20 results on '"Klisz M"'
Search Results
2. Global maps of soil temperature
- Author
-
Lembrechts, J. J. (Jonas J.), van den Hoogen, J. (Johan), Aalto, J. (Juha), Ashcroft, M. B. (Michael B.), De Frenne, P. (Pieter), Kemppinen, J. (Julia), Kopecky, M. (Martin), Luoto, M. (Miska), Maclean, I. M. (Ilya M. D.), Crowther, T. W. (Thomas W.), Bailey, J. J. (Joseph J.), Haesen, S. (Stef), Klinges, D. H. (David H.), Niittynen, P. (Pekka), Scheffers, B. R. (Brett R.), Van Meerbeek, K. (Koenraad), Aartsma, P. (Peter), Abdalaze, O. (Otar), Abedi, M. (Mehdi), Aerts, R. (Rien), Ahmadian, N. (Negar), Ahrends, A. (Antje), Alatalo, J. M. (Juha M.), Alexander, J. M. (Jake M.), Allonsius, C. N. (Camille Nina), Altman, J. (Jan), Ammann, C. (Christof), Andres, C. (Christian), Andrews, C. (Christopher), Ardo, J. (Jonas), Arriga, N. (Nicola), Arzac, A. (Alberto), Aschero, V. (Valeria), Assis, R. L. (Rafael L.), Assmann, J. J. (Jakob Johann), Bader, M. Y. (Maaike Y.), Bahalkeh, K. (Khadijeh), Barancok, P. (Peter), Barrio, I. C. (Isabel C.), Barros, A. (Agustina), Barthel, M. (Matti), Basham, E. W. (Edmund W.), Bauters, M. (Marijn), Bazzichetto, M. (Manuele), Marchesini, L. B. (Luca Belelli), Bell, M. C. (Michael C.), Benavides, J. C. (Juan C.), Benito Alonso, J. L. (Jose Luis), Berauer, B. J. (Bernd J.), Bjerke, J. W. (Jarle W.), Bjork, R. G. (Robert G.), Bjorkman, M. P. (Mats P.), Bjornsdottir, K. (Katrin), Blonder, B. (Benjamin), Boeckx, P. (Pascal), Boike, J. (Julia), Bokhorst, S. (Stef), Brum, B. N. (Barbara N. S.), Bruna, J. (Josef), Buchmann, N. (Nina), Buysse, P. (Pauline), Camargo, J. L. (Jose Luis), Campoe, O. C. (Otavio C.), Candan, O. (Onur), Canessa, R. (Rafaella), Cannone, N. (Nicoletta), Carbognani, M. (Michele), Carnicer, J. (Jofre), Casanova-Katny, A. (Angelica), Cesarz, S. (Simone), Chojnicki, B. (Bogdan), Choler, P. (Philippe), Chown, S. L. (Steven L.), Cifuentes, E. F. (Edgar F.), Ciliak, M. (Marek), Contador, T. (Tamara), Convey, P. (Peter), Cooper, E. J. (Elisabeth J.), Cremonese, E. (Edoardo), Curasi, S. R. (Salvatore R.), Curtis, R. (Robin), Cutini, M. (Maurizio), Dahlberg, C. J. (C. Johan), Daskalova, G. N. (Gergana N.), Angel de Pablo, M. (Miguel), Della Chiesa, S. (Stefano), Dengler, J. (Juergen), Deronde, B. (Bart), Descombes, P. (Patrice), Di Cecco, V. (Valter), Di Musciano, M. (Michele), Dick, J. (Jan), Dimarco, R. D. (Romina D.), Dolezal, J. (Jiri), Dorrepaal, E. (Ellen), Dusek, J. (Jiri), Eisenhauer, N. (Nico), Eklundh, L. (Lars), Erickson, T. E. (Todd E.), Erschbamer, B. (Brigitta), Eugster, W. (Werner), Ewers, R. M. (Robert M.), Exton, D. A. (Dan A.), Fanin, N. (Nicolas), Fazlioglu, F. (Fatih), Feigenwinter, I. (Iris), Fenu, G. (Giuseppe), Ferlian, O. (Olga), Fernandez Calzado, M. R. (M. Rosa), Fernandez-Pascual, E. (Eduardo), Finckh, M. (Manfred), Higgens, R. F. (Rebecca Finger), Forte, T. G. (T'ai G. W.), Freeman, E. C. (Erika C.), Frei, E. R. (Esther R.), Fuentes-Lillo, E. (Eduardo), Garcia, R. A. (Rafael A.), Garcia, M. B. (Maria B.), Geron, C. (Charly), Gharun, M. (Mana), Ghosn, D. (Dany), Gigauri, K. (Khatuna), Gobin, A. (Anne), Goded, I. (Ignacio), Goeckede, M. (Mathias), Gottschall, F. (Felix), Goulding, K. (Keith), Govaert, S. (Sanne), Graae, B. J. (Bente Jessen), Greenwood, S. (Sarah), Greiser, C. (Caroline), Grelle, A. (Achim), Guenard, B. (Benoit), Guglielmin, M. (Mauro), Guillemot, J. (Joannes), Haase, P. (Peter), Haider, S. (Sylvia), Halbritter, A. H. (Aud H.), Hamid, M. (Maroof), Hammerle, A. (Albin), Hampe, A. (Arndt), Haugum, S. V. (Siri, V), Hederova, L. (Lucia), Heinesch, B. (Bernard), Helfter, C. (Carole), Hepenstrick, D. (Daniel), Herberich, M. (Maximiliane), Herbst, M. (Mathias), Hermanutz, L. (Luise), Hik, D. S. (David S.), Hoffren, R. (Raul), Homeier, J. (Juergen), Hörtnagl, L. (Lukas), Hoye, T. T. (Toke T.), Hrbacek, F. (Filip), Hylander, K. (Kristoffer), Iwata, H. (Hiroki), Jackowicz-Korczynski, M. A. (Marcin Antoni), Jactel, H. (Herve), Jarveoja, J. (Jarvi), Jastrzebowski, S. (Szymon), Jentsch, A. (Anke), Jimenez, J. J. (Juan J.), Jonsdottir, I. S. (Ingibjorg S.), Jucker, T. (Tommaso), Jump, A. S. (Alistair S.), Juszczak, R. (Radoslaw), Kanka, R. (Robert), Kaspar, V. (Vit), Kazakis, G. (George), Kelly, J. (Julia), Khuroo, A. A. (Anzar A.), Klemedtsson, L. (Leif), Klisz, M. (Marcin), Kljun, N. (Natascha), Knohl, A. (Alexander), Kobler, J. (Johannes), Kollar, J. (Jozef), Kotowska, M. M. (Martyna M.), Kovacs, B. (Bence), Kreyling, J. (Juergen), Lamprecht, A. (Andrea), Lang, S. I. (Simone, I), Larson, C. (Christian), Larson, K. (Keith), Laska, K. (Kamil), Maire, G. I. (Guerric Ie), Leihy, R. I. (Rachel, I), Lens, L. (Luc), Liljebladh, B. (Bengt), Lohila, A. (Annalea), Lorite, J. (Juan), Loubet, B. (Benjamin), Lynn, J. (Joshua), Macek, M. (Martin), Mackenzie, R. (Roy), Magliulo, E. (Enzo), Maier, R. (Regine), Malfasi, F. (Francesco), Malis, F. (Frantisek), Man, M. (Matej), Manca, G. (Giovanni), Manco, A. (Antonio), Manise, T. (Tanguy), Manolaki, P. (Paraskevi), Marciniak, F. (Felipe), Matula, R. (Radim), Clara Mazzolari, A. (Ana), Medinets, S. (Sergiy), Medinets, V. (Volodymyr), Meeussen, C. (Camille), Merinero, S. (Sonia), Guimaraes Mesquita, R. d. (Rita de Cassia), Meusburger, K. (Katrin), Meysman, F. J. (Filip J. R.), Michaletz, S. T. (Sean T.), Milbau, A. (Ann), Moiseev, D. (Dmitry), Moiseev, P. (Pavel), Mondoni, A. (Andrea), Monfries, R. (Ruth), Montagnani, L. (Leonardo), Moriana-Armendariz, M. (Mikel), di Cella, U. M. (Umberto Morra), Moersdorf, M. (Martin), Mosedale, J. R. (Jonathan R.), Muffler, L. (Lena), Munoz-Rojas, M. (Miriam), Myers, J. A. (Jonathan A.), Myers-Smith, I. H. (Isla H.), Nagy, L. (Laszlo), Nardino, M. (Marianna), Naujokaitis-Lewis, I. (Ilona), Newling, E. (Emily), Nicklas, L. (Lena), Niedrist, G. (Georg), Niessner, A. (Armin), Nilsson, M. B. (Mats B.), Normand, S. (Signe), Nosetto, M. D. (Marcelo D.), Nouvellon, Y. (Yann), Nunez, M. A. (Martin A.), Ogaya, R. (Roma), Ogee, J. (Jerome), Okello, J. (Joseph), Olejnik, J. (Janusz), Olesen, J. E. (Jorgen Eivind), Opedal, O. H. (Oystein H.), Orsenigo, S. (Simone), Palaj, A. (Andrej), Pampuch, T. (Timo), Panov, A. V. (Alexey V.), Pärtel, M. (Meelis), Pastor, A. (Ada), Pauchard, A. (Aníbal), Pauli, H. (Harald), Pavelka, M. (Marian), Pearse, W. D. (William D.), Peichl, M. (Matthias), Pellissier, L. (Loïc), Penczykowski, R. M. (Rachel M.), Penuelas, J. (Josep), Petit Bon, M. (Matteo), Petraglia, A. (Alessandro), Phartyal, S. S. (Shyam