1. The Emden-Fowler equation on a spherical cap of $\mathbb{S}^N$
- Author
-
Kosaka, Atsushi and Miyamoto, Yasuhito
- Subjects
Mathematics - Analysis of PDEs - Abstract
Let $\mathbb{S}^N\subset\mathbb{R}^{N+1}$, $N\ge 3$, be the unit sphere, and let $S_{\Theta}\subset\mathbb{S}^N$ be a geodesic ball with geodesic radius $\Theta\in(0,\pi)$. We study the bifurcation diagram $\{(\Theta,\left\|U\right\|_{\infty})\}\subset\mathbb{R}^2$ of the radial solutions of the Emden-Fowler equation on $S_{\Theta}$ $\Delta_{\mathbb{S}^N}U+U^p=0$ in $S_{\Theta}$, $U=0$ on $\partial S_{\Theta}$, $U>0$ in $S_{\Theta}$, where $p>1$. Among other things, we prove the following: For each $p>p_{\rm S}:=(N-2)/(N+2)$, there exists $\underline{\Theta}\in(0,\pi)$ such that the problem has a radial solution for $\Theta\in(\underline{\Theta},\pi)$ and has no radial solution for $\Theta\in(0,\underline{\Theta})$. Moreover, this solution is unique in the space of radial functions if $\Theta$ is close to $\pi$. If $p_{\rm S}
- Published
- 2019
- Full Text
- View/download PDF