8 results on '"Kuntic I"'
Search Results
2. Noise and mental health: evidence, mechanisms, and consequences.
- Author
-
Hahad O, Kuntic M, Al-Kindi S, Kuntic I, Gilan D, Petrowski K, Daiber A, and Münzel T
- Abstract
The recognition of noise exposure as a prominent environmental determinant of public health has grown substantially. While recent years have yielded a wealth of evidence linking environmental noise exposure primarily to cardiovascular ailments, our understanding of the detrimental effects of noise on the brain and mental health outcomes remains limited. Despite being a nascent research area, an increasing body of compelling research and conclusive findings confirms that exposure to noise, particularly from sources such as traffic, can potentially impact the central nervous system. These harms of noise increase the susceptibility to mental health conditions such as depression, anxiety, suicide, and behavioral problems in children and adolescents. From a mechanistic perspective, several investigations propose direct adverse phenotypic changes in brain tissue by noise (e.g. neuroinflammation, cerebral oxidative stress), in addition to feedback signaling by remote organ damage, dysregulated immune cells, and impaired circadian rhythms, which may collectively contribute to noise-dependent impairment of mental health. This concise review linking noise exposure to mental health outcomes seeks to fill research gaps by assessing current findings from studies involving both humans and animals., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Effects of aircraft noise cessation on blood pressure, cardio- and cerebrovascular endothelial function, oxidative stress, and inflammation in an experimental animal model.
- Author
-
Bayo Jimenez MT, Gericke A, Frenis K, Rajlic S, Kvandova M, Kröller-Schön S, Oelze M, Kuntic M, Kuntic I, Mihalikova D, Tang Q, Jiang S, Ruan Y, Duerr GD, Steven S, Schmeisser MJ, Hahad O, Li H, Daiber A, and Münzel T
- Abstract
Large epidemiological studies have shown that traffic noise promotes the development of cardiometabolic diseases. It remains to be established how long these adverse effects of noise may persist in response to a noise-off period. We investigated the effects of acute aircraft noise exposure (mean sound level of 72 dB(A) applied for 4d) on oxidative stress and inflammation mediating vascular dysfunction and increased blood pressure in male C57BL/6 J mice. 1, 2 or 4d of noise cessation after a 4d continuous noise exposure period completely normalized noise-induced endothelial dysfunction of the aorta (measured by acetylcholine-dependent relaxation) already after a 1d noise pause. Vascular oxidative stress and the increased blood pressure were partially corrected, while markers of inflammation (VCAM-1, IL-6 and leukocyte oxidative burst) showed a normalization within 4d of noise cessation. In contrast, endothelial dysfunction, oxidative stress, and inflammation of the cerebral microvessels of noise-exposed mice did not improve at all. These data demonstrate that the recovery from noise-induced damage is more complex than expected demonstrating a complete restoration of large conductance vessel function but persistent endothelial dysfunction of the microcirculation. These findings also imply that longer noise pauses are required to completely reverse noise-induced vascular dysfunction including the resistance vessels., Competing Interests: Declaration of competing interest The authors declare that they have no conflicts of interest with the contents of this article., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
4. Impact of air pollution on cardiovascular aging.
- Author
-
Kuntic M, Kuntic I, Hahad O, Lelieveld J, Münzel T, and Daiber A
- Subjects
- Humans, Aged, Aging, Longevity, Cardiovascular Diseases, Cardiovascular System, Air Pollution
- Abstract
The world population is aging rapidly, and by some estimates, the number of people older than 60 will double in the next 30 years. With the increase in life expectancy, adverse effects of environmental exposures start playing a more prominent role in human health. Air pollution is now widely considered the most detrimental of all environmental risk factors, with some studies estimating that almost 20% of all deaths globally could be attributed to poor air quality. Cardiovascular diseases are the leading cause of death worldwide and will continue to account for the most significant percentage of non-communicable disease burden. Cardiovascular aging with defined pathomechanisms is a major trigger of cardiovascular disease in old age. Effects of environmental risk factors on cardiovascular aging should be considered in order to increase the health span and reduce the burden of cardiovascular disease in older populations. In this review, we explore the effects of air pollution on cardiovascular aging, from the molecular mechanisms to cardiovascular manifestations of aging and, finally, the age-related cardiovascular outcomes. We also explore the distinction between the effects of air pollution on healthy aging and disease progression. Future efforts should focus on extending the health span rather than the lifespan., Competing Interests: Declaration of Competing Interest The authors declare that they have no conflicts of interest with the contents of this article., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
