19 results on '"Kotelnikov, Sergey"'
Search Results
2. A Quench Detection and Monitoring System for Superconducting Magnets at Fermilab
- Author
-
Galt, Artur, primary, Al Atassi, Omar, additional, Chlachidze, Guram, additional, Cummings, Thomas, additional, Feher, Sandor, additional, Hocker, Andy, additional, Kotelnikov, Sergey, additional, Lamm, Michael, additional, Makulski, Andrzej, additional, Nogiec, Jerzy, additional, Orris, Darryl, additional, Pilipenko, Roman, additional, and Tartaglia, Michael, additional
- Published
- 2022
- Full Text
- View/download PDF
3. Improved Docking of Protein Models by a Combination of Alphafold2 and ClusPro
- Author
-
Ghani, Usman, primary, Desta, Israel, additional, Jindal, Akhil, additional, Khan, Omeir, additional, Jones, George, additional, Hashemi, Nasser, additional, Kotelnikov, Sergey, additional, Padhorny, Dzmitry, additional, Vajda, Sandor, additional, and Kozakov, Dima, additional
- Published
- 2021
- Full Text
- View/download PDF
4. Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment
- Author
-
Cancer Research UK, Department of Energy and Climate Change (UK), European Commission, Institut National de Recherche en Informatique et en Automatique (France), Medical Research Council (UK), Japan Society for the Promotion of Science, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), National Institute of General Medical Sciences (US), National Institutes of Health (US), National Natural Science Foundation of China, National Science Foundation (US), Lensink, Marc F., Brysbaert, Guillaume, Mauri, Théo, Nadzirin, Nurul, Velankar, Sameer, Chaleil, Raphaël A. G., Clarence, Tereza, Bates, Paul A., Kong, Ren, Liu, Bin, Yang, Guangbo, Liu, Ming, Shi, Hang, Lu, Xufeng, Chang, Xang, Roy, Raj S., Quadir, Farhan, Liu, Jian, Cheng, Jianlin, Antoniak, Anna, Czaplewski, Cezary, Giełdón, Artur, Kogut, Mateusz, Lipska, Agnieszka, Liwo, Adam, Lubecka, Emilia, Maszota-Zieleniak, Martyna, Sieradzan, Adam K., Ślusarz, Rafał, Wesołowski, Patryk A., Zięba, Karolina, Carpio Muñoz, Carlos A. del, Ichiishi, Eiichiro, Harmalkar, Ameya, Gray, Jeffrey J., Bonvin, Alexandre M. J. J., Ambrosetti, Francesco, Vargas Honorato, Rodrigo, Jandova, Zuzana, Jiménez-García, Brian, Koukos, Panagiotis I., Keulen, Siri van, Noort, Charlotte W. van, Réau, Manon, Roel-Touris, Jorge, Kotelnikov, Sergey, Padhorny, Dzmitry, Porter, Kathryn, Alekseenko, Andrey, Ignatov, Mikhail, Desta, Israel, Ashizawa, Ryota, Sun, Zhuyezi, Ghani, Usman, Hashemi, Nasser, Vajda, Sandor, Kozakov, Dima, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Fernández-Recio, Juan, Karczynska, Agnieszka, Grudinin, Sergei, Yan, Yumeng, Li, Hao, Lin, Peicong, Huang, Sheng-You, Christoffer, Charles, Terashi, Genki, Verburgt, Jacob, Sarkar, Daipayan, Aderinwale, Tunde, Wang, Xiao, Kihara, Daisuke, Nakamura, Tsukasa, Hanazono, Huya, Gowthaman, Ragul, Guest, Johnathan D., Yin, Rui, Taherzadeh, Ghazaleh, Pierce, Brian