S.), Phoenix, G. K. (Gareth K.), Pio, C. (Casimiro), Pitacco, A. (Andrea), Pitteloud, C. (Camille), Plichta, R. (Roman), Porro, F. (Francesco), Portillo-Estrada, M. (Miguel), Poulenard, J. (Jérôme), Poyatos, R. (Rafael), Prokushkin, A. S. (Anatoly S.), Puchalka, R. (Radoslaw), Pușcaș, M. (Mihai), Radujković, D. (Dajana), Randall, K. (Krystal), Ratier Backes, A. (Amanda), Remmele, S. (Sabine), Remmers, W. (Wolfram), Renault, D. (David), Risch, A. C. (Anita C.), Rixen, C. (Christian), Robinson, S. A. (Sharon A.), Robroek, B. J. (Bjorn J. M.), Rocha, A. V. (Adrian V.), Rossi, C. (Christian), Rossi, G. (Graziano), Roupsard, O. (Olivier), Rubtsov, A. V. (Alexey V.), Saccone, P. (Patrick), Sagot, C. (Clotilde), Sallo Bravo, J. (Jhonatan), Santos, C. C. (Cinthya C.), Sarneel, J. M. (Judith M.), Scharnweber, T. (Tobias), Schmeddes, J. (Jonas), Schmidt, M. (Marius), Scholten, T. (Thomas), Schuchardt, M. (Max), Schwartz, N. (Naomi), Scott, T. (Tony), Seeber, J. (Julia), Segalin De Andrade, A. C. (Ana Cristina), Seipel, T. (Tim), Semenchuk, P. (Philipp), Senior, R. A. (Rebecca A.), Serra-Diaz, J. M. (Josep M.), Sewerniak, P. (Piotr), Shekhar, A. (Ankit), Sidenko, N. V. (Nikita V.), Siebicke, L. (Lukas), Siegwart Collier, L. (Laura), Simpson, E. (Elizabeth), Siqueira, D. P. (David P.), Sitková, Z. (Zuzana), Six, J. (Johan), Smiljanic, M. (Marko), Smith, S. W. (Stuart W.), Smith-Tripp, S. (Sarah), Somers, B. (Ben), Sørensen, M. V. (Mia Vedel), Souza, J. J. (José João L. L.), Souza, B. I. (Bartolomeu Israel), Dias, A. S. (Arildo Souza), Spasojevic, M. J. (Marko J.), Speed, J. D. (James D. M.), Spicher, F. (Fabien), Stanisci, A. (Angela), Steinbauer, K. (Klaus), Steinbrecher, R. (Rainer), Steinwandter, M. (Michael), Stemkovski, M. (Michael), Stephan, J. G. (Jörg G.), Stiegler, C. (Christian), Stoll, S. (Stefan), Svátek, M. (Martin), Svoboda, M. (Miroslav), Tagesson, T. (Torbern), Tanentzap, A. J. (Andrew J.), Tanneberger, F. (Franziska), Theurillat, J.-P. (Jean-Paul), Thomas, H. J. (Haydn J. D.), Thomas, A. D. (Andrew D.), Tielbörger, K. (Katja), Tomaselli, M. (Marcello), Treier, U. A. (Urs Albert), Trouillier, M. (Mario), Turtureanu, P. D. (Pavel Dan), Tutton, R. (Rosamond), Tyystjärvi, V. A. (Vilna A.), Ueyama, M. (Masahito), Ujházy, K. (Karol), Ujházyová, M. (Mariana), Uogintas, D. (Domas), Urban, A. V. (Anastasiya V.), Urban, J. (Josef), Urbaniak, M. (Marek), Ursu, T.-M. (Tudor-Mihai), Vaccari, F. P. (Francesco Primo), Van De Vondel, S. (Stijn), Van Den Brink, L. (Liesbeth), Van Geel, M. (Maarten), Vandvik, V. (Vigdis), Vangansbeke, P. (Pieter), Varlagin, A. (Andrej), Veen, G. F. (G. F.), Veenendaal, E. (Elmar), Venn, S. E. (Susanna E.), Verbeeck, H. (Hans), Verbrugggen, E. (Erik), Verheijen, F. G. (Frank G. A.), Villar, L. (Luis), Vitale, L. (Luca), Vittoz, P. (Pascal), Vives-Ingla, M. (Maria), Von Oppen, J. (Jonathan), Walz, J. (Josefine), Wang, R. (Runxi), Wang, Y. (Yifeng), Way, R. G. (Robert G.), Wedegärtner, R. E. (Ronja E. M.), Weigel, R. (Robert), Wild, J. (Jan), Wilkinson, M. (Matthew), Wilmking, M. (Martin), Wingate, L. (Lisa), Winkler, M. (Manuela), Wipf, S. (Sonja), Wohlfahrt, G. (Georg), Xenakis, G. (Georgios), Yang, Y. (Yan), Yu, Z. (Zicheng), Yu, K. (Kailiang), Zellweger, F. (Florian), Zhang, J. (Jian), Zhang, Z. (Zhaochen), Zhao, P. (Peng), Ziemblińska, K. (Klaudia), Zimmermann, R. (Reiner), Zong, S. (Shengwei), Zyryanov, V. I. (Viacheslav I.), Nijs, I. (Ivan), Lenoir, J. (Jonathan), Lembrechts, J. J. (Jonas J.), van den Hoogen, J. (Johan), Aalto, J. (Juha), Ashcroft, M. B. (Michael B.), De Frenne, P. (Pieter), Kemppinen, J. (Julia), Kopecky, M. (Martin), Luoto, M. (Miska), Maclean, I. M. (Ilya M. D.), Crowther, T. W. (Thomas W.), Bailey, J. J. (Joseph J.), Haesen, S. (Stef), Klinges, D. H. (David H.), Niittynen, P. (Pekka), Scheffers, B. R. (Brett R.), Van Meerbeek, K. (Koenraad), Aartsma, P. (Peter), Abdalaze, O. (Otar), Abedi, M. (Mehdi), Aerts, R. (Rien), Ahmadian, N. (Negar), Ahrends, A. (Antje), Alatalo, J. M. (Juha M.), Alexander, J. M. (Jake M.), Allonsius, C. N. (Camille Nina), Altman, J. (Jan), Ammann, C. (Christof), Andres, C. (Christian), Andrews, C. (Christopher), Ardo, J. (Jonas), Arriga, N. (Nicola), Arzac, A. (Alberto), Aschero, V. (Valeria), Assis, R. L. (Rafael L.), Assmann, J. J. (Jakob Johann), Bader, M. Y. (Maaike Y.), Bahalkeh, K. (Khadijeh), Barancok, P. (Peter), Barrio, I. C. (Isabel C.), Barros, A. (Agustina), Barthel, M. (Matti), Basham, E. W. (Edmund W.), Bauters, M. (Marijn), Bazzichetto, M. (Manuele), Marchesini, L. B. (Luca Belelli), Bell, M. C. (Michael C.), Benavides, J. C. (Juan C.), Benito Alonso, J. L. (Jose Luis), Berauer, B. J. (Bernd J.), Bjerke, J. W. (Jarle W.), Bjork, R. G. (Robert G.), Bjorkman, M. P. (Mats P.), Bjornsdottir, K. (Katrin), Blonder, B. (Benjamin), Boeckx, P. (Pascal), Boike, J. (Julia), Bokhorst, S. (Stef), Brum, B. N. (Barbara N. S.), Bruna, J. (Josef), Buchmann, N. (Nina), Buysse, P. (Pauline), Camargo, J. L. (Jose Luis), Campoe, O. C. (Otavio C.), Candan, O. (Onur), Canessa, R. (Rafaella), Cannone, N. (Nicoletta), Carbognani, M. (Michele), Carnicer, J. (Jofre), Casanova-Katny, A. (Angelica), Cesarz, S. (Simone), Chojnicki, B. (Bogdan), Choler, P. (Philippe), Chown, S. L. (Steven L.), Cifuentes, E. F. (Edgar F.), Ciliak, M. (Marek), Contador, T. (Tamara), Convey, P. (Peter), Cooper, E. J. (Elisabeth J.), Cremonese, E. (Edoardo), Curasi, S. R. (Salvatore R.), Curtis, R. (Robin), Cutini, M. (Maurizio), Dahlberg, C. J. (C. Johan), Daskalova, G. N. (Gergana N.), Angel de Pablo, M. (Miguel), Della Chiesa, S. (Stefano), Dengler, J. (Juergen), Deronde, B. (Bart), Descombes, P. (Patrice), Di Cecco, V. (Valter), Di Musciano, M. (Michele), Dick, J. (Jan), Dimarco, R. D. (Romina D.), Dolezal, J. (Jiri), Dorrepaal, E. (Ellen), Dusek, J. (Jiri), Eisenhauer, N. (Nico), Eklundh, L. (Lars), Erickson, T. E. (Todd E.), Erschbamer, B. (Brigitta), Eugster, W. (Werner), Ewers, R. M. (Robert M.), Exton, D. A. (Dan A.), Fanin, N. (Nicolas), Fazlioglu, F. (Fatih), Feigenwinter, I. (Iris), Fenu, G. (Giuseppe), Ferlian, O. (Olga), Fernandez Calzado, M. R. (M. Rosa), Fernandez-Pascual, E. (Eduardo), Finckh, M. (Manfred), Higgens, R. F. (Rebecca Finger), Forte, T. G. (T'ai G. W.), Freeman, E. C. (Erika C.), Frei, E. R. (Esther R.), Fuentes-Lillo, E. (Eduardo), Garcia, R. A. (Rafael A.), Garcia, M. B. (Maria