Die Erforschung der neuartigen Materialien BST, PZT und SBT für den Einsatz in neuartigen Speichertechnologien wie dem FeRAM besteht aus vielen unterschiedlichen Teilbereichen. Im Rahmen dieser Dissertation wurden primär zwei Hauptbereiche analysiert. Als Erstes wurden sowohl die Mechanismen der Oberflächenausbildung (Wachstumsverfahren, Prozeßparameter, Substrat Einflüsse) von einzelnen Filmen, als auch die Wechselwirkungen der Schichten untereinander und deren Auswirkung auf das Schichtsystem, untersucht. Im zweiten Schritt wurde das elektrische Verhalten, und die auftretenden Phänomene sowohl qualitativ als auch quantitativ erfaßt und bewertet. Als Elektrodenmaterial für die di/ferroelektrische Speicher kann nicht wie gewohnt dotiertes Silizium/Polysilizium verwenden werden. Da Platin den chemischen und thermischen Belastungen bei der Herstellung dieser Filme besonders gut gewachsen ist, wird es bevorzugt als Elektrode eingesetzt. Bei dem Aufbau der Pt-Elektrode erfolgt die größte Veränderung des Systems durch die RTP-Oxidation des reaktiven Titans. Die Rauhigkeit des vorher sehr fein kristallinen Ti-Films steigt auf das Vierfache bei einer gleichzeitigen Verdreifachung der Korngröße. Da in vielen Bauelementen Si oder Poly-Si in Kombination mit einer Ti/TiN-Barriere als Basis für den Pt-Film fungieren, wurde bei den nächsten Experimenten der Einfluß des Substrates und der TiN-Sputtertemperatur auf die Topologie/Morphologie der Elektrode untersucht. Nur durch Anpassung der TiN Sputterleistung, eine niedrige Substrattemperatur und der Kombination aus N2-RTP Temperung (nach TiN) und O2-Temperung (nach Pt), gelingt es die Rauhigkeit und Kristallitgrößen des entstandenen Filmsystems zu minimieren. Bei der Charakterisierung der di/ferroelektrischen Materialien BST, PZT und SBT wurden zum einen das Wachstum und die beim Aufbau der Schichten auftretenden Phänomene anhand verschiedener Abscheidungstechniken untersucht/verglichen. Zum anderen sind mehrere Schichtdicken, Schichtabfolgen und eine Reihe unterschiedlich getemperter Proben analysiert worden. Die mittels Sputtern hergestellten BST Filme belegen, dieses Material hat typischerweise ein columnares Kristallwachstum und läßt sich sehr fein kristallin aufbringen. Bei der reaktiven Abscheidung aus der Gasphase (MOCVD) hat sich schnell gezeigt, das komplexe Material System BST reagiert bereits bei Variation eines Parameters extrem unterschiedlich. So findet bei einer hohen Substrattemperatur (690°C) ein fließender Übergang vom zwei dimensionalen (2D, Frank-van der Merwe), zum drei dimensionalen (3D, Stranski-Krastanov) Wachstum statt. Wird BST bei 600°C abgeschieden, liegt von Anfang an ein gemischter 2D/3D Schichtaufbau vor, der überwiegend in einen 3D inselartigen Aufbau (Vollmer-Weber) übergeht. Senkt man die Temperatur auf 450°C, bildet sich auf der Oberfläche Haze, der durch eine instabile Gasphasenreaktion an der Oberfläche entsteht und sich hauptsächlich aus Strontium- und Bariumoxid zusammensetzt. Gesputtertes PZT besitzt im Vergleich zu BST eine um den Faktor 6 höhere Wachstumsrate, und bildet zweimal so breite Kristallite aus. Es hat eine relativ feinkörnige Struktur und seine Kristalle wachsen wie beim BST columnar auf. Die MOD Technik erzeugt einen relativ homogenen SBT-Schichtaufbau mit Korngrößen bis zu 135 nm. Erst nach dem Ferroanneal entstehen bis zu dreimal größere Kristalle, die von markanten Korngrenzen getrennt werden und große Kristallflächen mit Unterstrukturen haben. Die mit der MOCVD Methode hergestellten SBT-Proben zeigen teilweise Wachstumsphänomene in Form von Hillocks, die im EDX allerdings keine Unterschiede in der Zusammensetzung aufweisen. Die