7 results on '"Kobeissy PH"'
Search Results
2. MicroRNA miR-27a-5p reduces intestinal inflammation induced by Clostridioides difficile flagella by regulating the NF-κB signaling pathway.
- Author
-
Kobeissy PH, Denève-Larrazet C, Marvaud JC, and Kansau I
- Abstract
Background: Clostridioides difficile is a major cause of nosocomial post-antibiotic infections, often resulting in severe inflammation and watery diarrhea. Previous studies have highlighted the role of C. difficile flagellin FliC in activating the TLR5 receptor and triggering NF-κB cell signaling, leading to the release of pro-inflammatory cytokines. However, the microRNAs (miRNAs) mediated regulatory mechanisms underlying the FliC-induced inflammatory response remain unclear., Methods: miRNA expression levels were analyzed in Caco-2 intestinal epithelial cells following FliC stimulation, infection with the epidemic C. difficile R20291 strain, or its unflagellated mutant by RT-qPCR. Chemical inhibitors were used to block NF-κB signaling, and their impact on miR-27a-5p expression was assessed. Knockdown and overexpression experiments with miRNA inhibitor and mimic were conducted to elucidate miR-27a-5p's functional role in FliC-induced inflammatory responses. Additionally, a mouse model of C. difficile infection was treated with miR-27a-5p to evaluate its therapeutic potential in vivo., Results: miR-27a-5p showed significant FliC-dependent overexpression in Caco-2 cells. Inhibition of NF-κB signaling suppressed miR-27a-5p overexpression. Knockdown of miR-27a-5p increased NF-κB activation and TNF-α and IL-8 cytokine production, while its overexpression had the opposite effect. Moreover, miR-27a-5p was overexpressed in the caeca of C. difficile-infected mice, correlating with intestinal IL-8 levels. Treatment of infected mice with miR-27a-5p mimic reduced disease severity and intestinal inflammation., Conclusion: miR-27a-5p plays a crucial role in regulating C. difficile-induced inflammation, suggesting its potential as a therapeutic target for controlling severe infection. These findings offer valuable insights into potential therapeutic strategies for managing C. difficile infection and associated inflammatory complications., (© The Author(s) 2024. Published by Oxford University Press on behalf of Infectious Diseases Society of America.)
- Published
- 2024
- Full Text
- View/download PDF
3. Updates on the role of epigenetics in familial mediterranean fever (FMF).
- Author
-
Chaaban A, Salman Z, Karam L, Kobeissy PH, and Ibrahim JN
- Subjects
- Humans, Mutation genetics, Epigenesis, Genetic genetics, Pyrin genetics, Familial Mediterranean Fever drug therapy
- Abstract
Familial Mediterranean Fever (FMF) is an autosomal recessive autoinflammatory disease caused by mutations in the MEFV (MEditerranean FeVer) gene that affects people originating from the Mediterranean Sea. The high variability in severity and clinical manifestations observed not only between ethnic groups but also between and within families is mainly related to MEFV allelic heterogeneity and to some modifying genes. In addition to the genetic factors underlying FMF, the environment plays a significant role in the development and manifestation of this disease through various epigenetic mechanisms, including DNA methylation, histone modification, and noncoding RNAs. Indeed, epigenetic events have been identified as an important pathophysiological determinant of FMF and co-factors shaping the clinical picture and outcome of the disease. Therefore, it is essential to better understand the contribution of epigenetic factors to autoinflammatory diseases, namely, FMF, to improve disease prognosis and potentially develop effective targeted therapies. In this review, we highlight the latest updates on the role of epigenetics in FMF., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