B.), Geron, C. (Charly), Gharun, M. (Mana), Ghosn, D. (Dany), Gigauri, K. (Khatuna), Gobin, A. (Anne), Goded, I. (Ignacio), Goeckede, M. (Mathias), Gottschall, F. (Felix), Goulding, K. (Keith), Govaert, S. (Sanne), Graae, B. J. (Bente Jessen), Greenwood, S. (Sarah), Greiser, C. (Caroline), Grelle, A. (Achim), Guenard, B. (Benoit), Guglielmin, M. (Mauro), Guillemot, J. (Joannes), Haase, P. (Peter), Haider, S. (Sylvia), Halbritter, A. H. (Aud H.), Hamid, M. (Maroof), Hammerle, A. (Albin), Hampe, A. (Arndt), Haugum, S. V. (Siri, V), Hederova, L. (Lucia), Heinesch, B. (Bernard), Helfter, C. (Carole), Hepenstrick, D. (Daniel), Herberich, M. (Maximiliane), Herbst, M. (Mathias), Hermanutz, L. (Luise), Hik, D. S. (David S.), Hoffren, R. (Raul), Homeier, J. (Juergen), Hörtnagl, L. (Lukas), Hoye, T. T. (Toke T.), Hrbacek, F. (Filip), Hylander, K. (Kristoffer), Iwata, H. (Hiroki), Jackowicz-Korczynski, M. A. (Marcin Antoni), Jactel, H. (Herve), Jarveoja, J. (Jarvi), Jastrzebowski, S. (Szymon), Jentsch, A. (Anke), Jimenez, J. J. (Juan J.), Jonsdottir, I. S. (Ingibjorg S.), Jucker, T. (Tommaso), Jump, A. S. (Alistair S.), Juszczak, R. (Radoslaw), Kanka, R. (Robert), Kaspar, V. (Vit), Kazakis, G. (George), Kelly, J. (Julia), Khuroo, A. A. (Anzar A.), Klemedtsson, L. (Leif), Klisz, M. (Marcin), Kljun, N. (Natascha), Knohl, A. (Alexander), Kobler, J. (Johannes), Kollar, J. (Jozef), Kotowska, M. M. (Martyna M.), Kovacs, B. (Bence), Kreyling, J. (Juergen), Lamprecht, A. (Andrea), Lang, S. I. (Simone, I), Larson, C. (Christian), Larson, K. (Keith), Laska, K. (Kamil), Maire, G. I. (Guerric Ie), Leihy, R. I. (Rachel, I), Lens, L. (Luc), Liljebladh, B. (Bengt), Lohila, A. (Annalea), Lorite, J. (Juan), Loubet, B. (Benjamin), Lynn, J. (Joshua), Macek, M. (Martin), Mackenzie, R. (Roy), Magliulo, E. (Enzo), Maier, R. (Regine), Malfasi, F. (Francesco), Malis, F. (Frantisek), Man, M. (Matej), Manca, G. (Giovanni), Manco, A. (Antonio), Manise, T. (Tanguy), Manolaki, P. (Paraskevi), Marciniak, F. (Felipe), Matula, R. (Radim), Clara Mazzolari, A. (Ana), Medinets, S. (Sergiy), Medinets, V. (Volodymyr), Meeussen, C. (Camille), Merinero, S. (Sonia), Guimaraes Mesquita, R. d. (Rita de Cassia), Meusburger, K. (Katrin), Meysman, F. J. (Filip J. R.), Michaletz, S. T. (Sean T.), Milbau, A. (Ann), Moiseev, D. (Dmitry), Moiseev, P. (Pavel), Mondoni, A. (Andrea), Monfries, R. (Ruth), Montagnani, L. (Leonardo), Moriana-Armendariz, M. (Mikel), di Cella, U. M. (Umberto Morra), Moersdorf, M. (Martin), Mosedale, J. R. (Jonathan R.), Muffler, L. (Lena), Munoz-Rojas, M. (Miriam), Myers, J. A. (Jonathan A.), Myers-Smith, I. H. (Isla H.), Nagy, L. (Laszlo), Nardino, M. (Marianna), Naujokaitis-Lewis, I. (Ilona), Newling, E. (Emily), Nicklas, L. (Lena), Niedrist, G. (Georg), Niessner, A. (Armin), Nilsson, M. B. (Mats B.), Normand, S. (Signe), Nosetto, M. D. (Marcelo D.), Nouvellon, Y. (Yann), Nunez, M. A. (Martin A.), Ogaya, R. (Roma), Ogee, J. (Jerome), Okello, J. (Joseph), Olejnik, J. (Janusz), Olesen, J. E. (Jorgen Eivind), Opedal, O. H. (Oystein H.), Orsenigo, S. (Simone), Palaj, A. (Andrej), Pampuch, T. (Timo), Panov, A. V. (Alexey V.), Pärtel, M. (Meelis), Pastor, A. (Ada), Pauchard, A. (Aníbal), Pauli, H. (Harald), Pavelka, M. (Marian), Pearse, W. D. (William D.), Peichl, M. (Matthias), Pellissier, L. (Loïc), Penczykowski, R. M. (Rachel M.), Penuelas, J. (Josep), Petit Bon, M. (Matteo), Petraglia, A. (Alessandro), Phartyal, S. S. (Shyam S.), Phoenix, G. K. (Gareth K.), Pio, C. (Casimiro), Pitacco, A. (Andrea), Pitteloud, C. (Camille), Plichta, R. (Roman), Porro, F. (Francesco), Portillo-Estrada, M. (Miguel), Poulenard, J. (Jérôme), Poyatos, R. (Rafael), Prokushkin, A. S. (Anatoly S.), Puchalka, R. (Radoslaw), Pușcaș, M. (Mihai), Radujković, D. (Dajana), Randall, K. (Krystal), Ratier Backes, A. (Amanda), Remmele, S. (Sabine), Remmers, W. (Wolfram), Renault, D. (David), Risch, A. C. (Anita C.), Rixen, C. (Christian), Robinson, S. A. (Sharon A.), Robroek, B. J. (Bjorn J. M.), Rocha, A. V. (Adrian V.), Rossi, C. (Christian), Rossi, G. (Graziano), Roupsard, O. (Olivier), Rubtsov, A. V. (Alexey V.), Saccone, P. (Patrick), Sagot, C. (Clotilde), Sallo Bravo, J. (Jhonatan), Santos, C. C. (Cinthya C.), Sarneel, J. M. (Judith M.), Scharnweber, T. (Tobias), Schmeddes, J. (Jonas), Schmidt, M. (Marius), Scholten, T. (Thomas), Schuchardt, M. (Max), Schwartz, N. (Naomi), Scott, T. (Tony), Seeber, J. (Julia), Segalin De Andrade, A. C. (Ana Cristina), Seipel, T. (Tim), Semenchuk, P. (Philipp), Senior, R. A. (Rebecca A.), Serra-Diaz, J. M. (Josep M.), Sewerniak, P. (Piotr), Shekhar, A. (Ankit), Sidenko, N. V. (Nikita V.), Siebicke, L. (Lukas), Siegwart Collier, L. (Laura), Simpson, E. (Elizabeth), Siqueira, D. P. (David P.), Sitková, Z. (Zuzana), Six, J. (Johan), Smiljanic, M. (Marko), Smith, S. W. (Stuart W.), Smith-Tripp, S. (Sarah), Somers, B. (Ben), Sørensen, M. V. (Mia Vedel), Souza, J. J. (José João L. L.), Souza, B. I. (Bartolomeu Israel), Dias, A. S. (Arildo Souza), Spasojevic, M. J. (Marko J.), Speed, J. D. (James D. M.), Spicher, F. (Fabien), Stanisci, A. (Angela), Steinbauer, K. (Klaus), Steinbrecher, R. (Rainer), Steinwandter, M. (Michael), Stemkovski, M. (Michael), Stephan, J. G. (Jörg G.), Stiegler, C. (Christian), Stoll, S. (Stefan), Svátek, M. (Martin), Svoboda, M. (Miroslav), Tagesson, T. (Torbern), Tanentzap, A. J. (Andrew J.), Tanneberger, F. (Franziska), Theurillat, J.-P. (Jean-Paul), Thomas, H. J. (Haydn J. D.), Thomas, A. D. (Andrew D.), Tielbörger, K. (Katja), Tomaselli, M. (Marcello), Treier, U. A. (Urs Albert), Trouillier, M. (Mario), Turtureanu, P. D. (Pavel Dan), Tutton, R. (Rosamond), Tyystjärvi, V. A. (Vilna A.), Ueyama, M. (Masahito), Ujházy, K. (Karol), Ujházyová, M. (Mariana), Uogintas, D. (Domas), Urban, A. V. (Anastasiya V.), Urban, J. (Josef), Urbaniak, M. (Marek), Ursu, T.-M. (Tudor-Mihai), Vaccari, F. P. (Francesco Primo), Van De Vondel, S. (Stijn), Van Den Brink, L. (Liesbeth), Van Geel, M. (Maarten), Vandvik, V. (Vigdis), Vangansbeke, P. (Pieter), Varlagin, A. (Andrej), Veen, G. F. (G. F.), Veenendaal, E. (Elmar), Venn, S. E. (Susanna E.), Verbeeck, H. (Hans), Verbrugggen, E. (Erik), Verheijen, F. G. (Frank G. A.), Villar, L. (Luis), Vitale, L. (Luca), Vittoz, P. (Pascal), Vives-Ingla, M. (Maria), Von Oppen, J. (Jonathan), Walz, J. (Josefine), Wang, R. (Runxi), Wang, Y. (Yifeng), Way, R. G. (Robert G.), Wedegärtner, R. E. (Ronja E. M.), Weigel, R. (Robert), Wild, J. (Jan), Wilkinson, M. (Matthew), Wilmking, M. (Martin), Wingate, L. (Lisa), Winkler, M. (Manuela), Wipf, S. (Sonja), Wohlfahrt, G. (Georg), Xenakis, G. (Georgios), Yang, Y. (Yan), Yu, Z. (Zicheng), Yu, K. (Kailiang), Zellweger, F. (Florian), Zhang, J. (Jian), Zhang, Z. (Zhaochen), Zhao, P. (Peng), Ziemblińska, K. (Klaudia), Zimmermann, R. (Reiner), Zong, S. (Shengwei), Zyryanov, V. I. (Viacheslav I.), Nijs, I. (Ivan), and Lenoir, J. (Jonathan)
