22 results on '"Kristak L"'
Search Results
2. Preparation and characterization of non-isocyanate polyurethane resins derived from tannin of Acacia mangium bark for the modification of ramie fibers
- Author
-
Aristri Manggar Arum, Lubis Muhammad Adly Rahandi, Sari Rita Kartika, Kristak Lubos, Iswanto Apri Heri, Mardawati Efri, and Hua Lee Seng
- Subjects
acacia mangium bark ,bio-based resins ,non-isocyanate ,polyurethane resins ,ramie fibers ,tannin ,Forestry ,SD1-669.5 - Abstract
The purpose of this research was to create bio-based non-isocyanate polyurethane (Bio-NIPU) resins derived from the tannin of Acacia mangium Willd. bark for the impregnation of ramie fibres (Boehmeria nivea L.) and to investigate the properties of impregnated fibres. Tannin was extracted from the bark of A. mangium using hot water. Tannin-bio-NIPU resin was created using dimethyl carbonate and hexamine. Based on the findings, it is possible to conclude that tannin extract from the bark of Acacia mangium can be used effectively as a renewable alternative to toxic polyols in the development of tannin-Bio-NIPU resins. FTIR spectroscopy was used to confirm the urethane bond formed on the tannin-Bio-NIPU resins. Thermal and mechanical analysis were used to investigate the properties of tannin-Bio-NIPU resins and ramie fibres before and after impregnation. This study shows that the impregnation time of ramie fiber using tannin-Bio-NIPU resins is 30 minutes. The reaction between tannin-Bio-NIPU resins with ramie fiber forms the C=O urethane group as confirmed by FTIR Spectroscopy. The characterization results show that tannin-Bio-NIPU resins has ability to modify ramie fiber via impregnation in order to increase its mechanical properties, thus enhancing its potential for wider industrial application as a functional material.
- Published
- 2023
- Full Text
- View/download PDF
3. A comprehensive review of lignin-reinforced lignocellulosic composites: Enhancing fire resistance and reducing formaldehyde emission.
- Author
-
Iswanto AH, Lee SH, Hussin MH, Hamidon TS, Hajibeygi M, Manurung H, Solihat NN, Nurcahyani PR, Lubis MAR, Antov P, Savov V, Kristak L, Kawalerczyk J, Osvaldová LM, Farid S, Selvasembian R, and Fatriasari W
- Abstract
The rising environmental concerns and the growing demand for renewable materials have surged across various industries. In this context, lignin, being a plentiful natural aromatic compound that possesses advantageous functional groups suitable for utilization in biocomposite systems, has gained notable attention as a promising and sustainable alternative to fossil-derived materials. It can be obtained from lignocellulosic biomass through extraction via various techniques, which may cause variability in its thermal, mechanical, and physical properties. Due to its excellent biocompatibility, eco-friendliness, and low toxicity, lignin has been extensively researched for the development of high-value materials including lignin-based biocomposites. Its aromatic properties also allow it to successfully substitute phenol in the production of phenolic resin adhesives, resulting in decreased formaldehyde emission. This review investigated and evaluated the role of lignin as a green filler in lignin-based lignocellulosic composites, aimed at enhancing their fire retardancy and decreasing formaldehyde emission. In addition, relevant composite properties, such as thermal properties, were investigated in this study. Markedly, technical challenges, including compatibility with other matrix polymers that are influenced by limited reactivity, remain. Some impurities in lignin and various sources of lignin also affect the performance of composites. While lignin utilization can address certain environmental issues, its large-scale use is limited by both process costs and market factors. Therefore, the exact mechanism by which lignin enhances flame retardancy, reduces formaldehyde emissions, and improves the long-term durability of lignocellulosic composites under various environmental conditions remains unclear and requires thorough investigation. Life cycle analysis and techno-economic analysis of lignin-based composites may contribute to understanding the overall influence of systems not only at the laboratory scale but also at a larger industrial scale., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Performance of Oriented Strand Board Made of Heat-Treated Bamboo ( Dendrocalamus asper (Schult.) Backer) Strands.
