 2020
- Full Text
- View/download PDF
10. An Efficient Combination among sMRI, CSF, Cognitive Score, and APOE ε 4 Biomarkers for Classification of AD and MCI Using Extreme Learning Machine.
- Author
-
Khatri U and Kwon GR
- Subjects
- Alzheimer Disease cerebrospinal fluid, Alzheimer Disease diagnosis, Apolipoprotein E4 cerebrospinal fluid, Brain physiopathology, Cognitive Dysfunction diagnosis, Humans, Apolipoprotein E4 metabolism, Biomarkers cerebrospinal fluid, Cognition physiology, Machine Learning
- Abstract
Alzheimer's disease (AD) is the most common cause of dementia and a progressive neurodegenerative condition, characterized by a decline in cognitive function. Symptoms usually appear gradually and worsen over time, becoming severe enough to interfere with individual daily tasks. Thus, the accurate diagnosis of both AD and the prodromal stage (i.e., mild cognitive impairment (MCI)) is crucial for timely treatment. As AD is inherently dynamic, the relationship between AD indicators is unclear and varies over time. To address this issue, we first aimed at investigating differences in atrophic patterns between individuals with AD and MCI and healthy controls (HCs). Then we utilized multiple biomarkers, along with filter- and wrapper-based feature selection and an extreme learning machine- (ELM-) based approach, with 10-fold cross-validation for classification. Increasing efforts are focusing on the use of multiple biomarkers, which can be useful for the diagnosis of AD and MCI. However, optimum combinations have yet to be identified and most multimodal analyses use only volumetric measures obtained from magnetic resonance imaging (MRI). Anatomical structural MRI (sMRI) measures have also so far mostly been used separately. The full possibilities of using anatomical MRI for AD detection have thus yet to be explored. In this study, three measures (cortical thickness, surface area, and gray matter volume), obtained from sMRI through preprocessing for brain atrophy measurements; cerebrospinal fluid (CSF), for quantification of specific proteins; cognitive score, as a measure of cognitive performance; and APOE ε 4 allele status were utilized. Our results show that a combination of specific biomarkers performs well, with accuracies of 97.31% for classifying AD vs. HC, 91.72% for MCI vs. HC, 87.91% for MCI vs. AD, and 83.38% for MCIs vs. MCIc, respectively, when evaluated using the proposed algorithm. Meanwhile, the areas under the curve (AUC) from the receiver operating characteristic (ROC) curves combining multiple biomarkers provided better classification performance. The proposed features combination and selection algorithm effectively classified AD and MCI, and MCIs vs. MCIc, the most challenging classification task, and therefore could increase the accuracy of AD classification in clinical practice. Furthermore, we compared the performance of the proposed method with SVM classifiers, using a cross-validation method with Alzheimer's Disease Neuroimaging Initiative (ADNI) datasets., Competing Interests: The authors declare no conflicts of interest relating to this work., (Copyright © 2020 Uttam Khatri and Goo-Rak Kwon.)
- Published
- 2020
- Full Text
- View/download PDF
11. Prediction and Classification of Alzheimer's Disease Based on Combined Features From Apolipoprotein-E Genotype, Cerebrospinal Fluid, MR, and FDG-PET Imaging Biomarkers.