- Abstract
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0‐5 and 5‐15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1‐km² pixels (summarized from 8519 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10° degrees C (mean = 3.0 +/‐ 2.1° degrees C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 +/‐2.3° degrees C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (‐0.7 +/‐ 2.3° degrees C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological
- Published
- 2022
3. The seeds of invasion: enhanced germination in invasive European populations of black locust (Robinia pseudoacacia L.) compared to native American populations
- Author
-
Bouteiller, X. P., primary, Moret, F., additional, Ségura, R., additional, Klisz, M., additional, Martinik, A., additional, Monty, A., additional, Pino, J., additional, van Loo, M., additional, Wojda, T., additional, Porté, A. J., additional, and Mariette, S., additional
- Published
- 2021
- Full Text
- View/download PDF
4. Global maps of soil temperature
- Author
-
Lembrechts, JJ, van den Hoogen, J, Aalto, J, Ashcroft, MB, De Frenne, P, Kemppinen, J, Kopecký, M, Luoto, M, Maclean, IMD, Crowther, TW, Bailey, JJ, Haesen, S, Klinges, DH, Niittynen, P, Scheffers, BR, Van Meerbeek, K, Aartsma, P, Abdalaze, O, Abedi, M, Aerts, R, Ahmadian, N, Ahrends, A, Alatalo, JM, Alexander, JM, Nina Allonsius, C, Altman, J, Ammann, C, Andres, C, Andrews, C, Ardö, J, Arriga, N, Arzac, A, Aschero, V, Assis, RL, Johann Assmann, J, Bader, MY, Bahalkeh, K, Barančok, P, Barrio, IC, Barros, A, Barthel, M, Basham, EW, Bauters, M, Bazzichetto, M, Belelli Marchesini, L, Bell, MC, Benavides, JC, Luis Benito Alonso, J, Berauer, BJ, Bjerke, JW, Björk, RG, Björkman, MP, Björnsdóttir, K, Blonder, B, Boeckx, P, Boike, J, Bokhorst, S, Brum, BNS, Brůna, J, Buchmann, N, Buysse, P, Luís Camargo, J, Campoe, OC, Candan, O, Canessa, R, Cannone, N, Carbognani, M, Carnicer, J, Casanova‐Katny, A, Cesarz, S, Chojnicki, B, Choler, P, Chown, SL, Cifuentes, EF, Čiliak, M, Contador, T, Convey, P, Cooper, EJ, Cremonese, E, Curasi, SR, Curtis, R, Cutini, M, Johan Dahlberg, C, Daskalova, GN, Angel de Pablo, M, Della Chiesa, S, Dengler, J, Deronde, B, Descombes, P, Di Cecco, V, Di Musciano, M, Dick, J, Dimarco, RD, Dolezal, J, Dorrepaal, E, Dušek, J, Eisenhauer, N, Eklundh, L, Erickson, TE, Erschbamer, B, Eugster, W, Ewers, RM, Exton, DA, Fanin, N, Fazlioglu, F, Feigenwinter, I, Fenu, G, Ferlian, O, Rosa Fernández Calzado, M, Fernández‐Pascual, E, Finckh, M, Finger Higgens, R, Forte, TGW, Freeman, EC, Frei, ER, Fuentes‐Lillo, E, García, RA, García, MB, Géron, C, Gharun, M, Ghosn, D, Gigauri, K, Gobin, A, Goded, I, Goeckede, M, Gottschall, F, Goulding, K, Govaert, S, Jessen Graae, B, Greenwood, S, Greiser, C, Grelle, A, Guénard, B, Guglielmin, M, Guillemot, J, Haase, P, Haider, S, Halbritter, AH, Hamid, M, Hammerle, A, Hampe, A, Haugum, SV, Hederová, L, Heinesch, B, Helfter, C, Hepenstrick, D, Herberich, M, Herbst, M, Hermanutz, L, Hik, DS, Hoffrén, R, Homeier, J, Hörtnagl, L, Høye, TT, Hrbacek, F, Hylander, K, Iwata, H, Antoni Jackowicz‐Korczynski, M, Jactel, H, Järveoja, J, Jastrzębowski, S, Jentsch, A, Jiménez, JJ, Jónsdóttir, IS, Jucker, T, Jump, AS, Juszczak, R, Kanka, R, Kašpar, V, Kazakis, G, Kelly, J, Khuroo, AA, Klemedtsson, L, Klisz, M, Kljun, N, Knohl, A, Kobler, J, Kollár, J, Kotowska, MM, Kovács, B, Kreyling, J, Lamprecht, A, Lang, SI, Larson, C, Larson, K, Laska, K, le Maire, G, Leihy, RI, Lens, L, Liljebladh, B, Lohila, A, Lorite, J, Loubet, B, Lynn, J, Macek, M, Mackenzie, R, Magliulo, E, Maier, R, Malfasi, F, Máliš, F, Man, M, Manca, G, Manco, A, Manise, T, Manolaki, P, Marciniak, F, Matula, R, Clara Mazzolari, A, Medinets, S, Medinets, V, Meeussen, C, Merinero, S, de Cássia Guimarães Mesquita, R, Meusburger, K, Meysman, FJR, Michaletz, ST, Milbau, A, Moiseev, D, Moiseev, P, Mondoni, A, Monfries, R, Montagnani, L, Moriana‐Armendariz, M, Morra di Cella, U, Mörsdorf, M, Mosedale, JR, Muffler, L, Muñoz‐Rojas, M, Myers, JA, Myers‐Smith, IH, Nagy, L, Nardino, M, Naujokaitis‐Lewis, I, Newling, Emily, Nicklas, L, Niedrist, G, Niessner, A, Nilsson, MB, Normand, S, Nosetto, MD, Nouvellon, Y, Nuñez, MA, Ogaya, R, Ogée, J, Okello, J, Olejnik, J, Eivind Olesen, J, Opedal, Ø, Orsenigo, S, Palaj, A, Pampuch, T, Panov, AV, Pärtel, M, Pastor, A, Pauchard, A, Pauli, H, Pavelka, M, Pearse, WD, Peichl, M, Pellissier, L, Penczykowski, RM, Penuelas, J, Petit Bon, M, Petraglia, A, Phartyal, SS, Phoenix, GK, Pio, C, Pitacco, A, Pitteloud, C, Plichta, R, Porro, F, Portillo‐Estrada, M, Poulenard, J, Poyatos, R, Prokushkin, AS, Puchalka, R, Pușcaș, M, Radujković, D, Randall, K, Ratier Backes, A, Remmele, S, Remmers, W, Renault, D, Risch, AC, Rixen, C, Robinson, SA, Robroek, BJM, Rocha, AV, Rossi, C, Rossi, G, Roupsard, O, Rubtsov, AV, Saccone, P, Sagot, C, Sallo Bravo, J, Santos, CC, Sarneel, JM, Scharnweber, T, Schmeddes, J, Schmidt, M, Scholten, T, Schuchardt, M, Schwartz, N, Scott, T, Seeber, J, Cristina Segalin de Andrade, A, Seipel, T, Semenchuk, P, Senior, RA, Serra‐Diaz, JM, Sewerniak, P, Shekhar, A, Sidenko, NV, Siebicke, L, Siegwart Collier, L, Simpson, E, Siqueira, DP, Sitková, Z, Six, J, Smiljanic, M, Smith, SW, Smith‐Tripp, S, Somers, B, Vedel Sørensen, M, João L. L. Souza, J, Israel Souza, B, Souza Dias, A, Spasojevic, MJ, Speed, JDM, Spicher, F, Stanisci, A, Steinbauer, K, Steinbrecher, R, Steinwandter, M, Stemkovski, M, Stephan, JG, Stiegler, C, Stoll, S, Svátek, M, Svoboda, M, Tagesson, T, Tanentzap, AJ, Tanneberger, F, Theurillat, J, Thomas, HJD, Thomas, AD, Tielbörger, K, Tomaselli, M, Albert Treier, U, Trouillier, M, Dan Turtureanu, P, Tutton, R, Tyystjärvi, VA, Ueyama, M, Ujházy, K, Ujházyová, M, Uogintas, D, Urban, AV, Urban, J, Urbaniak, M, Ursu, T, Primo Vaccari, F, Van de Vondel, S, van den Brink, L, Van Geel, M, Vandvik, V, Vangansbeke, P, Varlagin, A, Veen, GF, Veenendaal, E, Venn, Susanna, Verbeeck, H, Verbrugggen, E, Verheijen, FGA, Villar, L, Vitale, L, Vittoz, P, Vives‐Ingla, M, von