- Author
-
Maulana S, Suwanda AA, Murda RA, Antov P, Komariah RN, Maulana MI, Augustina S, Lee SH, Mahardika M, Rianjanu A, Taher T, Kristak L, Bindar Y, Iswanto AH, and Lubis MAR
- Abstract
This study aimed to analyze the effect of pre-heat treatment on bamboo strand properties and its impact on the properties of the resulting bamboo-oriented strand board (BOSB). Giant bamboo ( Dendrocalamus asper (Schult.) Backer) with a density of 0.53 g cm
-3 was converted into bamboo strands. These strands were pre-heat-treated at 140 and 160 °C for a duration of 1, 2, and 3 h. Changes in the chemical composition of the strand due to subsequent treatment were assessed. Fourier-transform infrared spectroscopy (FTIR) and X-Ray diffraction analysis (XRD) were used to determine the changes in the chemical composition of bamboo strands. The BOSB panels were produced with a target density of 0.7 g cm-3 . The manufacturing of the BOSB was conducted in three layers with a ratio of 25:50:25, bonded with phenol-formaldehyde resin. The physical and mechanical properties of the laboratory-fabricated BOSB were tested in compliance with the criteria given in JIS A 5908 standards. Comparisons were made against OSB CSA 0437.0 Grade O-1 commercial standard. The pre-heat treatment led to chemical alterations within the material when set at 140 and 160 °C for 1 to 3 hours (h). FTIR spectral analysis demonstrated that longer exposure and higher temperatures resulted in fewer functional groups within the bamboo strands. The increased temperature and duration of pre-heat treatment enhanced the crystallinity index (CI). The dimensional stability and mechanical properties of the composites were improved significantly as hemicellulose and extractive content were reduced. This study demonstrated that the pre-heat treatment of bamboo strands at a temperature of 160 °C for a duration of 1 h was an adequate approach for heat modification and fabrication of BOSB panels with acceptable properties according to OSB CSA 0437.0 Grade O-1 commercial standard.- Published
- 2024
- Full Text
- View/download PDF
5. Perspectives on Using Alder, Larch, and Birch Wood Species to Maintain the Increasing Particleboard Production Flow.
- Author
-
Reh R, Kristak L, Kral P, Pipiska T, and Jopek M
- Abstract
Particleboard, engineered wood products as part of a large family of wood composite materials, developed in use mainly in the 1950s and 1960s to utilize inferior wood and wood waste when good-quality wood was in short supply; the annual production capacity worldwide is over 100 million m
3 . It is also necessary to have a lot of wood raw material for its production, although raw material resources are limited on our planet. In addition to the main wood species, it is therefore possible to think about the wider use of alternative, lesser-known European species of alder, larch, and birch in particleboard production. These three wood species represent an eco-friendly and sustainable wood alternative to the conventional wood raw materials used. This review confirms the diversity of the use of these three species in different fields and proves their suitability in relation to particleboard production. Fundamental research is ongoing in certain universities to determine the proportional shares of use of these tree species in particleboard (in a certain weight proportion in their core layers) for the purpose of formulating the correct technology shares and rules for their application in the wood-based panel industry.- Published
- 2024
- Full Text
- View/download PDF
6. Molded Plywood with Proportions of Beech Bark in Adhesive Mixtures: Production on an Industrial Scale.
- Author
-
Reh R, Kristak L, Sedliacik J, Bekhta P, Wronka A, and Kowaluk G
- Abstract
Molded plywood is used for furniture components such as seats, backrests, or integral seat shells, and it must be durable and harmless to health. Molded plywood is made with urea-formaldehyde (UF) adhesives; therefore, the issue of the fillers used in them is important. The potential of using ground beech ( Fagus sylvatica L.) bark as an eco-friendly additive in UF adhesives for molded plywood manufacturing was investigated in this work. Wheat flour was used as a reference filler. The beech bark (BB) level as a filler was 10%, a value verified under laboratory conditions. Nine-layer flat and molded plywood were produced under industrial conditions from beech veneers bonded with a UF adhesive mixture. The mechanical (bending strength and bonding quality) and physical (swelling and absorbency values after 2 and 24 h) properties of the industrially fabricated molded plywood were evaluated and compared with the European standard requirements (EN 310 and EN 314-2). The mechanical properties of the molded plywood with the addition of BB in the adhesive mixture were acceptable and met these standards' requirements. The positive effect of BB in the UF adhesive mixture on a reduction in formaldehyde emissions from the molded plywood was also confirmed. BB, considered to be wood-processing industry waste or a by-product, has significant potential to be used as a filler in UF resins for molded plywood production, providing an environmentally friendly, inexpensive solution for the industrial valorization of bark as a bio-based formaldehyde scavenger.