G., Barradas-Bautista, Didier, Cao, Zhen, Cavallo, Luigi, Oliva, Romina, Sun, Yuanfei, Zhu, Shaowen, Shen, Yang, Park, Taeyong, Woo, Hyeonuk, Yang, Jinsol, Kwon, Sohee, Won, Jonghun, Seok, Chaok, Kiyota, Yasuomi, Kobayashi, Shinpei, Harada, Yoshiki, Takeda-Shitaka, Mayuko, Kundrotas, Petras J., Singh, Amar, Vakser, Ilya A., Dapkunas, Justas, Olechnovic, Kliment, Venclovas, Česlovas, Duan, Rui, Qiu, Liming, Xu, Xianjin, Zhang, Shuang, Zou, Xiaoqin, Wodak, Shoshana J., Cancer Research UK, Department of Energy and Climate Change (UK), European Commission, Institut National de Recherche en Informatique et en Automatique (France), Medical Research Council (UK), Japan Society for the Promotion of Science, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), National Institute of General Medical Sciences (US), National Institutes of Health (US), National Natural Science Foundation of China, National Science Foundation (US), Lensink, Marc F., Brysbaert, Guillaume, Mauri, Théo, Nadzirin, Nurul, Velankar, Sameer, Chaleil, Raphaël A. G., Clarence, Tereza, Bates, Paul A., Kong, Ren, Liu, Bin, Yang, Guangbo, Liu, Ming, Shi, Hang, Lu, Xufeng, Chang, Xang, Roy, Raj S., Quadir, Farhan, Liu, Jian, Cheng, Jianlin, Antoniak, Anna, Czaplewski, Cezary, Giełdón, Artur, Kogut, Mateusz, Lipska, Agnieszka, Liwo, Adam, Lubecka, Emilia, Maszota-Zieleniak, Martyna, Sieradzan, Adam K., Ślusarz, Rafał, Wesołowski, Patryk A., Zięba, Karolina, Carpio Muñoz, Carlos A. del, Ichiishi, Eiichiro, Harmalkar, Ameya, Gray, Jeffrey J., Bonvin, Alexandre M. J. J., Ambrosetti, Francesco, Vargas Honorato, Rodrigo, Jandova, Zuzana, Jiménez-García, Brian, Koukos, Panagiotis I., Keulen, Siri van, Noort, Charlotte W. van, Réau, Manon, Roel-Touris, Jorge, Kotelnikov, Sergey, Padhorny, Dzmitry, Porter, Kathryn, Alekseenko, Andrey, Ignatov, Mikhail, Desta, Israel, Ashizawa, Ryota, Sun, Zhuyezi, Ghani, Usman, Hashemi, Nasser, Vajda, Sandor, Kozakov, Dima, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Fernández-Recio, Juan, Karczynska, Agnieszka, Grudinin, Sergei, Yan, Yumeng, Li, Hao, Lin, Peicong, Huang, Sheng-You, Christoffer, Charles, Terashi, Genki, Verburgt, Jacob, Sarkar, Daipayan, Aderinwale, Tunde, Wang, Xiao, Kihara, Daisuke, Nakamura, Tsukasa, Hanazono, Huya, Gowthaman, Ragul, Guest, Johnathan D., Yin, Rui, Taherzadeh, Ghazaleh, Pierce, Brian G., Barradas-Bautista, Didier, Cao, Zhen, Cavallo, Luigi, Oliva, Romina, Sun, Yuanfei, Zhu, Shaowen, Shen, Yang, Park, Taeyong, Woo, Hyeonuk, Yang, Jinsol, Kwon, Sohee, Won, Jonghun, Seok, Chaok, Kiyota, Yasuomi, Kobayashi, Shinpei, Harada, Yoshiki, Takeda-Shitaka, Mayuko, Kundrotas, Petras J., Singh, Amar, Vakser, Ilya A., Dapkunas, Justas, Olechnovic, Kliment, Venclovas, Česlovas, Duan, Rui, Qiu, Liming, Xu, Xianjin, Zhang, Shuang, Zou, Xiaoqin, and Wodak, Shoshana J.
- Abstract
We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70–75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70–80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.