Oppen, J, Walz, J, Wang, R, Wang, Y, Way, RG, Wedegärtner, REM, Weigel, R, Wild, J, Wilkinson, M, Wilmking, M, Wingate, L, Winkler, M, Wipf, S, Wohlfahrt, G, Xenakis, G, Yang, Y, Yu, Z, Yu, K, Zellweger, F, Zhang, J, Zhang, Z, Zhao, P, Ziemblińska, K, Zimmermann, R, Zong, S, Zyryanov, VI, Nijs, I, Lenoir, J, Lembrechts, JJ, van den Hoogen, J, Aalto, J, Ashcroft, MB, De Frenne, P, Kemppinen, J, Kopecký, M, Luoto, M, Maclean, IMD, Crowther, TW, Bailey, JJ, Haesen, S, Klinges, DH, Niittynen, P, Scheffers, BR, Van Meerbeek, K, Aartsma, P, Abdalaze, O, Abedi, M, Aerts, R, Ahmadian, N, Ahrends, A, Alatalo, JM, Alexander, JM, Nina Allonsius, C, Altman, J, Ammann, C, Andres, C, Andrews, C, Ardö, J, Arriga, N, Arzac, A, Aschero, V, Assis, RL, Johann Assmann, J, Bader, MY, Bahalkeh, K, Barančok, P, Barrio, IC, Barros, A, Barthel, M, Basham, EW, Bauters, M, Bazzichetto, M, Belelli Marchesini, L, Bell, MC, Benavides, JC, Luis Benito Alonso, J, Berauer, BJ, Bjerke, JW, Björk, RG, Björkman, MP, Björnsdóttir, K, Blonder, B, Boeckx, P, Boike, J, Bokhorst, S, Brum, BNS, Brůna, J, Buchmann, N, Buysse, P, Luís Camargo, J, Campoe, OC, Candan, O, Canessa, R, Cannone, N, Carbognani, M, Carnicer, J, Casanova‐Katny, A, Cesarz, S, Chojnicki, B, Choler, P, Chown, SL, Cifuentes, EF, Čiliak, M, Contador, T, Convey, P, Cooper, EJ, Cremonese, E, Curasi, SR, Curtis, R, Cutini, M, Johan Dahlberg, C, Daskalova, GN, Angel de Pablo, M, Della Chiesa, S, Dengler, J, Deronde, B, Descombes, P, Di Cecco, V, Di Musciano, M, Dick, J, Dimarco, RD, Dolezal, J, Dorrepaal, E, Dušek, J, Eisenhauer, N, Eklundh, L, Erickson, TE, Erschbamer, B, Eugster, W, Ewers, RM, Exton, DA, Fanin, N, Fazlioglu, F, Feigenwinter, I, Fenu, G, Ferlian, O, Rosa Fernández Calzado, M, Fernández‐Pascual, E, Finckh, M, Finger Higgens, R, Forte, TGW, Freeman, EC, Frei, ER, Fuentes‐Lillo, E, García, RA, García, MB, Géron, C, Gharun, M, Ghosn, D, Gigauri, K, Gobin, A, Goded, I, Goeckede, M, Gottschall, F, Goulding, K, Govaert, S, Jessen Graae, B, Greenwood, S, Greiser, C, Grelle, A, Guénard, B, Guglielmin, M, Guillemot, J, Haase, P, Haider, S, Halbritter, AH, Hamid, M, Hammerle, A, Hampe, A, Haugum, SV, Hederová, L, Heinesch, B, Helfter, C, Hepenstrick, D, Herberich, M, Herbst, M, Hermanutz, L, Hik, DS, Hoffrén, R, Homeier, J, Hörtnagl, L, Høye, TT, Hrbacek, F, Hylander, K, Iwata, H, Antoni Jackowicz‐Korczynski, M, Jactel, H, Järveoja, J, Jastrzębowski, S, Jentsch, A, Jiménez, JJ, Jónsdóttir, IS, Jucker, T, Jump, AS, Juszczak, R, Kanka, R, Kašpar, V, Kazakis, G, Kelly, J, Khuroo, AA, Klemedtsson, L, Klisz, M, Kljun, N, Knohl, A, Kobler, J, Kollár, J, Kotowska, MM, Kovács, B, Kreyling, J, Lamprecht, A, Lang, SI, Larson, C, Larson, K, Laska, K, le Maire, G, Leihy, RI, Lens, L, Liljebladh, B, Lohila, A, Lorite, J, Loubet, B, Lynn, J, Macek, M, Mackenzie, R, Magliulo, E, Maier, R, Malfasi, F, Máliš, F, Man, M, Manca, G, Manco, A, Manise, T, Manolaki, P, Marciniak, F, Matula, R, Clara Mazzolari, A, Medinets, S, Medinets, V, Meeussen, C, Merinero, S, de Cássia Guimarães Mesquita, R, Meusburger, K, Meysman, FJR, Michaletz, ST, Milbau, A, Moiseev, D, Moiseev, P, Mondoni, A, Monfries, R, Montagnani, L, Moriana‐Armendariz, M, Morra di Cella, U, Mörsdorf, M, Mosedale, JR, Muffler, L, Muñoz‐Rojas, M, Myers, JA, Myers‐Smith, IH, Nagy, L, Nardino, M, Naujokaitis‐Lewis, I, Newling, Emily, Nicklas, L, Niedrist, G, Niessner, A, Nilsson, MB, Normand, S, Nosetto, MD, Nouvellon, Y, Nuñez, MA, Ogaya, R, Ogée, J, Okello, J, Olejnik, J, Eivind Olesen, J, Opedal, Ø, Orsenigo, S, Palaj, A, Pampuch, T, Panov, AV, Pärtel, M, Pastor, A, Pauchard, A, Pauli, H, Pavelka, M, Pearse, WD, Peichl, M, Pellissier, L, Penczykowski, RM, Penuelas, J, Petit Bon, M, Petraglia, A, Phartyal, SS, Phoenix, GK, Pio, C, Pitacco, A, Pitteloud, C, Plichta, R, Porro, F, Portillo‐Estrada, M, Poulenard, J, Poyatos, R, Prokushkin, AS, Puchalka, R, Pușcaș, M, Radujković, D, Randall, K, Ratier Backes, A, Remmele, S, Remmers, W, Renault, D, Risch, AC, Rixen, C, Robinson, SA, Robroek, BJM, Rocha, AV, Rossi, C, Rossi, G, Roupsard, O, Rubtsov, AV, Saccone, P, Sagot, C, Sallo Bravo, J, Santos, CC, Sarneel, JM, Scharnweber, T, Schmeddes, J, Schmidt, M, Scholten, T, Schuchardt, M, Schwartz, N, Scott, T, Seeber, J, Cristina Segalin de Andrade, A, Seipel, T, Semenchuk, P, Senior, RA, Serra‐Diaz, JM, Sewerniak, P, Shekhar, A, Sidenko, NV, Siebicke, L, Siegwart Collier, L, Simpson, E, Siqueira, DP, Sitková, Z, Six, J, Smiljanic, M, Smith, SW, Smith‐Tripp, S, Somers, B, Vedel Sørensen, M, João L. L. Souza, J, Israel Souza, B, Souza Dias, A, Spasojevic, MJ, Speed, JDM, Spicher, F, Stanisci, A, Steinbauer, K, Steinbrecher, R, Steinwandter, M, Stemkovski, M, Stephan, JG, Stiegler, C, Stoll, S, Svátek, M, Svoboda, M, Tagesson, T, Tanentzap, AJ, Tanneberger, F, Theurillat, J, Thomas, HJD, Thomas, AD, Tielbörger, K, Tomaselli, M, Albert Treier, U, Trouillier, M, Dan Turtureanu, P, Tutton, R, Tyystjärvi, VA, Ueyama, M, Ujházy, K, Ujházyová, M, Uogintas, D, Urban, AV, Urban, J, Urbaniak, M, Ursu, T, Primo Vaccari, F, Van de Vondel, S, van den Brink, L, Van Geel, M, Vandvik, V, Vangansbeke, P, Varlagin, A, Veen, GF, Veenendaal, E, Venn, Susanna, Verbeeck, H, Verbrugggen, E, Verheijen, FGA, Villar, L, Vitale, L, Vittoz, P, Vives‐Ingla, M, von Oppen, J, Walz, J, Wang, R, Wang, Y, Way, RG, Wedegärtner, REM, Weigel, R, Wild, J, Wilkinson, M, Wilmking, M, Wingate, L, Winkler, M, Wipf, S, Wohlfahrt, G, Xenakis, G, Yang, Y, Yu, Z, Yu, K, Zellweger, F, Zhang, J, Zhang, Z, Zhao, P, Ziemblińska, K, Zimmermann, R, Zong, S, Zyryanov, VI, Nijs, I, and Lenoir, J
- Published
- 2021
5. UAV AND GIS BASED TOOL FOR COLLECTION AND PROPAGATION OF SEEDS MATERIAL – FIRST RESULTS
- Author
-
Stereńczak, K., primary, Mroczek, P., additional, Jastrzębowski, S., additional, Krok, G., additional, Lisańczuk, M., additional, Klisz, M., additional, and Kantorowicz, W., additional
- Published
- 2016
- Full Text
- View/download PDF
6. No systematic effects of sampling direction on climate-growth relationships in a large-scale, multi-species tree-ring data set
- Author
-
Gut, U., Árvai, M., Bijak, S., Camarero, J. J., Cedro, A., Cruz-García, R., Garamszegi, B., Hacket-Pain, A., Hevia, A., Huang, W., Isaac-Renton, M., Kaczka, R. J., Kazimirović, M., Kędziora, W., Kern, Z., Klisz, M., Kolář, T., Körner, M., Kuznetsova, V., Montwé, D., Petritan, A. M., Petritan, I. C., Plavcová, L., Rehschuh, R., Rocha, E., Rybníček, M., Sánchez-Salguero, R., Schröder, J., Schwab, N., Stajić, B., Tomusiak, R., Wilmking, M., Sass-Klaassen, U., and Buras, A.