- Published
- 2024
- Full Text
- View/download PDF
7. Latest Advancements in the Development of High-Performance Lignin- and Tannin-Based Non-Isocyanate Polyurethane Adhesive for Wood Composites.
- Author
-
Iswanto AH, Lubis MAR, Sutiawan J, Al-Edrus SSO, Lee SH, Antov P, Kristak L, Reh R, Mardawati E, Santoso A, and Kusumah SS
- Abstract
The depletion of natural resources and increasing environmental apprehension regarding the reduction of harmful isocyanates employed in manufacturing polyurethanes (PUs) have generated significant attention from both industrial and academic sectors. This attention is focused on advancing bio-based non-isocyanate polyurethane (NIPU) resins as viable and sustainable substitutes, possessing satisfactory properties. This review presents a comprehensive analysis of the progress made in developing bio-based NIPU polymers for wood adhesive applications. The main aim of this paper is to conduct a comprehensive analysis of the latest advancements in the production of high-performance bio-based NIPU resins derived from lignin and tannin for wood composites. A comprehensive evaluation was conducted on scholarly publications retrieved from the Scopus database, encompassing the period from January 2010 to April 2023. In NIPU adhesive manufacturing, the exploration of substitute materials for isocyanates is imperative, due to their inherent toxicity, high cost, and limited availability. The process of demethylation and carbonation of lignin and tannin has the potential to produce polyphenolic compounds that possess hydroxyl and carbonyl functional groups. Bio-based NIPUs can be synthesized through the reaction involving diamine molecules. Previous studies have provided evidence indicating that NIPUs derived from lignin and tannin exhibit enhanced mechanical properties, decreased curing temperatures and shortened pressing durations, and are devoid of isocyanates. The characterization of NIPU adhesives based on lignin and tannin was conducted using various analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), matrix-assisted laser desorption/ionization with time-of-flight (MALDI-TOF) mass spectrometry, and gel permeation chromatography (GPC). The adhesive performance of tannin-based NIPU resins was shown to be superior to that of lignin-based NIPUs. This paper elucidates the potential of lignin and tannin as alternate sources for polyols in the manufacturing of NIPUs, specifically for their application as wood adhesives.
- Published
- 2023
- Full Text
- View/download PDF
8. Properties of Ramie ( Boehmeria nivea (L.) Gaudich) Fibers Impregnated with Non-Isocyanate Polyurethane Resins Derived from Lignin.
- Author
-
Raditya VYA, Lubis MAR, Sari RK, Antov P, Lee SH, Kristak L, Mardawati E, and Iswanto AH
- Abstract
The textile industries need an alternative to cotton since its supply is unable to keep up with the growing global demand. The ramie ( Boehmeria nivea (L.) Gaudich) fiber has a lot of potential as a renewable raw material but has low fire-resistance, which should be improved. In this work, the objectives were to investigate the characteristics of lignin derived from black liquor of kraft pulping, as well as the properties of the developed lignin-based non-isocyanate-polyurethane (L-NIPU), and to analyze ramie fiber before and after impregnation with L-NIPU. Two different formulations of L-NIPU were impregnated into ramie fiber for 30, 60, and 90 min at 25 × 2 °C under 50 kPa. The calculation of the Weight Percent Gain (WPG), Fourier Transform Infrared Spectrometer (FTIR), Rotational Rheometer, Dynamic Mechanical Analyzer (DMA), Pyrolysis Gas Chromatography Mass Spectrometer (Py-GCMS), Universal Testing Machine (UTM), and hydrolysis test were used to evaluate the properties of ramie fibers. The result showed that ramie fiber impregnated with L-NIPU produced higher mechanical property values and WPG than non-impregnated ramie fiber. There is a tendency that the longer impregnation time results in better WPG values, FTIR intensity of the urethane group, thermomechanical properties, crystallinity, and mechanical properties of ramie fiber. However, the use of DMC and HMT cannot replace the role of isocyanates in the synthesis of L-NIPU because it produces lower heat resistance than ramie impregnated using pMDI. Based on the results obtained, the impregnation of ramie fiber with L-NIPU represents a promising approach to increase its wider industrial application as a functional material.