5. Tobacco smoking and vascular biology and function: evidence from human studies.
- Author
-
Hahad O, Kuntic M, Kuntic I, Daiber A, and Münzel T
- Subjects
- Humans, Oxidative Stress, Inflammation metabolism, Tobacco Smoking, Biology, Endothelium, Vascular metabolism, Atherosclerosis pathology
- Abstract
Tobacco cigarette smoking is among the most complex and least understood health risk factors. A deeper insight into the pathophysiological actions of smoking exposure is of special importance as smoking is a major cause of chronic non-communicable diseases, in particular of cardiovascular disease as well as risk factors such as atherosclerosis and arterial hypertension. It is well known that smoking exerts its negative effects on cardiovascular health through various interdependent pathophysiological actions including hemodynamic and autonomic alterations, oxidative stress, inflammation, endothelial dysfunction, thrombosis, and hyperlipidemia. Importantly, impaired vascular endothelial function is acknowledged as an early key event in the initiation and progression of smoking-induced atherosclerosis. Increasing evidence from human studies indicates that cigarette smoke exposure associates with a pathological state of the vascular endothelium mainly characterized by reduced vascular nitric oxide bioavailability due to increased vascular superoxide production. In the present overview, we provide compact evidence on the effects of tobacco cigarette smoke exposure on vascular biology and function in humans centered on main drivers of adverse cardiovascular effects including endothelial dysfunction, inflammation, and oxidative stress., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
6. The role of acrolein for E-cigarette vapour condensate mediated activation of NADPH oxidase in cultured endothelial cells and macrophages.
- Author
-
Kuntic I, Kuntic M, Oelze M, Stamm P, Karpi A, Kleinert H, Hahad O, Münzel T, and Daiber A
- Subjects
- Animals, Mice, Humans, Endothelial Cells metabolism, Acrolein toxicity, Acrolein metabolism, Reactive Oxygen Species metabolism, NADPH Oxidases metabolism, Macrophages metabolism, Oxidative Stress, Aldehydes metabolism, Aldehydes pharmacology, Electronic Nicotine Delivery Systems, E-Cigarette Vapor metabolism, E-Cigarette Vapor pharmacology
- Abstract
Electronic cigarettes (E-cigarettes) have recently become a popular alternative to traditional tobacco cigarettes. Despite being marketed as a healthier alternative, increasing evidence shows that E-cigarette vapour could cause adverse health effects. It has been postulated that degradation products of E-cigarette liquid, mainly reactive aldehydes, are responsible for those effects. Previously, we have demonstrated that E-cigarette vapour exposure causes oxidative stress, inflammation, apoptosis, endothelial dysfunction and hypertension by activating NADPH oxidase in a mouse model. To better understand oxidative stress mechanisms, we have exposed cultured endothelial cells and macrophages to condensed E-cigarette vapour (E-cigarette condensate) and acrolein. In both endothelial cells (EA.hy 926) and macrophages (RAW 264.7), we have observed that E-cigarette condensate incubation causes cell death. Since recent studies have shown that among toxic aldehydes found in E-cigarette vapour, acrolein plays a prominent role, we have incubated the same cell lines with increasing concentrations of acrolein. Upon incubation with acrolein, a translocation of Rac1 to the plasma membrane has been observed, accompanied by an increase in oxidative stress. Whereas reactive oxygen species (ROS) formation by acrolein in cultured endothelial cells was mainly intracellular, the release of ROS in cultured macrophages was both intra- and extracellular. Our data also demonstrate that acrolein activates the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and, in general, could mediate E-cigarette vapour-induced oxidative stress and cell death. More mechanistic insight is needed to clarify the toxicity associated with E-cigarette consumption and the possible adverse effects on human health., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
7. Co-exposure to urban particulate matter and aircraft noise adversely impacts the cerebro-pulmonary-cardiovascular axis in mice.