- Subjects
15. Life on land
7. Structure and Function of Intra–Annual Density Fluctuations: Mind the Gaps
- Author
-
Battipaglia, G., Campelo, F., Vieira, J., Grabner, M., De Micco V., Nabais, C., Cherubini, P., Carrer, M., Bräuning, A., Čufar, K., Di, Filippo A., García-González, I., Koprowski, M., Klisz, M., Kirdyanov, A. V., Zafirov, N., de Luis M., Battipaglia, G., Campelo, F., Vieira, J., Grabner, M., De Micco V., Nabais, C., Cherubini, P., Carrer, M., Bräuning, A., Čufar, K., Di, Filippo A., García-González, I., Koprowski, M., Klisz, M., Kirdyanov, A. V., Zafirov, N., and de Luis M.
8. Database of European vascular plants red lists as a contribution to more coherent plant conservation.
- Author
-
Lončarević N, Liu U, Stefanaki A, Carapeto A, Ensslin A, Meade C, Metzing D, Peci D, Fantinato E, Colling G, Pankova H, Akmane I, Tsvetkov IN, Sibik J, Szitár K, Van Meerbeek K, Daco L, Boudagher M, Klisz M, Walczak M, Evju M, Lužnik M, Kiehn M, Sarginci M, Aksoy N, Koçer N, Barazani O, Anastasiu P, Stroh P, Vit P, Vergeer P, Puchałka R, Kahale R, Godefroid S, Lanfranco S, Parpan T, Kull T, Rašomavičius V, Fišer Ž, and Glasnović P
- Subjects
- Europe, Biodiversity, Databases, Factual, Conservation of Natural Resources, Plants classification
- Abstract
We introduce the database of European vascular plant red lists, a compilation of red list categories designated to taxa during in-country conservation assessments. Version 1.0 of the database is a standalone static dataset with open access in an end-user friendly format. Its aim is to fulfil the objectives of European Cooperation in Science and Technology (COST) Action 18201, ConservePlants. The database synthesizes data across 42 red lists from 41 countries, with participation of 39 out of a total of 44 European countries and two additional Mediterranean countries. The database contains 51,109 records representing 21,481 original taxonomic names with 37 different red list categories. During data harmonisation, 20,312 of the original taxonomic names were assigned to 17,873 unique accepted taxonomic names with scientific authorships across 184 families, 1650 genera and 15,593 species; and red list categories were standardised to 13 unique categories. We see this database as a source of information in diverse plant conservation activities and suitable for various stakeholders., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
9. Local adaptation to climate facilitates a global invasion.
- Author
-
Gamba D, Vahsen ML, Maxwell TM, Pirtel N, Romero S, Ee JJV, Penn A, Das A, Ben-Zeev R, Baughman O, Blaney CS, Bodkins R, Budha-Magar S, Copeland SM, Davis-Foust SL, Diamond A, Donnelly RC, Dunwiddie PW, Ensing DJ, Everest TA, Hoitink H, Holdrege MC, Hufbauer RA, Juzėnas S, Kalwij JM, Kashirina E, Kim S, Klisz M, Klyueva A, Langeveld M, Lutfy S, Martin D, Merkord CL, Morgan JW, Nagy DU, Ott JP, Puchalka R, Pyle LA, Rasran L, Rector BG, Rosche C, Sadykova M, Shriver RK, Stanislavschi A, Starzomski BM, Stone RL, Turner KG, Urza AK, VanWallendael A, Wegenschimmel CA, Zweck J, Brown CS, Leger EA, Blumenthal DM, Germino MJ, Porensky LM, Hooten MB, Adler PB, and Lasky JR
- Abstract
Local adaptation may facilitate range expansion during invasions, but the mechanisms promoting destructive invasions remain unclear. Cheatgrass ( Bromus tectorum ), native to Eurasia and Africa, has invaded globally, with particularly severe impacts in western North America. We sequenced 307 genotypes and conducted controlled experiments. We found that diverse lineages invaded North America, where long-distance gene flow is common. Ancestry and phenotypic clines in the native range predicted those in the invaded range, indicating pre-adapted genotypes colonized different regions. Common gardens showed directional selection on flowering time that reversed between warm and cold sites, potentially maintaining clines. In the Great Basin, genomic predictions of strong local adaptation identified sites where cheatgrass is most dominant. Preventing new introductions that may fuel adaptation is critical for managing ongoing invasions., Competing Interests: Competing interests: Authors declare that they have no competing interests.
- Published
- 2024
- Full Text
- View/download PDF
10. Incorporating high-resolution climate, remote sensing and topographic data to map annual forest growth in central and eastern Europe.
- Author
-
Jevšenak J, Klisz M, Mašek J, Čada V, Janda P, Svoboda M, Vostarek O, Treml V, van der Maaten E, Popa A, Popa I, van der Maaten-Theunissen M, Zlatanov T, Scharnweber T, Ahlgrimm S, Stolz J, Sochová I, Roibu CC, Pretzsch H, Schmied G, Uhl E, Kaczka R, Wrzesiński P, Šenfeldr M, Jakubowski M, Tumajer J, Wilmking M, Obojes N, Rybníček M, Lévesque M, Potapov A, Basu S, Stojanović M, Stjepanović S, Vitas A, Arnič D, Metslaid S, Neycken A, Prislan P, Hartl C, Ziche D, Horáček P, Krejza J, Mikhailov S, Světlík J, Kalisty A, Kolář T, Lavnyy V, Hordo M, Oberhuber W, Levanič T, Mészáros I, Schneider L, Lehejček J, Shetti R, Bošeľa M, Copini P, Koprowski M, Sass-Klaassen U, Izmir ŞC, Bakys R, Entner H, Esper J, Janecka K, Martinez Del Castillo E, Verbylaite R, Árvai M, de Sauvage JC, Čufar K, Finner M, Hilmers T, Kern Z, Novak K, Ponjarac R, Puchałka R, Schuldt B, Škrk Dolar N, Tanovski V, Zang C, Žmegač A, Kuithan C, Metslaid M, Thurm E, Hafner P, Krajnc L, Bernabei M, Bojić S, Brus R, Burger A, D'Andrea E, Đorem T, Gławęda M, Gričar J, Gutalj M, Horváth E, Kostić S, Matović B, Merela M, Miletić B, Morgós A, Paluch R, Pilch K, Rezaie N, Rieder J, Schwab N, Sewerniak P, Stojanović D, Ullmann T, Waszak N, Zin E, Skudnik M, Oštir K, Rammig A, and Buras A
- Subjects
- Forests, Trees, Climate Change, Europe, Eastern, Europe, Ecosystem, Remote Sensing Technology
- Abstract
To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how climate translates into tree growth. EOS provides information on surface reflectance related to forest characteristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model performance (R
2 = 13 %). The integration of EOS into models based solely on climate and elevation data improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research not only fills a critical void in the current understanding of forest growth dynamics but also highlights the potential of integrated data sources for comprehensive ecosystem assessments., Competing Interests: Declaration of competing interest The authors declare no competing interests., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