- Published
- 2023
- Full Text
- View/download PDF
9. Cohesion and Adhesion Performance of Tannin-Glyoxal Adhesives at Different Formulations and Hardener Types for Bonding Particleboard Made of Areca ( Areca catechu ) Leaf Sheath.
- Author
-
Anggini AW, Lubis MAR, Sari RK, Papadopoulos AN, Antov P, Iswanto AH, Lee SH, Mardawati E, Kristak L, and Juliana I
- Abstract
The use of alternative raw materials, such as agricultural biomass and by-products, in particleboard (PB) production is a viable approach to address the growing global demand for sustainable wood-based materials. The purpose of this study was to investigate the effect of the type of hardener and tannin-glyoxal (TG) adhesive formulation on the cohesion and adhesion performance of TG adhesives for areca-based PB. Two types of hardeners were used, NH
4 Cl and NaOH, and three adhesive formulations with tannin:glyoxal ratios (i.e., F1 (1:2), F2 (1:1), and F3 (2:1)) were applied to improve the cohesion performance and adhesion for areca-based TG adhesive for PB. The basic, chemical, and mechanical properties of the TG adhesive were investigated using a Fourier transform infrared spectrometer, rotational rheometer, dynamic mechanical analyzer (DMA), and X-ray diffractometer. The results show that a high glyoxal percentage increases the percentage of crystallinity in the adhesive. This shows that the increase in glyoxal is able to form better polymer bonds. DMA analysis shows that the adhesive is elastic and the use of NH4 Cl hardener has better mechanical properties in thermodynamic changes than the adhesive using NaOH hardener. Finally, the adhesion performance of the TG adhesives on various types of hardeners and adhesive formulations was evaluated on areca-based PB panels. Regardless of the type of hardener, the TG adhesive made with F1 had better cohesion and adhesion properties compared to F2 and F3. Combining F1 with NH4 Cl produced areca-based PB panels with better physical and mechanical qualities than the adhesive formulations F2 and F3, and complied with Type 8 particleboard according to SNI 03-2105-2006 standard.- Published
- 2023
- Full Text
- View/download PDF
10. Eco-Friendly Tannin-Based Non-Isocyanate Polyurethane Resins for the Modification of Ramie ( Boehmeria nivea L.) Fibers.
- Author
-
Aristri MA, Sari RK, Lubis MAR, Laksana RPB, Antov P, Iswanto AH, Mardawati E, Lee SH, Savov V, Kristak L, and Papadopoulos AN
- Abstract
This study aimed to develop tannin-based non-isocyanate polyurethane (tannin-Bio-NIPU) and tannin-based polyurethane (tannin-Bio-PU) resins for the impregnation of ramie fibers ( Boehmeria nivea L.) and investigate their mechanical and thermal properties. The reaction between the tannin extract, dimethyl carbonate, and hexamethylene diamine produced the tannin-Bio-NIPU resin, while the tannin-Bio-PU was made with polymeric diphenylmethane diisocyanate (pMDI). Two types of ramie fiber were used: natural ramie without pre-treatment (RN) and with pre-treatment (RH). They were impregnated in a vacuum chamber with tannin-based Bio-PU resins for 60 min at 25 °C under 50 kPa. The yield of the tannin extract produced was 26.43 ± 1.36%. Fourier-transform infrared (FTIR) spectroscopy showed that both resin types produced urethane (-NCO) groups. The viscosity and cohesion strength of tannin-Bio-NIPU (20.35 mPa·s and 5.08 Pa) were lower than those of tannin-Bio-PU (42.70 mPa·s and 10.67 Pa). The RN fiber type (18.9% residue) was more thermally stable than RH (7.3% residue). The impregnation process with both resins could improve the ramie fibers' thermal stability and mechanical strength. The highest thermal stability was found in RN impregnated with the tannin-Bio-PU resin (30.5% residue). The highest tensile strength was determined in the tannin-Bio-NIPU RN of 451.3 MPa. The tannin-Bio-PU resin gave the highest MOE for both fiber types (RN of 13.5 GPa and RH of 11.7 GPa) compared to the tannin-Bio-NIPU resin.