- Author
-
Gupta Y, Lama RK, and Kwon GR
- Abstract
Alzheimer's disease (AD), including its mild cognitive impairment (MCI) phase that may or may not progress into the AD, is the most ordinary form of dementia. It is extremely important to correctly identify patients during the MCI stage because this is the phase where AD may or may not develop. Thus, it is crucial to predict outcomes during this phase. Thus far, many researchers have worked on only using a single modality of a biomarker for the diagnosis of AD or MCI. Although recent studies show that a combination of one or more different biomarkers may provide complementary information for the diagnosis, it also increases the classification accuracy distinguishing between different groups. In this paper, we propose a novel machine learning-based framework to discriminate subjects with AD or MCI utilizing a combination of four different biomarkers: fluorodeoxyglucose positron emission tomography (FDG-PET), structural magnetic resonance imaging (sMRI), cerebrospinal fluid (CSF) protein levels, and Apolipoprotein-E (APOE) genotype. The Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset was used in this study. In total, there were 158 subjects for whom all four modalities of biomarker were available. Of the 158 subjects, 38 subjects were in the AD group, 82 subjects were in MCI groups (including 46 in MCIc [MCI converted; conversion to AD within 24 months of time period], and 36 in MCIs [MCI stable; no conversion to AD within 24 months of time period]), and the remaining 38 subjects were in the healthy control (HC) group. For each image, we extracted 246 regions of interest (as features) using the Brainnetome template image and NiftyReg toolbox, and later we combined these features with three CSF and two APOE genotype features obtained from the ADNI website for each subject using early fusion technique. Here, a different kernel-based multiclass support vector machine (SVM) classifier with a grid-search method was applied. Before passing the obtained features to the classifier, we have used truncated singular value decomposition (Truncated SVD) dimensionality reduction technique to reduce high dimensional features into a lower-dimensional feature. As a result, our combined method achieved an area under the receiver operating characteristic (AU-ROC) curve of 98.33, 93.59, 96.83, 94.64, 96.43, and 95.24% for AD vs. HC, MCIs vs. MCIc, AD vs. MCIs, AD vs. MCIc, HC vs. MCIc, and HC vs. MCIs subjects which are high relative to single modality results and other state-of-the-art approaches. Moreover, combined multimodal methods have improved the classification performance over the unimodal classification., (Copyright © 2019 Gupta, Lama, Kwon and the Alzheimer's Disease Neuroimaging Initiative.)
- Published
- 2019
- Full Text
- View/download PDF
12. Early diagnosis of Alzheimer's disease using combined features from voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images.
- Author
-
Gupta Y, Lee KH, Choi KY, Lee JJ, Kim BC, and Kwon GR
- Subjects
- Aged, Aged, 80 and over, Cognitive Dysfunction diagnosis, Datasets as Topic, Diagnosis, Differential, Female, Humans, Male, Middle Aged, Support Vector Machine, Alzheimer Disease diagnosis, Brain diagnostic imaging, Early Diagnosis, Image Interpretation, Computer-Assisted methods, Magnetic Resonance Imaging methods
- Abstract
In recent years, several high-dimensional, accurate, and effective classification methods have been proposed for the automatic discrimination of the subject between Alzheimer's disease (AD) or its prodromal phase {i.e., mild cognitive impairment (MCI)} and healthy control (HC) persons based on T1-weighted structural magnetic resonance imaging (sMRI). These methods emphasis only on using the individual feature from sMRI images for the classification of AD, MCI, and HC subjects and their achieved classification accuracy is low. However, latest multimodal studies have shown that combining multiple features from different sMRI analysis techniques can improve the classification accuracy for these types of subjects. In this paper, we propose a novel classification technique that precisely distinguishes individuals with AD, aAD (stable MCI, who had not converted to AD within a 36-month time period), and mAD (MCI caused by AD, who had converted to AD within a 36-month time period) from HC individuals. The proposed method combines three different features extracted from structural MR (sMR) images using voxel-based morphometry (VBM), hippocampal volume (HV), and cortical and subcortical segmented region techniques. Three classification experiments were performed (AD vs. HC, aAD vs. mAD, and HC vs. mAD) with 326 subjects (171 elderly controls and 81 AD, 35 aAD, and 39 mAD patients). For the development and validation of the proposed classification method, we acquired the sMR images from the dataset of the National Research Center for Dementia (NRCD). A five-fold cross-validation technique was applied to find the optimal hyperparameters for the classifier, and the classification performance was compared by using three well-known classifiers: K-nearest neighbor, support vector machine, and random forest. Overall, the proposed model with the SVM classifier achieved the best performance on the NRCD dataset. For the individual feature, the VBM technique provided the best results followed by the HV technique. However, the use of combined features improved the classification accuracy and predictive power for the early classification of AD compared to the use of individual features. The most stable and reliable classification results were achieved when combining all extracted features. Additionally, to analyze the efficiency of the proposed model, we used the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset to compare the classification performance of the proposed model with those of several state-of-the-art methods., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF
13. Alzheimer's Disease Diagnosis Based on Cortical and Subcortical Features.
- Author
-
Gupta Y, Lee KH, Choi KY, Lee JJ, Kim BC, and Kwon GR
- Subjects
- Aged, Aged, 80 and over, Algorithms, Bayes Theorem, Databases, Factual, Dementia diagnosis, Diagnosis, Computer-Assisted, Female, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, Principal Component Analysis, Reproducibility of Results, Support Vector Machine, Alzheimer Disease diagnostic imaging, Brain diagnostic imaging, Cognition Disorders diagnostic imaging
- Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease with an often seen prodromal mild cognitive impairment (MCI) phase, where memory loss is the main complaint progressively worsening with behavior issues and poor self-care. However, not all patients clinically diagnosed with MCI progress to the AD. Currently, several high-dimensional classification techniques have been developed to automatically distinguish among AD, MCI, and healthy control (HC) patients based on T1-weighted MRI. However, these method features are based on wavelets, contourlets, gray-level co-occurrence matrix, etc., rather than using clinical features which helps doctors to understand the pathological mechanism of the AD. In this study, a new approach is proposed using cortical thickness and subcortical volume for distinguishing binary and tertiary classification of the National Research Center for Dementia dataset (NRCD), which consists of 326 subjects. Five classification experiments are performed: binary classification, i.e., AD vs HC, HC vs mAD (MCI due to the AD), and mAD vs aAD (asymptomatic AD), and tertiary classification, i.e., AD vs HC vs mAD and AD vs HC vs aAD using cortical and subcortical features. Datasets were divided in a 70/30 ratio, and later, 70% were used for training and the remaining 30% were used to get an unbiased estimation performance of the suggested methods. For dimensionality reduction purpose, principal component analysis (PCA) was used. After that, the output of PCA was passed to various types of classifiers, namely, softmax, support vector machine (SVM), k -nearest neighbors, and naïve Bayes (NB) to check the performance of the model. Experiments on the NRCD dataset demonstrated that the softmax classifier is best suited for the AD vs HC classification with an F1 score of 99.06, whereas for other groups, the SVM classifier is best suited for the HC vs mAD, mAD vs aAD, and AD vs HC vs mAD classifications with the F1 scores being 99.51, 97.5, and 99.99, respectively. In addition, for the AD vs HC vs aAD classification, NB performed well with an F1 score of 95.88. In addition, to check our proposed model efficiency, we have also used the OASIS dataset for comparing with 9 state-of-the-art methods.
- Published
- 2019
- Full Text
- View/download PDF
14. Pixel-Label-Based Segmentation of Cross-Sectional Brain MRI Using Simplified SegNet Architecture-Based CNN.
- Author
-
Khagi B and Kwon GR
- Subjects
- Algorithms, Humans, Neural Networks, Computer, Brain diagnostic imaging, Image Processing, Computer-Assisted methods, Magnetic Resonance Imaging methods
- Abstract
Using deep neural networks for segmenting an MRI image of heterogeneously distributed pixels into a specific class assigning a label to each pixel is the concept of the proposed approach. This approach facilitates the application of the segmentation process on a preprocessed MRI image, with a trained network to be utilized for other test images. As labels are considered expensive assets in supervised training, fewer training images and training labels are used to obtain optimal accuracy. To validate the performance of the proposed approach, an experiment is conducted on other test images (available in the same database) that are not part of the training; the obtained result is of good visual quality in terms of segmentation and quite similar to the ground truth image. The average computed Dice similarity index for the test images is approximately 0.8, whereas the Jaccard similarity measure is approximately 0.6, which is better compared to other methods. This implies that the proposed method can be used to obtain reference images almost similar to the segmented ground truth images.