- Published
- 2021
5. Tropospheric ozone as a risk factor for crop production in central regions of Russia
- Author
-
Stepanov, Evgeniy, primary, Kotelnikov, Sergey, additional, Ratushnyk, Genady, additional, Kovaleva, Tatyana, additional, Nikulina, Elena, additional, and Diuldin, Maksim, additional
- Published
- 2019
- Full Text
- View/download PDF
6. Peak concentrations of ground-level ozone during the summer heat waves of 2010 and 2016 in the background region of the Kirov region of the Russian Federation
- Author
-
Stepanov, Evgeniy, primary, Kotelnikov, Sergey, additional, Ratushnyk, Genady, additional, and Bogun, Inna, additional
- Published
- 2019
- Full Text
- View/download PDF
7. Blind prediction of homo‐ and hetero‐protein complexes: The CASP13‐CAPRI experiment
- Author
-
Lensink, Marc F., primary, Brysbaert, Guillaume, additional, Nadzirin, Nurul, additional, Velankar, Sameer, additional, Chaleil, Raphaël A. G., additional, Gerguri, Tereza, additional, Bates, Paul A., additional, Laine, Elodie, additional, Carbone, Alessandra, additional, Grudinin, Sergei, additional, Kong, Ren, additional, Liu, Ran‐Ran, additional, Xu, Xi‐Ming, additional, Shi, Hang, additional, Chang, Shan, additional, Eisenstein, Miriam, additional, Karczynska, Agnieszka, additional, Czaplewski, Cezary, additional, Lubecka, Emilia, additional, Lipska, Agnieszka, additional, Krupa, Paweł, additional, Mozolewska, Magdalena, additional, Golon, Łukasz, additional, Samsonov, Sergey, additional, Liwo, Adam, additional, Crivelli, Silvia, additional, Pagès, Guillaume, additional, Karasikov, Mikhail, additional, Kadukova, Maria, additional, Yan, Yumeng, additional, Huang, Sheng‐You, additional, Rosell, Mireia, additional, Rodríguez‐Lumbreras, Luis A., additional, Romero‐Durana, Miguel, additional, Díaz‐Bueno, Lucía, additional, Fernandez‐Recio, Juan, additional, Christoffer, Charles, additional, Terashi, Genki, additional, Shin, Woong‐Hee, additional, Aderinwale, Tunde, additional, Maddhuri Venkata Subraman, Sai Raghavendra, additional, Kihara, Daisuke, additional, Kozakov, Dima, additional, Vajda, Sandor, additional, Porter, Kathryn, additional, Padhorny, Dzmitry, additional, Desta, Israel, additional, Beglov, Dmitri, additional, Ignatov, Mikhail, additional, Kotelnikov, Sergey, additional, Moal, Iain H., additional, Ritchie, David W., additional, Chauvot de Beauchêne, Isaure, additional, Maigret, Bernard, additional, Devignes, Marie‐Dominique, additional, Ruiz Echartea, Maria E., additional, Barradas‐Bautista, Didier, additional, Cao, Zhen, additional, Cavallo, Luigi, additional, Oliva, Romina, additional, Cao, Yue, additional, Shen, Yang, additional, Baek, Minkyung, additional, Park, Taeyong, additional, Woo, Hyeonuk, additional, Seok, Chaok, additional, Braitbard, Merav, additional, Bitton, Lirane, additional, Scheidman‐Duhovny, Dina, additional, Dapkūnas, Justas, additional, Olechnovič, Kliment, additional, Venclovas, Česlovas, additional, Kundrotas, Petras J., additional, Belkin, Saveliy, additional, Chakravarty, Devlina, additional, Badal, Varsha