- Published
- 2023
- Full Text
- View/download PDF
11. A comprehensive review of the synthesis strategies, properties, and applications of transparent wood as a renewable and sustainable resource.
- Author
-
Chutturi M, Gillela S, Yadav SM, Wibowo ES, Sihag K, Rangppa SM, Bhuyar P, Siengchin S, Antov P, Kristak L, and Sinha A
- Abstract
The uncertainties of the environment and the emission levels of nonrenewable resources have compelled humanity to develop sustainable energy savers and sustainable materials. One of the most abundant and versatile bio-based structural materials is wood. Wood has several promising advantages, including high toughness, low thermal conductivity, low density, high Young's modulus, biodegradability, and non-toxicity. Furthermore, while wood has many ecological and structural advantages, it does not meet optical transparency requirements. Transparent wood is ideal for use in various industries, including electronics, packaging, automotive, and construction, due to its high transparency, haze, and environmental friendliness. As a necessary consequence, current research on developing fine wood is summarized in this review. This review begins with an explanation of the history of fine wood. The concept and various synthesis strategies, such as delignification, refractive index measurement methods, and transparent lumber polymerization, are discussed. Approaches and techniques for the characterization of transparent wood are outlined, including microscopic, Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analysis. Furthermore, the characterization, physical properties, mechanical properties, optical properties, and thermal conductivity of transparent wood are emphasized. Eventually, a brief overview of the various applications of fine wood is presented. The present review summarized the first necessary actions toward future transparent wood applications., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022. Published by Elsevier B.V.)
- Published
- 2023
- Full Text
- View/download PDF
12. New Challenges in Wood and Wood-Based Materials II.
- Author
-
Kristak L, Réh R, and Kubovský I
- Abstract
Wood is a natural material that is available in large quantities and is easy to produce, making it the perfect material to consider for the circular economy [...].
- Published
- 2023
- Full Text
- View/download PDF
13. Advanced Eco-Friendly Wood-Based Composites.
- Author
-
Reh R, Kristak L, and Antov P
- Abstract
In collaboration with the MDPI publishing house, we are pleased to introduce the reader to our new project, the Special Issue entitled "Advanced Eco-friendly Wood-Based Composites" [...].
- Published
- 2022
- Full Text
- View/download PDF
14. Modification of Ramie Fiber via Impregnation with Low Viscosity Bio-Polyurethane Resins Derived from Lignin.
- Author
-
Lubis MAR, Handika SO, Sari RK, Iswanto AH, Antov P, Kristak L, Lee SH, and Pizzi A
- Abstract
The purpose of this study was to prepare low-viscosity lignin-based polyurethane (LPU) resins for the modification of ramie ( Boehmeria nivea (L.) Gaudich) fiber via impregnation to improve the fiber's thermal and mechanical properties. Low-viscosity LPU resins were prepared by dissolving lignin in 20% NaOH and then adding polymeric 4,4-methane diphenyl diisocyanate (pMDI, 31% NCO) with a mole ratio of 0.3 NCO/OH. Ramie fiber was impregnated with LPU in a vacuum chamber equipped with a two-stage vacuum pump. Several techniques such as Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry, thermogravimetric analysis, pyrolysis-gas chromatography-mass spectroscopy, field emission-scanning electron microscopy coupled with energy dispersive X-ray (EDX), and a universal testing machine were used to characterize lignin, LPU, and ramie fiber. The LPU resins had low viscosity ranging from 77 to 317 mPa·s
-1 . According to FTIR and EDX analysis, urethane bonds were formed during the synthesis of LPU resins and after impregnation into ramie fibers. After impregnation, the reaction between the LPU's urethane group and the hydroxy group of ramie fiber increased thermal stability by an average of 6% and mechanical properties by an average of 100% compared to the untreated ramie fiber. The highest thermal stability and tensile strength were obtained at ramie impregnated with LPU-ethyl acetate for 30 min, with a residual weight of 22% and tensile strength of 648.7 MPa. This study showed that impregnation with LPU resins can enhance the thermal and mechanical properties of fibers and increase their wider industrial utilization in value-added applications.- Published
- 2022
- Full Text
- View/download PDF
15. Influence of Lignin Content and Pressing Time on Plywood Properties Bonded with Cold-Setting Adhesive Based on Poly (Vinyl Alcohol), Lignin, and Hexamine.