- Published
- 2018
- Full Text
- View/download PDF
15. Diagnosis of Alzheimer's Disease Using Dual-Tree Complex Wavelet Transform, PCA, and Feed-Forward Neural Network.
- Author
-
Jha D, Kim JI, and Kwon GR
- Subjects
- Aged, Aged, 80 and over, Algorithms, Alzheimer Disease physiopathology, Case-Control Studies, Dementia diagnostic imaging, Female, Humans, Image Processing, Computer-Assisted, Male, Middle Aged, Pattern Recognition, Automated, Reproducibility of Results, Sensitivity and Specificity, Severity of Illness Index, Alzheimer Disease diagnostic imaging, Brain diagnostic imaging, Diagnosis, Computer-Assisted methods, Magnetic Resonance Imaging, Neural Networks, Computer, Principal Component Analysis, Wavelet Analysis
- Abstract
Background . Error-free diagnosis of Alzheimer's disease (AD) from healthy control (HC) patients at an early stage of the disease is a major concern, because information about the condition's severity and developmental risks present allows AD sufferer to take precautionary measures before irreversible brain damage occurs. Recently, there has been great interest in computer-aided diagnosis in magnetic resonance image (MRI) classification. However, distinguishing between Alzheimer's brain data and healthy brain data in older adults (age > 60) is challenging because of their highly similar brain patterns and image intensities. Recently, cutting-edge feature extraction technologies have found extensive application in numerous fields, including medical image analysis. Here, we propose a dual-tree complex wavelet transform (DTCWT) for extracting features from an image. The dimensionality of feature vector is reduced by using principal component analysis (PCA). The reduced feature vector is sent to feed-forward neural network (FNN) to distinguish AD and HC from the input MR images. These proposed and implemented pipelines, which demonstrate improvements in classification output when compared to that of recent studies, resulted in high and reproducible accuracy rates of 90.06 ± 0.01% with a sensitivity of 92.00 ± 0.04%, a specificity of 87.78 ± 0.04%, and a precision of 89.6 ± 0.03% with 10-fold cross-validation.
- Published
- 2017
- Full Text
- View/download PDF
16. Pathological Brain Detection Using Weiner Filtering, 2D-Discrete Wavelet Transform, Probabilistic PCA, and Random Subspace Ensemble Classifier.
- Author
-
Jha D, Kim JI, Choi MR, and Kwon GR
- Subjects
- Algorithms, Artifacts, Brain pathology, Brain Diseases pathology, Humans, Neuroimaging methods, Probability, Sensitivity and Specificity, Brain diagnostic imaging, Brain Diseases diagnostic imaging, Image Interpretation, Computer-Assisted methods, Magnetic Resonance Imaging methods, Principal Component Analysis, Wavelet Analysis
- Abstract
Accurate diagnosis of pathological brain images is important for patient care, particularly in the early phase of the disease. Although numerous studies have used machine-learning techniques for the computer-aided diagnosis (CAD) of pathological brain, previous methods encountered challenges in terms of the diagnostic efficiency owing to deficiencies in the choice of proper filtering techniques, neuroimaging biomarkers, and limited learning models. Magnetic resonance imaging (MRI) is capable of providing enhanced information regarding the soft tissues, and therefore MR images are included in the proposed approach. In this study, we propose a new model that includes Wiener filtering for noise reduction, 2D-discrete wavelet transform (2D-DWT) for feature extraction, probabilistic principal component analysis (PPCA) for dimensionality reduction, and a random subspace ensemble (RSE) classifier along with the K -nearest neighbors (KNN) algorithm as a base classifier to classify brain images as pathological or normal ones. The proposed methods provide a significant improvement in classification results when compared to other studies. Based on 5 × 5 cross-validation (CV), the proposed method outperforms 21 state-of-the-art algorithms in terms of classification accuracy, sensitivity, and specificity for all four datasets used in the study.
