1. Stretched-exponential stress dynamics in chain of springs and masses model of crystals: analytical results and MD simulations
- Author
-
Kozioł, Zbigniew
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
The model of chain of springs and masses, originating from works of Schr\"odinger (1914) and Pater (1974), is found suitable as an analytical description of dynamics of layers in oriented FCC crystals. An analytical extension of that model has been provided for the case of linear-in-time ramp pressure applied to sample surface. Examples are provided of molecular dynamics (MD) simulations confirming the usefulness of the model in description of dynamic effects in steal 310S under pressure. For large sizes of samples and for long times, an improved version of proposed earlier interlayer potential has been provided for the use in lammps, resulting in a perfect harmonic inter-layer interaction, compensating the inclusion of higher-order terms in potential energy, proportional to x^4 . The results of MD simulations suggest that the dynamics of the model of chain of springs and masses of perfectly ordered matter is describable by stretched-exponential time functions and it is characterized by simple scaling properties in time.
- Published
- 2024