- Author
-
Lubis MAR, Labib A, Sudarmanto, Akbar F, Nuryawan A, Antov P, Kristak L, Papadopoulos AN, and Pizzi A
- Abstract
The sustainability, performance, and cost of production in the plywood industry depend on wood adhesives and the hot-pressing process. In this study, a cold-setting plywood adhesive was developed based on polyvinyl alcohol (PVOH), high-purity lignin, and hexamine. The influence of lignin content (10%, 15%, and 20%) and cold-pressing time (3, 6, 12, and 24 h) on cohesion, adhesion, and formaldehyde emission of plywood were investigated through physical, chemical, thermal, and mechanical analyses. The increased lignin addition level lowered the solids content, which resulted in reduced average viscosity of the adhesive. As a result, the cohesion strength of the adhesive formulation with 10% lignin addition was greater than those of 15% and 20% lignin content. Markedly, the adhesive formulation containing a 15% lignin addition level exhibited superior thermo-mechanical properties than the blends with 10% and 20% lignin content. This study showed that 10% and 15% lignin content in the adhesive resulted in better cohesion strength than that with 20% lignin content. However, statistical analysis revealed that the addition of 20% lignin in the adhesive and using a cold-pressing time of 24 h could produce plywood that was comparable to the control polyurethane resins, i.e., dry tensile shear strength (TSS) value of 0.95 MPa, modulus of rupture (MOR) ranging from 35.8 MPa, modulus of elasticity (MOE) values varying from 3980 MPa, and close-to-zero formaldehyde emission (FE) of 0.1 mg/L, which meets the strictest emission standards. This study demonstrated the feasibility of fabricating eco-friendly plywood bonded with PVOH-lignin-hexamine-based adhesive using cold pressing as an alternative to conventional plywood.
- Published
- 2022
- Full Text
- View/download PDF
16. Physical and Mechanical Properties of Particleboard Produced with Addition of Walnut ( Juglans regia L.) Wood Residues.
- Author
-
Pędzik M, Auriga R, Kristak L, Antov P, and Rogoziński T
- Abstract
The depletion of natural resources and increased demand for wood and wood-based materials have directed researchers and the industry towards alternative raw materials for composite manufacturing, such as agricultural waste and wood residues as substitutes of traditional wood. The potential of reusing walnut ( Juglans regia L.) wood residues as an alternative raw material in particleboard manufacturing is investigated in this work. Three-layer particleboard was manufactured in the laboratory with a thickness of 16 mm, target density of 650 kg∙m
-3 and three different levels (0%, 25% and 50%) of walnut wood particles, bonded with urea-formaldehyde (UF) resin. The physical properties (thickness swelling after 24 h) and mechanical properties (bending strength, modulus of elasticity and internal bond strength) were evaluated in accordance with the European standards. The effect of UF resin content and nominal applied pressure on the properties of the particleboard was also investigated. Markedly, the laboratory panels, manufactured with 50% walnut wood residues, exhibited flexural properties and internal bond strength, fulfilling the European standard requirements to particleboards used in load-bearing applications. However, none of the boards met the technical standard requirements for thickness swelling (24 h). Conclusively, walnut wood residues as a waste or by-product of the wood-processing industry can be efficiently utilized in the production of particleboard in terms of enhancing its mechanical properties.- Published