4. Experimental models in Familial Mediterranean Fever (FMF): Insights into pathophysiology and therapeutic strategies.
- Author
-
Mezher N, Mroweh O, Karam L, Ibrahim JN, and Kobeissy PH
- Subjects
- Humans, Pyrin genetics, Inflammation, Inflammasomes, Mutation, Models, Theoretical, Familial Mediterranean Fever genetics, Familial Mediterranean Fever therapy
- Abstract
Familial Mediterranean Fever (FMF) is a recurrent polyserositis characterized by self-limiting episodes or attacks of fever along with serosal inflammation. It mainly impacts people of the Mediterranean and Middle Eastern basin. FMF is a recessive autoinflammatory condition caused by mutation in the MEFV gene located on chromosome 16p13. MEFV mutations lead to the activation of the pyrin inflammasome resulting in an uncontrolled release of IL-1β. Various in vitro, in vivo and ex vivo experimental models have been developed to further comprehend the etiology and pathogenesis of FMF. These models have been proven to be clinically relevant to human FMF and can provide significant information about biological systems with respect to this condition. Additionally, these models have provided pertinent contributions to the development of potent therapeutic strategies against FMF. In this review, we describe the different experimental models utilized in FMF and we focus primarily on the most widely used models that have produced prominent insights into the pathophysiology of the disease., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. Clostridioides difficile Flagellin Activates the Intracellular NLRC4 Inflammasome.
- Author
-
Chebly H, Marvaud JC, Safa L, Elkak AK, Kobeissy PH, Kansau I, and Larrazet C
- Subjects
- Humans, Inflammasomes metabolism, Flagellin genetics, NF-kappa B metabolism, Caspase 1 metabolism, Interleukin-18 metabolism, Interleukin-33 metabolism, Clostridioides, Caco-2 Cells, Green Fluorescent Proteins metabolism, Mitogen-Activated Protein Kinases metabolism, Calcium-Binding Proteins genetics, Calcium-Binding Proteins metabolism, CARD Signaling Adaptor Proteins genetics, CARD Signaling Adaptor Proteins metabolism, Toll-Like Receptor 5 metabolism, Clostridioides difficile
- Abstract
Clostridioides difficile ( C. difficile ), is a major cause of nosocomial diarrhea and colitis. C. difficile flagellin FliC contributes toxins to gut inflammation by interacting with the immune Toll-like receptor 5 (TLR5) to activate nuclear factor-kappa B (NF-kB) and mitogen-activated protein kinase (MAPK) signaling pathways. Flagella of intracellular pathogens can activate the NLR family CARD domain-containing protein 4 (NLRC4) inflammasome pathway. In this study, we assessed whether flagellin of the extracellular bacterium C. difficile internalizes into epithelial cells and activates the NLRC4 inflammasome. Confocal microscopy showed internalization of recombinant green fluorescent protein (GFP)-FliC into intestinal Caco-2/TC7 cell line. Full-length GFP-FliC activates NLRC4 in Caco-2/TC7 cells in contrast to truncated GFP-FliC lacking the C-terminal region recognized by the inflammasome. FliC induced cleavage of pro-caspase-1 into two subunits, p20 and p10 as well as gasdermin D (GSDMD), suggesting the caspase-1 and NLRC4 inflammasome activation. In addition, colocalization of GFP-FliC and pro-caspase-1 was observed, indicating the FliC-dependent NLRC4 inflammasome activation. Overexpression of the inflammasome-related interleukin (interleukin (IL)-1β, IL-18, and IL-33) encoding genes as well as increasing of the IL-18 synthesis was detected after cell stimulation. Inhibition of I-kappa-B kinase alpha (IKK-α) decreased the FliC-dependent inflammasome interleukin gene expression suggesting a role of the NF-κB pathway in regulating inflammasome. Altogether, these results suggest that FliC internalizes into the Caco-2/TC7 cells and activates the intracellular NLRC4 inflammasome thus contributing to the inflammatory process of C. difficile infection.