D., additional, Vakser, Ilya A., additional, Vreven, Thom, additional, Vangaveti, Sweta, additional, Borrman, Tyler, additional, Weng, Zhiping, additional, Guest, Johnathan D., additional, Gowthaman, Ragul, additional, Pierce, Brian G., additional, Xu, Xianjin, additional, Duan, Rui, additional, Qiu, Liming, additional, Hou, Jie, additional, Ryan Merideth, Benjamin, additional, Ma, Zhiwei, additional, Cheng, Jianlin, additional, Zou, Xiaoqin, additional, Koukos, Panagiotis I., additional, Roel‐Touris, Jorge, additional, Ambrosetti, Francesco, additional, Geng, Cunliang, additional, Schaarschmidt, Jörg, additional, Trellet, Mikael E., additional, Melquiond, Adrien S. J., additional, Xue, Li, additional, Jiménez‐García, Brian, additional, van Noort, Charlotte W., additional, Honorato, Rodrigo V., additional, Bonvin, Alexandre M. J. J., additional, and Wodak, Shoshana J., additional
- Published
- 2019
- Full Text
- View/download PDF
8. Blind prediction of homo- and hetero-protein complexes: The CASP13-CAPRI experiment
- Author
-
Agence Nationale de la Recherche (France), Cancer Research UK, European Commission, Medical Research Council (UK), National Institutes of Health (US), National Natural Science Foundation of China, National Research Foundation of Korea, National Science Foundation (US), Ministerio de Economía y Competitividad (España), Università degli Studi di Napoli PARTHENOPE, Wellcome Trust, Lensink, Marc F., Brysbaert, Guillaume, Nadzirin, Nurul, Velankar, Sameer, Chaleil, Raphaël A. G., Gerguri, Tereza, Bates, Paul A., Laine, Elodie, Carbone, Alessandra, Grudinin, Sergei, Kong, Ren, Weng, Zhiping, Guest, Johnathan D., Gowthaman, Ragul, Pierce, Brian G., Xu, Xianjin, Duan, Rui, Qiu, Liming, Hou, Jie, Merideth, Benjamin Ryan, Ma, Zhiwei, Cheng, Jianlin, Zou, Xiaoqin, Koukos, Panagiotis I., Roel-Touris, Jorge, Ambrosetti, Francesco, Geng, Cunliang, Schaarschmidt, Jörg, Trellet, Mikael E., Melquiond, Adrien S. J., Xue, Li, Jiménez-García, Brian, Noort, Charlotte W. van, Honorato, Rodrigo V., Bonvin, A. M. J. J., Wodak, Shoshana J., Liu, Ran-Ran, Xu, Xi-Ming, Shi, Hang, Chang, Shan, Eisenstein, Miriam, Karczynska, Agnieszka, Czaplewski, Cezary, Emilia Lubecka, Emilia, Lipska, Agnieszka, Krupa, Paweł, Mozolewska, Magdalena, Golon, Łukasz, Samsonov, Sergey, Liwo, Adam, Crivelli, Silvia, Pagès, Guillaume, Karasikov, Mikhaill, Kadukova, Maria, Yan, Yumeng, Huang, Sheng-You, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Romero-Durana, Miguel, Díaz-Bueno, Lucía, Fernández-Recio, Juan, Christoffer, Charles, Terashi, Genki, Shin, Woong-Hee, Aderinwale, Tunde, Venkata Subraman, Sai Raghavendra Maddhuri, Kihara, Daisuke, Kozakov, Dima, Vajda, Sandor, Porter, Kathryn, Padhorny, Dzmitry, Desta, Israel, Beglov, Dmitri, Ignatov, Mikhail, Kotelnikov, Sergey, Moal, Iain H., Ritchie, David W., Chauvot de Beauchêne, Isaure, Maigret, Bernard, Devignes, Marie-Dominique, Ruiz Echartea, Maria E., Barradas-Bautista, Didier, Cao, Zhen, Cavallo, Luigi, Oliva, Romina, Cao, Yue, Shen, Yang, Baek, Minkyung, Park, Taeyong, Woo, Hyeonuk, Seok, Chaok, Braitbard, Merav, Bitton, Lirane, Scheidman-Duhovny, Dina, Dapkunas, Justas, Olechnovic, Kliment, Venclovas, Česlovas, Kundrotas, Petras