- 2022
- Full Text
- View/download PDF
17. Recent Advances in the Development of Fire-Resistant Biocomposites-A Review.
- Author
-
Madyaratri EW, Ridho MR, Aristri MA, Lubis MAR, Iswanto AH, Nawawi DS, Antov P, Kristak L, Majlingová A, and Fatriasari W
- Abstract
Biocomposites reinforced with natural fibers represent an eco-friendly and inexpensive alternative to conventional petroleum-based materials and have been increasingly utilized in a wide variety of industrial applications due to their numerous advantages, such as their good mechanical properties, low production costs, renewability, and biodegradability. However, these engineered composite materials have inherent downsides, such as their increased flammability when subjected to heat flux or flame initiators, which can limit their range of applications. As a result, certain attempts are still being made to reduce the flammability of biocomposites. The combustion of biobased composites can potentially create life-threatening conditions in buildings, resulting in substantial human and material losses. Additives known as flame-retardants (FRs) have been commonly used to improve the fire protection of wood and biocomposite materials, textiles, and other fields for the purpose of widening their application areas. At present, this practice is very common in the construction sector due to stringent fire safety regulations on residential and public buildings. The aim of this study was to present and discuss recent advances in the development of fire-resistant biocomposites. The flammability of wood and natural fibers as material resources to produce biocomposites was researched to build a holistic picture. Furthermore, the potential of lignin as an eco-friendly and low-cost FR additive to produce high-performance biocomposites with improved technological and fire properties was also discussed in detail. The development of sustainable FR systems, based on renewable raw materials, represents a viable and promising approach to manufacturing biocomposites with improved fire resistance, lower environmental footprint, and enhanced health and safety performance.
- Published
- 2022
- Full Text
- View/download PDF
18. Characterisation of Wood Particles Used in the Particleboard Production as a Function of Their Moisture Content.
- Author
-
Dukarska D, Rogoziński T, Antov P, Kristak L, and Kmieciak J
- Abstract
The properties of particleboards and the course of their manufacturing process depend on the characteristics of wood particles, their degree of fineness, geometry, and moisture content. This research work aims to investigate the physical properties of wood particles used in the particleboard production in dependence on their moisture content. Two types of particles currently used in the production of three-layer particleboards, i.e., microparticles (MP) for the outer layers of particleboards and particles for the core layers (PCL), were used in the study. The particles with a moisture content of 0.55%, 3.5%, 7%, 10%, 15%, and 20% were tested for their poured bulk density (ρp), tapped bulk density (ρt), compression ratio ( k ), angle of repose (αR), and slippery angle of repose (αs). It was found that irrespective of the fineness of the particles, an increase in their moisture content caused an increase in the angle of repose and slippery angle of repose and an increase in poured and tapped bulk density, while for PCL, the biggest changes in bulk density occurred in the range up to 15% of moisture content, and for MP in the range above 7% of moisture content, respectively. An increase in the moisture content of PCL in the range studied results in a significant increase in the compression ratio from 47.1% to 66.7%. The compression ratio of MP increases only up to 15% of their moisture content-a change of value from 47.1% to 58.7%.
- Published
- 2021
- Full Text
- View/download PDF
19. Structural Application of Lightweight Panels Made of Waste Cardboard and Beech Veneer.
- Author
-
Jivkov V, Simeonova R, Antov P, Marinova A, Petrova B, and Kristak L
- Abstract
In recent years, the furniture design trends include ensuring ergonomic standards, development of new environmentally friendly materials, optimised use of natural resources, and sustainably increased conversion of waste into value-added products. The circular economy principles require the reuse, recycling or upcycling of materials. The potential of reusing waste corrugated cardboard to produce new lightweight boards suitable for furniture and interior applications was investigated in this work. Two types of multi-layered panels were manufactured in the laboratory from corrugated cardboard and beech veneer, bonded with urea-formaldehyde (UF) resin. Seven types of end corner joints of the created lightweight furniture panels and three conventional honeycomb panels were tested. Bending moments and stiffness coefficients in the compression test were evaluated. The bending strength values of the joints made of waste cardboard and beech veneer exhibited the required strength for application in furniture constructions or as interior elements. The joints made of multi-layer panels with a thickness of 51 mm, joined by dowels, demonstrated the highest bending strength and stiffness values (33.22 N∙m). The joints made of 21 mm thick multi-layer panels and connected with Confirmat had satisfactory bending strength values (10.53 N∙m) and Minifix had the lowest strength values (6.15 N∙m). The highest stiffness values (327 N∙m/rad) were determined for the 50 mm thick cardboard honeycomb panels connected by plastic corner connector and special screw Varianta, and the lowest values for the joints made of 21 mm thick multi-layer panels connected by Confirmat (40 N∙m/rad) and Minifix (43 N∙m/rad), respectively. The application of waste corrugated cardboard as a structural material for furniture and interiors can be improved by further investigations.
