1. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties.
- Author
-
Kushwaha, SK, Pletikosić, I, Liang, T, Gyenis, A, Lapidus, SH, Tian, Yao, Zhao, He, Burch, KS, Lin, Jingjing, Wang, Wudi, Ji, Huiwen, Fedorov, AV, Yazdani, Ali, Ong, NP, Valla, T, and Cava, RJ
- Subjects
cond-mat.str-el ,cond-mat.mtrl-sci - Abstract
A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high-quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons and be growable as large, high-quality bulk single crystals. Here we show that this material obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the vertical Bridgman method. We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunnelling microscopy, transport studies, X-ray diffraction and Raman scattering. We present this material as a high-quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.
- Published
- 2016