J., Belkin, Saveliy, Chakravarty, Devlina, Badal, Varsha D., Vakser, Ilya A., Vreven, Thom, Vangaveti, Sweta, Borrman, Tyler, Agence Nationale de la Recherche (France), Cancer Research UK, European Commission, Medical Research Council (UK), National Institutes of Health (US), National Natural Science Foundation of China, National Research Foundation of Korea, National Science Foundation (US), Ministerio de Economía y Competitividad (España), Università degli Studi di Napoli PARTHENOPE, Wellcome Trust, Lensink, Marc F., Brysbaert, Guillaume, Nadzirin, Nurul, Velankar, Sameer, Chaleil, Raphaël A. G., Gerguri, Tereza, Bates, Paul A., Laine, Elodie, Carbone, Alessandra, Grudinin, Sergei, Kong, Ren, Weng, Zhiping, Guest, Johnathan D., Gowthaman, Ragul, Pierce, Brian G., Xu, Xianjin, Duan, Rui, Qiu, Liming, Hou, Jie, Merideth, Benjamin Ryan, Ma, Zhiwei, Cheng, Jianlin, Zou, Xiaoqin, Koukos, Panagiotis I., Roel-Touris, Jorge, Ambrosetti, Francesco, Geng, Cunliang, Schaarschmidt, Jörg, Trellet, Mikael E., Melquiond, Adrien S. J., Xue, Li, Jiménez-García, Brian, Noort, Charlotte W. van, Honorato, Rodrigo V., Bonvin, A. M. J. J., Wodak, Shoshana J., Liu, Ran-Ran, Xu, Xi-Ming, Shi, Hang, Chang, Shan, Eisenstein, Miriam, Karczynska, Agnieszka, Czaplewski, Cezary, Emilia Lubecka, Emilia, Lipska, Agnieszka, Krupa, Paweł, Mozolewska, Magdalena, Golon, Łukasz, Samsonov, Sergey, Liwo, Adam, Crivelli, Silvia, Pagès, Guillaume, Karasikov, Mikhaill, Kadukova, Maria, Yan, Yumeng, Huang, Sheng-You, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Romero-Durana, Miguel, Díaz-Bueno, Lucía, Fernández-Recio, Juan, Christoffer, Charles, Terashi, Genki, Shin, Woong-Hee, Aderinwale, Tunde, Venkata Subraman, Sai Raghavendra Maddhuri, Kihara, Daisuke, Kozakov, Dima, Vajda, Sandor, Porter, Kathryn, Padhorny, Dzmitry, Desta, Israel, Beglov, Dmitri, Ignatov, Mikhail, Kotelnikov, Sergey, Moal, Iain H., Ritchie, David W., Chauvot de Beauchêne, Isaure, Maigret, Bernard, Devignes, Marie-Dominique, Ruiz Echartea, Maria E., Barradas-Bautista, Didier, Cao, Zhen, Cavallo, Luigi, Oliva, Romina, Cao, Yue, Shen, Yang, Baek, Minkyung, Park, Taeyong, Woo, Hyeonuk, Seok, Chaok, Braitbard, Merav, Bitton, Lirane, Scheidman-Duhovny, Dina, Dapkunas, Justas, Olechnovic, Kliment, Venclovas, Česlovas, Kundrotas, Petras J., Belkin, Saveliy, Chakravarty, Devlina, Badal, Varsha D., Vakser, Ilya A., Vreven, Thom, Vangaveti, Sweta, and Borrman, Tyler
- Abstract
We present the results for CAPRI Round 46, the third joint CASP‐CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo‐oligomers and 6 heterocomplexes. Eight of the homo‐oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher‐order assemblies. These were more difficult to model, as their prediction mainly involved “ab‐initio” docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance “gap” was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template‐based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements.
