1. Light Robust Monocular Depth Estimation For Outdoor Environment Via Monochrome And Color Camera Fusion
- Author
-
Jang, Hyeonsoo, Ko, Yeongmin, Lee, Younkwan, and Jeon, Moongu
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Depth estimation plays a important role in SLAM, odometry, and autonomous driving. Especially, monocular depth estimation is profitable technology because of its low cost, memory, and computation. However, it is not a sufficiently predicting depth map due to a camera often failing to get a clean image because of light conditions. To solve this problem, various sensor fusion method has been proposed. Even though it is a powerful method, sensor fusion requires expensive sensors, additional memory, and high computational performance. In this paper, we present color image and monochrome image pixel-level fusion and stereo matching with partially enhanced correlation coefficient maximization. Our methods not only outperform the state-of-the-art works across all metrics but also efficient in terms of cost, memory, and computation. We also validate the effectiveness of our design with an ablation study.
- Published
- 2022