11. Forest herb species with similar European geographic ranges may respond differently to climate change.
- Author
-
Puchałka R, Paź-Dyderska S, Dylewski Ł, Czortek P, Vítková M, Sádlo J, Klisz M, Koniakin S, Čarni A, Rašomavičius V, De Sanctis M, and Dyderski MK
- Subjects
- Biodiversity, Europe, Soil, Ecosystem, Climate Change, Forests
- Abstract
Many phenological studies have shown that spring geophytes are very sensitive to climate change, responding by shifting flowering and fruiting dates. However, there is a gap in knowledge about climatic drivers of their distributions and range shifts under climate change. Here we aimed to estimate climate niche shifts for four widely distributed and common geophytes of the nemoral zone of Europe (Anemone nemorosa, Anemone ranunculoides, Convallaria majalis and Maianthemum bifolium) and to assess the threat level under various climate change scenarios. Using MaxEnt species distribution models and future climate change scenarios we found that the precipitation of the warmest quarter was the most important factor shaping their ranges. All species studied will experience more loss in the 2061-2080 period than in 2041-2060, and under more pessimistic scenarios. M. bifolium will experience the highest loss, followed by A. nemorosa, A. ranunculoides, and the smallest for C. majalis. A. ranunculoides will gain the most, while M. bifolium will have the smallest potential range expansion. Studied species may respond differently to climate change despite similar current distributions and climatic variables affecting their potential distribution. Even slight differences in climatic niches could reduce the overlap of future ranges compared to present. We expect that due to high dependence on the warmest quarter precipitation, summer droughts in the future may be particularly severe for species that prefer moist soils. The lack of adaptation to long-distance migration and limited availability of appropriate soils may limit their migration and lead to a decline in biodiversity and changes in European forests., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
12. Is there Chornobyl nuclear accident signature in Scots pine radial growth and its climate sensitivity?
- Author
-
Netsvetov M, Prokopuk Y, Holiaka D, Klisz M, Porté AJ, Puchałka R, and Romenskyy M
- Subjects
- Ecosystem, Wood, Forests, Chernobyl Nuclear Accident, Pinus sylvestris
- Abstract
The extensive radioactive fallout resulting from the 1986 Chornobyl accident caused tree death near the nuclear power plant and perturbed trees communities throughout the whole Chornobyl exclusion zone. Thirty years into the post-accident period, the radiation continues to exert its fatal effects on the surviving trees. However, to what extent the continuous multi-decadal radiation exposure has affected the radial tree growth and its sensitivity to climate variation remains unascertained. In this comparative study, we measure the Scots pine radial growth and quantify its response to climate at two sites along the western track of the nuclear fallout that received significantly different doses of radiation in 1986. The common features of the two sites allow us to disentangle and intercompare the effects of sub-lethal and moderate radiation doses on the pine's growth and climatic sensitivity. We extend the response function analysis by making the first use of the Full-Duration at Half-Maximum FDHM method in dendrochronology and apply the double-moving window approach to detect the main patterns of the growth-to-climate relationships and their temporal evolution. The stand exposed to sub-lethal radiation shows a significant radial growth reduction in 1986 with a deflection period of one year. The stand exposed to moderate radiation, in contrast, demonstrates no significant decrease in growth either in 1986 or in the following years. Beyond the radiation effects, the moving response function and FDHM enabled us to detect several mutual patterns in the growth-to-climate relationships, which are seemingly unrelated to the nuclear accident. To advance our predictive understanding of the response of forest ecosystems to a massive radioactive contamination, future studies should include quantitative wood anatomy techniques., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this study., (Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
13. Global maps of soil temperature.
- Author
-
Lembrechts JJ, van den Hoogen J, Aalto J, Ashcroft MB, De Frenne P, Kemppinen J, Kopecký M, Luoto M, Maclean IMD, Crowther TW, Bailey JJ, Haesen S, Klinges DH, Niittynen P, Scheffers BR, Van Meerbeek K, Aartsma P, Abdalaze O, Abedi M, Aerts R, Ahmadian N, Ahrends A, Alatalo JM, Alexander JM, Allonsius CN, Altman J, Ammann C, Andres C, Andrews C, Ardö J, Arriga N, Arzac A, Aschero V, Assis RL, Assmann JJ, Bader MY, Bahalkeh K, Barančok P, Barrio IC, Barros A, Barthel M, Basham EW, Bauters M, Bazzichetto M, Marchesini LB, Bell MC, Benavides JC, Benito Alonso JL, Berauer BJ, Bjerke JW, Björk RG, Björkman MP, Björnsdóttir K, Blonder B, Boeckx P, Boike J, Bokhorst S, Brum BNS, Brůna J, Buchmann N, Buysse P, Camargo JL, Campoe OC, Candan O, Canessa R, Cannone N, Carbognani M, Carnicer J, Casanova-Katny A, Cesarz S, Chojnicki B, Choler P, Chown SL, Cifuentes EF, Čiliak M, Contador T, Convey P, Cooper EJ, Cremonese E, Curasi SR, Curtis R, Cutini M, Dahlberg CJ, Daskalova GN, de Pablo MA, Della Chiesa S, Dengler J, Deronde B, Descombes P, Di Cecco V, Di Musciano M, Dick J, Dimarco RD, Dolezal J, Dorrepaal E, Dušek J, Eisenhauer N, Eklundh L, Erickson TE, Erschbamer B, Eugster W, Ewers RM, Exton DA, Fanin N, Fazlioglu F, Feigenwinter I, Fenu G, Ferlian O, Fernández Calzado MR, Fernández-Pascual E, Finckh M, Higgens RF, Forte TGW, Freeman EC, Frei ER, Fuentes-Lillo E, García RA, García MB, Géron C, Gharun M, Ghosn D, Gigauri K, Gobin A, Goded I, Goeckede M, Gottschall F, Goulding K, Govaert S, Graae BJ, Greenwood S, Greiser C, Grelle A, Guénard B, Guglielmin M, Guillemot J, Haase P, Haider S, Halbritter AH, Hamid M, Hammerle A, Hampe A, Haugum SV, Hederová L, Heinesch B, Helfter C, Hepenstrick D, Herberich M, Herbst M, Hermanutz L, Hik DS, Hoffrén R, Homeier J, Hörtnagl L, Høye TT, Hrbacek F, Hylander K, Iwata H, Jackowicz-Korczynski MA, Jactel H, Järveoja J, Jastrzębowski S, Jentsch A, Jiménez JJ, Jónsdóttir IS, Jucker T, Jump AS, Juszczak R, Kanka R, Kašpar V, Kazakis G, Kelly J, Khuroo AA, Klemedtsson L, Klisz M, Kljun N, Knohl A, Kobler J, Kollár J, Kotowska MM, Kovács B, Kreyling J, Lamprecht A, Lang SI, Larson C, Larson K, Laska K, le Maire G, Leihy RI, Lens L, Liljebladh B, Lohila A, Lorite J, Loubet B, Lynn J, Macek M, Mackenzie R, Magliulo E, Maier R, Malfasi F, Máliš F, Man M, Manca G, Manco A, Manise T, Manolaki P, Marciniak F, Matula R, Mazzolari AC, Medinets S, Medinets V, Meeussen C, Merinero S, Mesquita RCG, Meusburger K, Meysman FJR, Michaletz ST, Milbau A, Moiseev D, Moiseev P, Mondoni A, Monfries R, Montagnani L, Moriana-Armendariz M, Morra di Cella U, Mörsdorf M, Mosedale JR, Muffler L, Muñoz-Rojas M, Myers JA, Myers-Smith IH, Nagy L, Nardino M, Naujokaitis-Lewis I, Newling E, Nicklas L, Niedrist G, Niessner A, Nilsson MB, Normand S, Nosetto MD, Nouvellon Y, Nuñez MA, Ogaya R, Ogée J, Okello J, Olejnik J, Olesen JE, Opedal ØH, Orsenigo S, Palaj A, Pampuch T, Panov AV, Pärtel M, Pastor A, Pauchard A, Pauli H, Pavelka M, Pearse WD, Peichl M, Pellissier L, Penczykowski RM, Penuelas J, Petit Bon M, Petraglia A, Phartyal SS, Phoenix GK, Pio C, Pitacco A, Pitteloud C, Plichta R, Porro F, Portillo-Estrada M, Poulenard J, Poyatos R, Prokushkin AS, Puchalka R, Pușcaș M, Radujković D, Randall K, Ratier Backes A, Remmele S, Remmers W, Renault D, Risch AC, Rixen C, Robinson SA, Robroek BJM, Rocha AV, Rossi C, Rossi G, Roupsard O, Rubtsov AV, Saccone P, Sagot C, Sallo Bravo J, Santos CC, Sarneel JM, Scharnweber T, Schmeddes J, Schmidt M, Scholten T, Schuchardt M, Schwartz N, Scott T, Seeber J, Segalin de Andrade AC, Seipel T, Semenchuk P, Senior RA, Serra-Diaz JM, Sewerniak P, Shekhar A, Sidenko NV, Siebicke L, Siegwart Collier L, Simpson E, Siqueira DP, Sitková Z, Six J, Smiljanic M, Smith SW, Smith-Tripp S, Somers B, Sørensen MV, Souza JJLL, Souza BI, Souza Dias A, Spasojevic MJ, Speed JDM, Spicher F, Stanisci A, Steinbauer K, Steinbrecher R, Steinwandter M, Stemkovski M, Stephan JG, Stiegler C, Stoll S, Svátek M, Svoboda M, Tagesson T, Tanentzap AJ, Tanneberger F, Theurillat JP, Thomas HJD, Thomas AD, Tielbörger K, Tomaselli M, Treier UA, Trouillier M, Turtureanu PD, Tutton R, Tyystjärvi VA, Ueyama M, Ujházy K, Ujházyová M, Uogintas D, Urban AV, Urban J, Urbaniak M, Ursu TM, Vaccari FP, Van de Vondel S, van den Brink L, Van Geel M, Vandvik V, Vangansbeke P, Varlagin A, Veen GF, Veenendaal E, Venn SE, Verbeeck H, Verbrugggen E, Verheijen FGA, Villar L, Vitale L, Vittoz P, Vives-Ingla M, von Oppen J, Walz J, Wang R, Wang Y, Way RG, Wedegärtner REM, Weigel R, Wild J, Wilkinson M, Wilmking M, Wingate L, Winkler M, Wipf S, Wohlfahrt G, Xenakis G, Yang Y, Yu Z, Yu K, Zellweger F, Zhang J, Zhang Z, Zhao P, Ziemblińska K, Zimmermann R, Zong S, Zyryanov VI, Nijs I, and Lenoir J
- Subjects
- Climate Change, Microclimate, Temperature, Ecosystem, Soil
- Abstract
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km
2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications., (© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)- Published
- 2022
- Full Text
- View/download PDF
14. Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate.