- Published
- 2022
- Full Text
- View/download PDF
6. Rare and Common Variants in KIF15 Contribute to Genetic Risk of Idiopathic Pulmonary Fibrosis.
- Author
-
Zhang D, Povysil G, Kobeissy PH, Li Q, Wang B, Amelotte M, Jaouadi H, Newton CA, Maher TM, Molyneaux PL, Noth I, Martinez FJ, Raghu G, Todd JL, Palmer SM, Haefliger C, Platt A, Petrovski S, Garcia JA, Goldstein DB, and Garcia CK
- Subjects
- Exome, Humans, Telomere, Idiopathic Pulmonary Fibrosis genetics, Kinesins genetics, Telomerase genetics
- Abstract
Rationale: Genetic studies of idiopathic pulmonary fibrosis (IPF) have improved our understanding of this disease, but not all causal loci have been identified. Objectives: To identify genes enriched with rare deleterious variants in IPF and familial pulmonary fibrosis. Methods: We performed gene burden analysis of whole-exome data, tested single variants for disease association, conducted KIF15 (kinesin family member 15) functional studies, and examined human lung single-cell RNA sequencing data. Measurements and Main Results: Gene burden analysis of 1,725 cases and 23,509 control subjects identified heterozygous rare deleterious variants in KIF15 , a kinesin involved in spindle separation during mitosis, and three telomere-related genes ( TERT [telomerase reverse transcriptase], RTEL1 [regulator of telomere elongation helicase 1], and PARN [poly(A)-specific ribonuclease]). KIF15 was implicated in autosomal-dominant models of rare deleterious variants (odds ratio [OR], 4.9; 95% confidence interval [CI], 2.7-8.8; P = 2.55 × 10
-7 ) and rare protein-truncating variants (OR, 7.6; 95% CI, 3.3-17.1; P = 8.12 × 10-7 ). Meta-analyses of the discovery and replication cohorts, including 2,966 cases and 29,817 control subjects, confirm the involvement of KIF15 plus the three telomere-related genes. A common variant within a KIF15 intron (rs74341405; OR, 1.6; 95% CI, 1.4-1.9; P = 5.63 × 10-10 ) is associated with IPF risk, confirming a prior report. Lymphoblastoid cells from individuals heterozygous for the common variant have decreased KIF15 and reduced rates of cell growth. Cell proliferation is dependent on KIF15 in the presence of an inhibitor of Eg5/KIF11, which has partially redundant function. KIF15 is expressed specifically in replicating human lung cells and shows diminished expression in replicating epithelial cells of patients with IPF. Conclusions: Both rare deleterious variants and common variants in KIF15 link a nontelomerase pathway of cell proliferation with IPF susceptibility.- Published
- 2022
- Full Text
- View/download PDF
7. Mammalian acetate-dependent acetyl CoA synthetase 2 contains multiple protein destabilization and masking elements.
- Author
-
Nagati JS, Kobeissy PH, Nguyen MQ, Xu M, Garcia T, Comerford SA, Hammer RE, and Garcia JA
- Subjects
- Acetate-CoA Ligase genetics, Amino Acid Sequence, Animals, Basic Helix-Loop-Helix Transcription Factors genetics, Basic Helix-Loop-Helix Transcription Factors metabolism, Fibroblasts chemistry, Fibroblasts enzymology, Humans, Mice, Protein Binding, Protein Domains, Protein Stability, Sequence Alignment, Acetate-CoA Ligase chemistry, Acetate-CoA Ligase metabolism, Acetates metabolism
- Abstract
Besides contributing to anabolism, cellular metabolites serve as substrates or cofactors for enzymes and may also have signaling functions. Given these roles, multiple control mechanisms likely ensure fidelity of metabolite-generating enzymes. Acetate-dependent acetyl CoA synthetases (ACS) are de novo sources of acetyl CoA, a building block for fatty acids and a substrate for acetyltransferases. Eukaryotic acetate-dependent acetyl CoA synthetase 2 (Acss2) is predominantly cytosolic, but is also found in the nucleus following oxygen or glucose deprivation, or upon acetate exposure. Acss2-generated acetyl CoA is used in acetylation of Hypoxia-Inducible Factor 2 (HIF-2), a stress-responsive transcription factor. Mutation of a putative nuclear localization signal in endogenous Acss2 abrogates HIF-2 acetylation and signaling, but surprisingly also results in reduced Acss2 protein levels due to unmasking of two protein destabilization elements (PDE) in the Acss2 hinge region. In the current study, we identify up to four additional PDE in the Acss2 hinge region and determine that a previously identified PDE, the ABC domain, consists of two functional PDE. We show that the ABC domain and other PDE are likely masked by intramolecular interactions with other domains in the Acss2 hinge region. We also characterize mice with a prematurely truncated Acss2 that exposes a putative ABC domain PDE, which exhibits reduced Acss2 protein stability and impaired HIF-2 signaling. Finally, using primary mouse embryonic fibroblasts, we demonstrate that the reduced stability of select Acss2 mutant proteins is due to a shortened half-life, which is a result of enhanced degradation via a nonproteasome, nonautophagy pathway., Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article., (Published by Elsevier Inc.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.