- Author
-
Kuntic M, Kuntic I, Krishnankutty R, Gericke A, Oelze M, Junglas T, Bayo Jimenez MT, Stamm P, Nandudu M, Hahad O, Keppeler K, Daub S, Vujacic-Mirski K, Rajlic S, Strohm L, Ubbens H, Tang Q, Jiang S, Ruan Y, Macleod KG, Steven S, Berkemeier T, Pöschl U, Lelieveld J, Kleinert H, von Kriegsheim A, Daiber A, and Münzel T
- Subjects
- Mice, Animals, Particulate Matter adverse effects, Mice, Inbred C57BL, Inflammation chemically induced, Oxidative Stress, Aircraft, COVID-19, Cardiovascular System
- Abstract
Worldwide, up to 8.8 million excess deaths/year have been attributed to air pollution, mainly due to the exposure to fine particulate matter (PM). Traffic-related noise is an additional contributor to global mortality and morbidity. Both health risk factors substantially contribute to cardiovascular, metabolic and neuropsychiatric sequelae. Studies on the combined exposure are rare and urgently needed because of frequent co-occurrence of both risk factors in urban and industrial settings. To study the synergistic effects of PM and noise, we used an exposure system equipped with aerosol generator and loud-speakers, where C57BL/6 mice were acutely exposed for 3d to either ambient PM (NIST particles) and/or noise (aircraft landing and take-off events). The combination of both stressors caused endothelial dysfunction, increased blood pressure, oxidative stress and inflammation. An additive impairment of endothelial function was observed in isolated aortic rings and even more pronounced in cerebral and retinal arterioles. The increase in oxidative stress and inflammation markers together with RNA sequencing data indicate that noise particularly affects the brain and PM the lungs. The combination of both stressors has additive adverse effects on the cardiovascular system that are based on PM-induced systemic inflammation and noise-triggered stress hormone signaling. We demonstrate an additive upregulation of ACE-2 in the lung, suggesting that there may be an increased vulnerability to COVID-19 infection. The data warrant further mechanistic studies to characterize the propagation of primary target tissue damage (lung, brain) to remote organs such as aorta and heart by combined noise and PM exposure., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
8. Measurement of Tetrahydrobiopterin in Animal Tissue Samples by HPLC with Electrochemical Detection-Protocol Optimization and Pitfalls.
- Author
-
Vujacic-Mirski K, Oelze M, Kuntic I, Kuntic M, Kalinovic S, Li H, Zielonka J, Münzel T, and Daiber A
- Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor of all nitric oxide synthase isoforms, thus determination of BH4 levels can provide important mechanistic insight into diseases. We established a protocol for high-performance liquid chromatography/electrochemical detection (HPLC/ECD)-based determination of BH4 in tissue samples. We first determined the optimal storage and work-up conditions for authentic BH4 and its oxidation product dihydrobiopterin (BH2) under various conditions (pH, temperature, presence of antioxidants, metal chelators, and storage time). We then applied optimized protocols for detection of BH4 in tissues of septic (induced by lipopolysaccharide [LPS]) rats. BH4 standards in HCl are stabilized by addition of 1,4-dithioerythritol (DTE) and diethylenetriaminepentaacetic acid (DTPA), while HCl was sufficient for BH2 standard stabilization. Overnight storage of BH4 standard solutions at room temperature in HCl without antioxidants caused complete loss of BH4 and the formation of BH2. We further optimized the protocol to separate ascorbate and the BH4 tissue sample and found a significant increase in BH4 in the heart and kidney as well as higher BH4 levels by trend in the brain of septic rats compared to control rats. These findings correspond to reports on augmented nitric oxide and BH4 levels in both animals and patients with septic shock.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.