systematische Untersuchung der Wechselwirkung von Temperatur (600-800°C) und Schichtdicke (ca. 80-175 nm) bei konstanter Temperzeit hat ergeben, daß die Filme bei einem 600°C Ferroanneal kleine Hillocks besitzen, die erst ab 700°C nicht mehr zu beobachten sind. Neben der topographischen Analyse von Di- und Ferroelektrika gibt es einen zweiten sehr wichtigen Aufgabenbereich, die elektrische Charakterisierung dieser Materialien. Da alle herkömmlichen Verfahren diese Daten nur Integral erfassen können, eröffnet die Rastersondenmikroskopie hier erstmalig die Chance, sowohl Topographie als auch elektrische Parameter simultan und mit hoher Ortsauflösung (10-50 nm) zu analysieren. Die ersten Versuchsreihen wurden mit dem EFM gemacht und haben sich mit dem Polarisationsverhalten von PZT und SBT beschäftigt. Zu diesem Zweck wurde ein Experiment entwickelt, bei dem das Ferroelektrikum durch gezielte Polarisationen in zwei definierte Zustände entgegengesetzter maximaler Polarisation versetzt wird. Die Ergebnisse konnten mit dem Oberflächenpotential Mikroskop reproduziert werden, allerdings reagiert das Oberflächenpotential Mikroskop deutlich stärker auf freie Ladungen als das EFM. Um zwischen Ladungsartefakt und realer Beobachtung unterscheiden zu können, wurde ein Verfahren zur Konditionierung und Ladungsentfernung der Probe entwickelt, ohne die Probe merklich zu manipulieren. Da bei den EFM-Untersuchungen viele verschiedene elektrostatische Phänomene aufgetreten sind, ist eine generelle Betrachtung zur Fragestellung, was bildet das erhaltene EFM-Signal eigentlich ab, gemacht worden. Dazu wurde ein deutlich vereinfachtes Ladungsmodell vorgestellt, das den Polarisationsvorgang mit seinen unterschiedlichen Einzelprozessen beschreibt. Zusammenfassend ist zu sagen, daß EFM ein elektrostatisches Gesamtfeld detektiert, das aus verschiedenen Komponenten besteht, die in der Regel qualitativ und nicht quantitativ miteinander verknüpft sind. Im Gegensatz zu makroskopischen Messungen haben zeitabhängige Untersuchungen an SBT gezeigt, die abgebildete Polarisation verringert sich bereits nach wenigen Tagen signifikant. Eine Erklärung für den Signalverlust ist die Annahme, daß sich über die Zeit primär nur die SBT-Oberfläche verändert, da ihr die elektrisch und chemisch stabilisierende Pt-Elektrode fehlt. Eine weitere Überlegung geht davon aus, durch die EFM-Spitze hat eine wesentlich höhere Feldstärke auf das Ferroelektrikum eingewirkt und das Material dadurch stärker gestreßt. Die Untersuchung der temperaturabhängigen Relaxation von ferroelektrischen Filmen liefert weitere interessante Erkenntnisse. Ohne obere Pt-Elektrode kann man bereits ab 130°C einen deutlichen Polarisationsverlust beobachten (Curie-Punkt SBT: 310°C). Die Temperversuche sprechen damit für die Hypothese, durch die fehlende obere Elektrode wurde bei der Polarisation erhöhter Streß in das SBT eingeprägt und das System hat darauf mit stark beschleunigter Relaxation reagiert. Es kann jedoch nicht abschließend geklärt werden, was auf das Materialverhalten einen größeren Einfluß ausübt, die Oberflächenladungen oder die fehlende obere Pt-Elektrode. In weiteren Experimenten wurde die Bildung der ferroelektrischen Phase und deren Störungen untersucht. Versuche mit unterschiedlicher Ferroannealtemperatur bei MOD SBT-Schichten haben gezeigt, die Kristallphasenbildung wird hauptsächlich von der Annealtemperatur gesteuert. Bei einer Temperatur von 600°C wird nur eine partielle Phasenumwandlung erzielt, dagegen liegt bei 800°C eine vollständige Umwandlung in den pseudotetragonalen Perowskit vor. Die Untersuchung eines mittels MOCVD-Verfahren abgeschiedenen SBT-Films ergab eine nicht