- Published
- 2019
9. Superconducting Coil Winding Machine Control System
- Author
-
Nogiec, Jerzy, Kotelnikov, Sergey, Makulski, Andrzej, Trombly-Freytag, Kelley, and Walbridge, Dana
- Subjects
7: Accelerator Technology Main Systems ,Accelerator Physics - Abstract
The Spirex magnet coil winder has been equipped with an automation system, which allows operation from both a computer and a remote control unit. This machine is about 6m long with a bridge that moves along a track and supports a rotating boom holding a spool of cable and providing cable tension. The machine control system is distributed between three layers: PC, RTOS, and FPGA providing respectively HMI, operational logic and controls. The PC stores the history of operation, shows the machine positions, status, and their history. Keeping cable tension constant is non-trivial in situations where the length of the cable changes with varying speeds. This has been addressed by a PID controller with feed forward augmentation and low-pass filters. Another challenging problem, synchronizing multiple servo motors, has been solved by designing an innovative decentralized algorithm. Extra attention was given to the safety aspects; a fail-safe, redundant safety system with interlocks has been developed, including protection for the operator and the superconducting cable against such situations as accidental over tension, or fast movement of the cable due to operational errors., Proceedings of the North American Particle Accelerator Conf., NAPAC2016, Chicago, IL, USA
- Published
- 2017
- Full Text
- View/download PDF
10. Searching for Lightweight Dark Matter in NOvA Near Detector
- Author
-
Jediny, Filip, primary, Hatzikoutelis, Athanasios, additional, Kotelnikov, Sergey, additional, and Wang, Biao, additional
- Published
- 2017
- Full Text
- View/download PDF
11. Improvements and Performance of the Fermilab Solenoid Test Facility
- Author
-
Orris, Darryl, primary, Arnold, Don, additional, Brandt, Jeffrey, additional, Cheban, Sergey, additional, Evbota, Daniel, additional, Feher, Sandor, additional, Galt, Artur, additional, Hays, Steven, additional, Hemmati, Ali, additional, Hess, Charles, additional, Hocker, James A., additional, Kim, Min Jeong, additional, Kokoska, Lidija, additional, Koshelev, Sergey, additional, Kotelnikov, Sergey, additional, Lamm, Michael, additional, Lopes, Mauricio L., additional, Nogiec, Jerzy, additional, Page, Thomas M., additional, Pilipenko, Roman, additional, Rabehl, Roger, additional, Sylvester, Cosmore, additional, Tartaglia, Michael, additional, and Vouris, Antonios, additional
- Published
- 2017
- Full Text
- View/download PDF
12. Looking amongst the neutrinos for lightweight dark matter in the NOvA Near Detector
- Author
-
Jediny, Filip, primary, Hatzikoutelis, Athanasios, additional, Kotelnikov, Sergey, additional, and Wang, Biao, additional
- Published
- 2017
- Full Text
- View/download PDF
13. Search for Hidden Sector and Dark Matter Particles produced at Fermilab's NuMI Target
- Author
-
Hatzikoutelis, Athanasios, Kotelnikov, Sergey, Bambah, Bindu A., and Kasetti, Siva P.