- Published
- 2021
- Full Text
- View/download PDF
20. Properties of Eco-Friendly Particleboards Bonded with Lignosulfonate-Urea-Formaldehyde Adhesives and pMDI as a Crosslinker.
- Author
-
Bekhta P, Noshchenko G, Réh R, Kristak L, Sedliačik J, Antov P, Mirski R, and Savov V
- Abstract
The purpose of this study was to evaluate the feasibility of using magnesium and sodium lignosulfonates (LS) in the production of particleboards, used pure and in mixtures with urea-formaldehyde (UF) resin. Polymeric 4,4'-diphenylmethane diisocyanate (pMDI) was used as a crosslinker. In order to evaluate the effect of gradual replacement of UF by magnesium lignosulfonate (MgLS) or sodium lignosulfonate (NaLS) on the physical and mechanical properties, boards were manufactured in the laboratory with LS content varying from 0% to 100%. The effect of LS on the pH of lignosulfonate-urea-formaldehyde (LS-UF) adhesive compositions was also investigated. It was found that LS can be effectively used to adjust the pH of uncured and cured LS-UF formulations. Particleboards bonded with LS-UF adhesive formulations, comprising up to 30% LS, exhibited similar properties when compared to boards bonded with UF adhesive. The replacement of UF by both LS types substantially deteriorated the water absorption and thickness swelling of boards. In general, NaLS-UF-bonded boards had a lower formaldehyde content (FC) than MgLS-UF and UF-bonded boards as control. It was observed that in the process of manufacturing boards using LS adhesives, increasing the proportion of pMDI in the adhesive composition can significantly improve the mechanical properties of the boards. Overall, the boards fabricated using pure UF adhesives exhibited much better mechanical properties than boards bonded with LS adhesives. Markedly, the boards based on LS adhesives were characterised by a much lower FC than the UF-bonded boards. In the LS-bonded boards, the FC is lower by 91.1% and 56.9%, respectively, compared to the UF-bonded boards. The boards bonded with LS and pMDI had a close-to-zero FC and reached the super E0 emission class (≤1.5 mg/100 g) that allows for defining the laboratory-manufactured particleboards as eco-friendly composites.
- Published
- 2021
- Full Text
- View/download PDF
21. New Challenges in Wood and Wood-Based Materials.
- Author
-
Kristak L, Kubovský I, and Réh R
- Abstract
Wood and wood-based composites are key engineering materials that can be successfully designed and manufactured with predetermined exploitation properties, making them suitable for a wide range of applications and end uses [...].
- Published
- 2021
- Full Text
- View/download PDF
22. Thermophysical Properties of Larch Bark Composite Panels.
- Author
-
Kristak L, Ruziak I, Tudor EM, Barbu MC, Kain G, and Reh R
- Abstract
The effects of using 100% larch bark ( Larix decidua Mill) as a raw material for composite boards on the thermophysical properties of this innovative material were investigated in this study. Panels made of larch bark with 4-11 mm and 10-30 mm particle size, with ground bark oriented parallel and perpendicular to the panel's plane at densities varying from 350 to 700 kg/m
3 and bonded with urea-formaldehyde adhesive were analyzed for thermal conductivity, thermal resistivity and specific heat capacity. It was determined that there was a highly significant influence of bulk density on the thermal conductivity of all the panels. With an increase in the particle size, both parallel and perpendicular to the panel´s plane direction, the thermal conductivity also increased. The decrease of thermal diffusivity was a consequence of the increasing particle size, mostly in the parallel orientation of the bark particles due to the different pore structures. The specific heat capacity is not statistically significantly dependent on the density, particle size, glue amount and particle orientation.- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.