1. IS-PRM-Based Peptide Targeting Informed by Long-Read Sequencing for Alternative Proteome Detection.
- Author
-
Korchak JA, Jeffery ED, Bandyopadhyay S, Jordan BT, Lehe MD, Watts EF, Fenix A, Wilhelm M, and Sheynkman GM
- Subjects
- Humans, Tandem Mass Spectrometry methods, Cell Line, Proteogenomics methods, Sequence Analysis, RNA methods, Proteome analysis, Protein Isoforms analysis, Alternative Splicing, Peptides chemistry, Peptides analysis
- Abstract
Alternative splicing is a major contributor of transcriptomic complexity, but the extent to which transcript isoforms are translated into stable, functional protein isoforms is unclear. Furthermore, detection of relatively scarce isoform-specific peptides is challenging, with many protein isoforms remaining uncharted due to technical limitations. Recently, a family of advanced targeted MS strategies, termed internal standard parallel reaction monitoring (IS-PRM), have demonstrated multiplexed, sensitive detection of predefined peptides of interest. Such approaches have not yet been used to confirm existence of novel peptides. Here, we present a targeted proteogenomic approach that leverages sample-matched long-read RNA sequencing (lrRNA-seq) data to predict potential protein isoforms with prior transcript evidence. Predicted tryptic isoform-specific peptides, which are specific to individual gene product isoforms, serve as "triggers" and "targets" in the IS-PRM method, Tomahto. Using the model human stem cell line WTC11, LR RNaseq data were generated and used to inform the generation of synthetic standards for 192 isoform-specific peptides (114 isoforms from 55 genes). These synthetic "trigger" peptides were labeled with super heavy tandem mass tags (TMT) and spiked into TMT-labeled WTC11 tryptic digest, predicted to contain corresponding endogenous "target" peptides. Compared to DDA mode, Tomahto increased detectability of isoforms by 3.6-fold, resulting in the identification of five previously unannotated isoforms. Our method detected protein isoform expression for 43 out of 55 genes corresponding to 54 resolved isoforms. This lrRNA-seq-informed Tomahto targeted approach is a new modality for generating protein-level evidence of alternative isoforms─a critical first step in designing functional studies and eventually clinical assays.
- Published
- 2024
- Full Text
- View/download PDF