- Abstract
Hatzikoutelis, Athanasios "Search for Hidden Sector and Dark Matter Particles produced at Fermilab's NuMI Target. " in Proceedings, 10th Patras Workshop on Axions, WIMPs and WISPs (AXION-WIMP 2014) / Tsesmelis, Emmanuel, Maroudas, Marios (eds.), Verlag Deutsches Elektronen-Synchrotron : 2014 ; AXION-WIMP 2014 : 10th Patras Workshop on Axions, WIMPs and WISPs, 2014-06-29 - 2014-07-04, Geneva 10th Patras Workshop on Axions, WIMPs and WISPs, AXION-WIMP 2014, Geneva, Switzerland, 29 Jun 2014 - 4 Jul 2014 ; DESY-PROC 177-180(2014). doi:10.3204/DESY-PROC-2014-03/hatzikoutelis_athanasios, In the long tradition of exotic searches at fixed-target experiments, we plan to use the NuMI beam-target and the NOvA Near Detector to observe potential signatures of Hidden Sector or Dark Matter particles, either directly produced within the target or through theoretically postulated mediators. Expecting mostly scattering events on electrons or nucleons as their signatures, an example of a mediator generated scalar dark matter particles is used to discuss the target production profile of a dark matter beam. This channel explores the capabilities of the detector to observe neutral-current events from electron-neutrino scattering interactions., Published by Verlag Deutsches Elektronen-Synchrotron, Hamburg
- Published
- 2014
- Full Text
- View/download PDF
14. Fast thermometry for superconducting RF cavity testing
- Author
-
Orris, Darryl, primary, Bellantoni, Leo, additional, Carcagno, Ruben H., additional, Edwards, Helen, additional, Harms, Elvin Robert, additional, Khabiboulline, Timergali N., additional, Kotelnikov, Sergey, additional, Makulski, Andrzej, additional, Nehring, Roger, additional, and Pischalnikov, Yuriy, additional
- Published
- 2007
- Full Text
- View/download PDF
15. Stochastic eco-modeling: evolution of plants and extreme environmental stress factors
- Author
-
Ryazanov, Vasiliy V., primary, Smorodin, Vladimir Y., additional, and Kotelnikov, Sergey N., additional
- Published
- 1994
- Full Text
- View/download PDF
16. Diode-laser-based spectroscopy in atmospheric monitoring in Karadag National Park
- Author
-
Kotelnikov, Sergey N., primary, Galaktionov, Valentin, additional, Karpinchik, Karin, additional, and Stepanov, Eugene V., additional
- Published
- 1993
- Full Text
- View/download PDF
17. Application of diode-laser-based analyzer for long term CO monitoring in Karadag National Park
- Author
-
Kotelnikov, Sergey N., primary
- Published
- 1992
- Full Text
- View/download PDF
18. Quench Tests and FEM Analysis of Nb3A1 Rutherford Cables and Small Racetrack Magnets.
- Author
-
Yamada, Ryuji, Kikuchi, Akihiro, Chlachidze, Guram, Ambrosio, Giorgio, Andreev, Nikolai, Barzi, Emanuela, Carcagno, Ruben H., Kashikin, Vadim V., Kotelnikov, Sergey, Lamm, Michael, Novitski, Igor, Orris, Darryl, Sylvester, Cosmore, Takeuchi, Takao, Tartaglia, Michael, Tompkins, John C., Turrioni, Daniele, Wake, Masayoshi, Yuan, Alex, and Ziobin, Alexander V.
- Subjects
CABLES ,SUPERCONDUCTING magnets ,NIOBIUM compounds ,METAL quenching ,FINITE element method ,COPPER ,TANTALUM - Abstract
In collaboration between NIMS and Fermilab, we have made copper stabilized Nb
3 Al Rutherford cables, using Nb-matrixed and Ta-matrixed strands. First these cables were investigated at high current in low self field using a flux pump. Using these Rutherford cables, we built and tested small racetrack magnets. The magnet made with the Nb-matrixed strand showed the flux jump instability in low field. The small racetrack magnet wound with the Ta-matrixed Nb3 Al Rutherford cable was very stable at 4.5 K operation without any instability, as well as at 2.2 K operation. With the successful operation of the small racetrack magnet up to its short sample data, the feasibility of the Nb3 Al strand and its Rutherford cable for their application to high field magnets is established. The characteristics of Nb3 Al Rutherford cable is compared with that of the Nb3 Sn Rutherford cable and the advantages of Nb3 Al Rutherford cable are discussed. [ABSTRACT FROM AUTHOR]- Published
- 2009
- Full Text
- View/download PDF
19. Application of diode-laser-based analyzer for long term CO monitoring in Karadag National Park.
- Author
-
Kotelnikov, Sergey N.
- Published
- 1992
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.