401 results on '"Krainov, V P"'
Search Results
2. Short-Wavelength Emission from a Hot Dense Plasma
3. Numerical Simulations of the Acceleration of Fast Protons and of the Excitation of Nuclear Reactions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{\textrm{11}}\textrm{B}\boldsymbol{(p,3\alpha)}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{{11}}\textrm{B}\boldsymbol{(p,n)}^{{11}}\textrm{C}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{10^{18}{-}10^{19}}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{{2}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{\textrm{11}}\textrm{B}\boldsymbol{(p,3\alpha)}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{{11}}\textrm{B}\boldsymbol{(p,n)}^{{11}}\textrm{C}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{10^{18}{-}10^{19}}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{{2}}$$\end{document} at the Intensities of Picosecond Laser Radiation in the Range of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{\textrm{11}}\textrm{B}\boldsymbol{(p,3\alpha)}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{{11}}\textrm{B}\boldsymbol{(p,n)}^{{11}}\textrm{C}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{10^{18}{-}10^{19}}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{{2}}$$\end{document} W/cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{\textrm{11}}\textrm{B}\boldsymbol{(p,3\alpha)}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{{11}}\textrm{B}\boldsymbol{(p,n)}^{{11}}\textrm{C}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{10^{18}{-}10^{19}}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{{2}}$$\end{document}
4. Analytical Description of Cyclotron Plasma Resonances in Monolayer Graphene
5. Exact solution of the 1D Dirac equation for a pseudoscalar interaction potential with the inverse-square-root variation law
6. Spatial Structure of the Plasma Flows in the Magnetic Fields of Laser Plasma
7. Confluent hypergeometric expansions of the confluent Heun function governed by two-term recurrence relations
8. Rational solutions of (1+1)-dimensional Burgers equation and their asymptotic
9. WKB-approach for the 1D hydrogen atom
10. Uncertainty relation for the radial momentum and radial coordinate in the Coulomb potential
11. Numerical Simulation of the Yield of α Particles and Neutrons from the 11B(p, 3α) and 11B(p, n)11C Nuclear Reactions Induced by Intense Picosecond Laser Radiation
12. Low-frequency electromagnetic radiation of hydrogen molecular gas: effect of the ortho-para conversion
13. Dissociation of quarkonium in a strong electric field
14. A conditionally integrable bi-confluent Heun potential involving inverse square root and centrifugal barrier terms
15. Maslov index for power-law potentials
16. Semiclassical rates for tunnel ionization from power-law potentials induced by a constant or low-frequency electric field
17. Investigation of the Yield of the Nuclear Reaction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{{11}}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p,3\alpha}$$\end{document}B(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{{11}}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p,3\alpha}$$\end{document} ) Initiated by Powerful Picosecond Laser Radiation
18. Experimental and Theoretical Study of the Propagation of Proton Beams under the Action of Laser Radiation with Allowance for Magnetic Reconnection
19. Qualitative Consideration of the Scharnhorst Effect
20. Calculation of the Photorecombination Spectrum when Atoms Irradiated by a Strong Laser Field Based on the Markov Approximation
21. Fractional derivative method for describing solitons on the surface of deep water
22. Hydrodynamic model of blood flow in major arteries pulsing in various modes
23. Discretization of Natanzon potentials
24. Non-exponential Auger decay
25. Van der Waals Attraction of Hydrogen Atoms
26. One-dimensional Hubbard-Luttinger model for carbon nanotubes
27. Non-exponential tunneling ionization of atoms by an intense laser field
28. Higher order transmission resonances in above-barrier reflection of ultra-cold atoms
29. Simultaneous Investigation of the Nuclear Reactions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{11}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{(p,3\alpha)}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{11}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{(p,n)^{11}}$$\end{document}B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{11}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{(p,3\alpha)}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{11}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{(p,n)^{11}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{11}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{(p,3\alpha)}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{11}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{(p,n)^{11}}$$\end{document}B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{11}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{(p,3\alpha)}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{11}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{(p,n)^{11}}$$\end{document}C as a New Tool for Determining the Absolute Yield of Alpha Particles in Picosecond Plasmas
30. Multiple-scale analysis for resonance reflection by a one-dimensional rectangular barrier in the Gross-Pitaevskii problem
31. Transmission resonances in above-barrier reflection of ultra-cold atoms by the Rosen-Morse potential
32. Above-Barrier Reflection of Cold Atoms by Resonant Laser Light within the Gross-Pitaevskii Approximation
33. Simulation of Astrophysical Jets in Magnetic Fields of Laser Relativistic Plasmas.
34. Experimental and Theoretical Research on the Angular Distribution of Neutrons Produced in 7Li(p, n)7Be Reactions during the Interaction of Intense Laser Pulses with Solid Targets
35. Description of Emission Processes in Molecular Gases Based with the HITRAN Database
36. Analysis of the Angular Distribution of Emission of Neutrons Generated with the Ponderomotive Mechanism of Ion Heating by High-Power Short Laser Pulse Acting on a (CD2)n Target
37. Numerical Simulations of the Acceleration of Fast Protons and of the Excitation of Nuclear Reactions $${}^{\textrm{11}}\textrm{B}\boldsymbol{(p,3\alpha)}$$ and $${}^{{11}}\textrm{B}\boldsymbol{(p,n)}^{{11}}\textrm{C}$$ at the Intensities of Picosecond Laser Radiation in the Range of $$\boldsymbol{10^{18}{-}10^{19}}$$ W/cm$${}^{{2}}$$
38. Conditionally exactly solvable Dirac potential, including x 1/3 pseudoscalar interaction
39. Uncertainty Relation for the Radial Momentum and Radial Coordinate in the Coulomb Potential
40. Numerical Simulations of the Acceleration of Fast Protons and of the Excitation of Nuclear Reactions and at the Intensities of Picosecond Laser Radiation in the Range of W/cm.
41. Conductivity of single-walled carbon nanotubes
42. Promising lines of research in the realms of laboratory nuclear astrophysics by means of powerful lasers
43. Electron spectrum of a single-wall carbon nanotube in the framework of the nonlinear Schrödinger equation
44. On the implementation of a chain nuclear reaction of thermonuclear fusion on the basis of the p+11B process
45. Effect of Dynamical Screening of Charged Particles in Maxwellian Plasmas on Criterion of Plasma Non-Ideality
46. Theory of Thermoelectric Field in LTE Plasmas
47. Investigation of the Yield of the Nuclear Reaction $${}^{{11}}$$B($${p,3\alpha}$$ ) Initiated by Powerful Picosecond Laser Radiation
48. Thermonuclear fusion in a strong laser field
49. Promising lines of investigations in the realms of laboratory astrophysics with the aid of powerful lasers
50. Mechanism of “GSI oscillations” in electron capture by highly charged hydrogen-like atomic ions
Catalog
Books, media, physical & digital resources
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.