vollständig polarisierte Oberfläche. Da sich bei einer Substrattemperatur von 640°C primär eine a/b-Kristallachsenorientierung ausbildet, die Probe jedoch nur partiell polarisierbar war, ist höchstwahrscheinlich die Substrattemperatur während der Abscheidung zu niedrig gewesen. Zum Abschluß der Versuche wurde der Polarisationsbereich zunächst auf wenige Mikrometer verkleinert und schließlich sogar auf einzelne Kristalle eingeschenkt. Obwohl es gelingt, einzelne Kristalle zu polarisieren, zeigen diese Experimente deutlich die Limitierungen des EFMs auf. Die ersten Messungen mit dem Piezoresponse-SPM haben ergeben, daß es möglich ist, subkristalline Polarisationsstrukturen ohne nennenswerte Topographieartefakte und „Übersprechen“ abzubilden. Mit dem C-AFM ist in sehr hoher Orts- und Stromauflösung das Leckstromverhalten von BST, PZT und SBT untersucht worden. Da diese di- und ferroelektrischen Materialien eine polykristalline Struktur haben, treten neben Fehlertypen wie Fremdatomdefekten und Leerstellen auch noch eine Vielzahl anderer Kristallbaufehler (Versetzungen, Korngrenzen, ...) auf, die zu erhöhten Leckströmen führen. Auch die Morphologie der Filme beeinflußt das elektrische Verhalten der Materialien. Bei den als Erstes vermessenen BST-Proben ist eine starke Schichtdicken- und Feldstärken-Abhängigkeit zu beobachten. So wird das Leckstromverhalten bei dünnen BST-Proben und niedrigem Potential von extrinsischen Fehlern in Form von Fremdatomdefekten, Leerstellen und verschiedenen Kristallbaufehlern dominiert. Erhöht man allerdings die Feldstärke, so bestimmen die intrinsischen Fehler die Leckstrompfade, da durch das hohe Potential die Bandstruktur solange degradiert bis ein elektrischer Durchbruch vorliegt. Bei höheren Schichtdicken (70 nm) werden durch den intrinsischen Streß des Films hervorgerufene Leckströme erkennbar. Sie treten erst ab einem kritischen Zug- oder Druckstreßniveau in Insel/Domänen-ähnlicher Form auf, der in der topographischen Aufnahme nicht sichtbar ist. Im Gegensatz zu amorphen Materialien wie dem SiO2 spielt bei BST, PZT und SBT die Filmdicke nur eine untergeordnete Rolle, da eine partielle Dünnung nicht automatisch einen erhöhten Leckstrom zur Folge hat. Da ferroelektrische Materialien eine Leckstromgenerierung besitzen die komplexer ist, und einem anderen Zeitablauf folgt, als bei einem Dielektrikum, wurde zuerst das ferroelektrische PZT mit dem C-AFM analysiert. Die ersten Untersuchungen an einer PZT-Probe haben allerdings sehr schnell gezeigt, zwischen BST und PZT gibt es keine nennenswerten Unterschiede im Leckstromverhalten. Für die Herstellung von SBT-Schichten werden hauptsächlich das MOD und das MOCVD Verfahren verwendet. Um festzustellen welche der beiden Abscheidetechniken das bessere Leckstromverhalten hat, wurden MOD und MOCVD SBT-Filme charakterisiert. Diese Untersuchungen haben gezeigt, bei MOCVD Filmen treten die Leckströme hauptsächlich in den Bereichen auf, die leicht vereinzelte oder nicht dicht verwachsene Korngrenzen und Kristallecken besitzen. Im Vergleich dazu weisen die MOD Schichten in ähnlichen Bereichen deutlich wenigere und niedrigere Leckströme auf. Den Einfluß von Topologie und Filmdicke hat die Analyse einer mit 90 nm MOD SBT beschichteten Stufe (120 nm) belegt, da dort nur im Kantenbereich extrem erhöhte Leckströme zu beobachten sind. Das Degradationsverhalten von SBT ist außerdem auch noch dickenabhängig. Dies beweisen I/V Spektren, die bei C-AFM Messungen an unterschiedlich dicken MOD SBT-Schichten (90/180 nm) aufgenommen wurden. Es zeigt sich, speziell bei höheren Feldstärken liegt bei der dünnen SBT-Probe (90 nm) eine um den Faktor vier steilere Degradation vor.