- Published
- 2017
- Full Text
- View/download PDF
17. Twin SVM-Based Classification of Alzheimer's Disease Using Complex Dual-Tree Wavelet Principal Coefficients and LDA.
- Author
-
Alam S, Kwon GR, Kim JI, and Park CS
- Subjects
- Aged, Aged, 80 and over, Algorithms, Biomarkers, Cognitive Dysfunction diagnosis, Discriminant Analysis, Female, Humans, Magnetic Resonance Imaging, Male, Models, Statistical, Multivariate Analysis, Principal Component Analysis, Reproducibility of Results, Risk Factors, Sensitivity and Specificity, Severity of Illness Index, Support Vector Machine, Wavelet Analysis, Alzheimer Disease diagnosis, Brain diagnostic imaging, Diagnosis, Computer-Assisted, Neuroimaging methods
- Abstract
Alzheimer's disease (AD) is a leading cause of dementia, which causes serious health and socioeconomic problems. A progressive neurodegenerative disorder, Alzheimer's causes the structural change in the brain, thereby affecting behavior, cognition, emotions, and memory. Numerous multivariate analysis algorithms have been used for classifying AD, distinguishing it from healthy controls (HC). Efficient early classification of AD and mild cognitive impairment (MCI) from HC is imperative as early preventive care could help to mitigate risk factors. Magnetic resonance imaging (MRI), a noninvasive biomarker, displays morphometric differences and cerebral structural changes. A novel approach for distinguishing AD from HC using dual-tree complex wavelet transforms (DTCWT), principal coefficients from the transaxial slices of MRI images, linear discriminant analysis, and twin support vector machine is proposed here. The prediction accuracy of the proposed method yielded up to 92.65 ± 1.18 over the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, with a specificity of 92.19 ± 1.56 and sensitivity of 93.11 ± 1.29, and 96.68 ± 1.44 over the Open Access Series of Imaging Studies (OASIS) dataset, with a sensitivity of 97.72 ± 2.34 and specificity of 95.61 ± 1.67. The accuracy, sensitivity, and specificity achieved using the proposed method are comparable or superior to those obtained by various conventional AD prediction methods.
- Published
- 2017
- Full Text
- View/download PDF
18. Segmentation of Planar Surfaces from Laser Scanning Data Using the Magnitude of Normal Position Vector for Adaptive Neighborhoods.
- Author
-
Kim C, Habib A, Pyeon M, Kwon GR, Jung J, and Heo J
- Abstract
Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1) reduces the dimensions of the attribute space; (2) considers the attribute similarity and the proximity of the laser point simultaneously; and (3) works well with both airborne and terrestrial laser scanning data. A neighborhood definition based on the shape of the surface increases the homogeneity of the laser point attributes. The magnitude of the normal position vector is used as an attribute for reducing the dimension of the accumulator array. The experimental results demonstrate, through both qualitative and quantitative evaluations, the outcomes' high level of reliability. The proposed segmentation algorithm provided 96.89% overall correctness, 95.84% completeness, a 0.25 m overall mean value of centroid difference, and less than 1° of angle difference. The performance of the proposed approach was also verified with a large dataset and compared with other approaches. Additionally, the evaluation of the sensitivity of the thresholds was carried out. In summary, this paper proposes a robust and efficient segmentation methodology for abstraction of an enormous number of laser points into plane information.
- Published
- 2016
- Full Text
- View/download PDF
19. Level set method with automatic selective local statistics for brain tumor segmentation in MR images.
- Author
-
Thapaliya K, Pyun JY, Park CS, and Kwon GR
- Subjects
- Artificial Intelligence, Computer Simulation, Humans, Image Enhancement methods, Models, Biological, Models, Statistical, Reproducibility of Results, Sensitivity and Specificity, Algorithms, Brain Neoplasms pathology, Data Interpretation, Statistical, Image Interpretation, Computer-Assisted methods, Magnetic Resonance Imaging methods, Pattern Recognition, Automated methods
- Abstract
The level set approach is a powerful tool for segmenting images. This paper proposes a method for segmenting brain tumor images from MR images. A new signed pressure function (SPF) that can efficiently stop the contours at weak or blurred edges is introduced. The local statistics of the different objects present in the MR images were calculated. Using local statistics, the tumor objects were identified among different objects. In this level set method, the calculation of the parameters is a challenging task. The calculations of different parameters for different types of images were automatic. The basic thresholding value was updated and adjusted automatically for different MR images. This thresholding value was used to calculate the different parameters in the proposed algorithm. The proposed algorithm was tested on the magnetic resonance images of the brain for tumor segmentation and its performance was evaluated visually and quantitatively. Numerical experiments on some brain tumor images highlighted the efficiency and robustness of this method., (Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.