- Author
-
Puchałka R, Dyderski MK, Vítková M, Sádlo J, Klisz M, Netsvetov M, Prokopuk Y, Matisons R, Mionskowski M, Wojda T, Koprowski M, and Jagodziński AM
- Subjects
- Climate Change, Europe, Europe, Eastern, Reproducibility of Results, Robinia
- Abstract
Robinia pseudoacacia is one of the most frequent non-native species in Europe. It is a fast-growing tree of high economic and cultural importance. On the other hand, it is an invasive species, causing changes in soil chemistry and light regime, and consequently altering the plant communities. Previously published models developed for the potential distribution of R. pseudoacacia concerned 2070, and were based mainly on data from Western and Central Europe; here we extended these findings and included additional data from Eastern Europe. To fill the gap in current knowledge of R. pseudoacacia distribution and improve the reliability of forecasts, we aimed to (i) determine the extent to which the outcome of range modeling will be affected by complementing R. pseudoacacia occurrence data with sites from Central, Southeastern, and Eastern Europe, (ii) identify and quantify the changes in the availability of climate niches for 2050 and 2070, and discuss their impacts on forest management and nature conservation. We showed that the majority of the range changes expected in 2070 will occur as early as 2050. In comparison to previous studies, we demonstrated a greater eastward shift of potential niches of this species and a greater decline of potential niches in Southern Europe. Consequently, future climatic conditions will likely favor the occurrence of R. pseudoacacia in Central and Northeastern Europe where this species is still absent or relatively rare. There, controlling the spread of R. pseudoacacia will require monitoring sources of invasion in the landscape and reducing the occurrence of this species. The expected effects of climate change will likely be observed 20 years earlier than previously forecasted. Hence we highlighted the urgent need for acceleration of policies aimed at climate change mitigation in Europe. Also, our results showed the need for using more complete distribution data to analyze potential niche models., (© 2020 John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
15. Detection of Fungi and Oomycetes by Volatiles Using E-Nose and SPME-GC/MS Platforms.
- Author
-
Loulier J, Lefort F, Stocki M, Asztemborska M, Szmigielski R, Siwek K, Grzywacz T, Hsiang T, Ślusarski S, Oszako T, Klisz M, Tarakowski R, and Nowakowska JA
- Subjects
- Electronic Nose, Odorants analysis, Smell, Fungi chemistry, Gas Chromatography-Mass Spectrometry methods, Oomycetes chemistry, Solid Phase Microextraction methods, Volatile Organic Compounds chemistry
- Abstract
Fungi and oomycetes release volatiles into their environment which could be used for olfactory detection and identification of these organisms by electronic-nose (e-nose). The aim of this study was to survey volatile compound emission using an e-nose device and to identify released molecules through solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) analysis to ultimately develop a detection system for fungi and fungi-like organisms. To this end, cultures of eight fungi ( Armillaria gallica , Armillaria ostoyae , Fusarium avenaceum , Fusarium culmorum , Fusarium oxysporum , Fusarium poae , Rhizoctonia solani , Trichoderma asperellum ) and four oomycetes ( Phytophthora cactorum , P. cinnamomi , P. plurivora , P. ramorum ) were tested with the e-nose system and investigated by means of SPME-GC/MS. Strains of F. poae , R. solani and T. asperellum appeared to be the most odoriferous. All investigated fungal species (except R. solani ) produced sesquiterpenes in variable amounts, in contrast to the tested oomycetes strains. Other molecules such as aliphatic hydrocarbons, alcohols, aldehydes, esters and benzene derivatives were found in all samples. The results suggested that the major differences between respective VOC emission ranges of the tested species lie in sesquiterpene production, with fungi emitting some while oomycetes released none or smaller amounts of such molecules. Our e-nose system could discriminate between the odors emitted by P. ramorum , F. poae , T. asperellum and R. solani , which accounted for over 88% of the PCA variance. These preliminary results of fungal and oomycete detection make the e-nose device suitable for further sensor design as a potential tool for forest managers, other plant managers, as well as regulatory agencies such as quarantine services.
- Published
- 2020
- Full Text
- View/download PDF
16. Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests.
- Author
-
Harvey JE, Smiljanić M, Scharnweber T, Buras A, Cedro A, Cruz-García R, Drobyshev I, Janecka K, Jansons Ā, Kaczka R, Klisz M, Läänelaid A, Matisons R, Muffler L, Sohar K, Spyt B, Stolz J, van der Maaten E, van der Maaten-Theunissen M, Vitas A, Weigel R, Kreyling J, and Wilmking M
- Abstract
The role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree-ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate-growth responses for the 1943-1972 and 1973-2002 periods and characterizing site-level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad-scale climate-growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea., (© 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
17. Limitations at the Limit? Diminishing of Genetic Effects in Norway Spruce Provenance Trials.
- Author
-
Klisz M, Buras A, Sass-Klaassen U, Puchałka R, Koprowski M, and Ukalska J
- Abstract
Provenance trials are used to study the effects of tree origin on climate-growth relationships. Thereby, they potentially identify provenances which appear more resilient to anticipated climate change. However, when studying between provenance variability in growth behavior it becomes important to address potential effects related to site marginality in the context of provenance trials. In our study we focus on provenance-specific climate sensitivity manifested under marginal growth conditions. We hypothesized that the provenance effects are masked if trials are located at marginal environmental conditions of the natural species distribution. Under this framework, we investigate 10 Norway spruce provenances growing at two contrasting locations, i.e., a relatively drought-prone site in western Poland (at the climatic margin of Norway spruce's natural distribution) and a mild and moist site in north-eastern Poland (within its natural range). Combining principal component analysis with climate-growth relationships, we found distinguishable growth patterns and climate correlations among provenances. That is, at the mild and moist north-eastern site, we observed provenance-specific growth patterns and thus a varying drought susceptibility. In contrast, at the dryer western site, provenance-specific growth patterns were less pronounced and all provenances expressed a common and strong sensitivity to drought. Our results indicate that the genetic specificity of growth reactions diminishes toward the distributional margins of a given species. We conclude that the climate conditions at the margins of a species' distribution are constraining tree growth independently of tree origin. Because of this, the marginality of a site has to be considered when evaluating climate sensitivity of provenances within trials. As a consequence, the yet different responses of provenances to adverse growing conditions may synchronize under more extreme conditions in course of the anticipated climate change.
- Published
- 2019
- Full Text
- View/download PDF
18. River Regulation Causes Rapid Changes in Relationships Between Floodplain Oak Growth and Environmental Variables.
- Author
-
Netsvetov M, Prokopuk Y, Puchałka R, Koprowski M, Klisz M, and Romenskyy M
- Abstract
The radial growth of pedunculate oak ( Quercus robur ), a species often ecologically dominating European deciduous forests, is closely tied up with local environmental variables. The oak tree-ring series usually contain a climatic and hydrologic signal that allows assessing the main drivers of tree growth in various ecosystems. Understanding the climate-growth relationship patterns in floodplains is important for providing insights into the species persistence and longevity in vulnerable riverine ecosystems experiencing human-induced hydrology alteration. Here, we use 139 years long instrumental records of local temperature, precipitation, and water levels in the Dnipro River in Kyiv to demonstrate that the implementation of river regulation has decoupled the established relationship between the radial growth of floodplain oak and local hydro-climatic conditions. Before the river flow has been altered by engineering modifications of 1965-1977, the water level in the Dnipro River was the key driver of oak radial growth, as reflected in the tree-ring width and earlywood width. The construction of two dams has altered the seasonal distribution of water level diminishing the positive effect of high water on oak growth and subsequently reversing this trend to negative, resulting from a seasonal ground water surplus. The decrease in the correlation between oak growth indices and the river's water level in April-June was unprecedentedly rapid and clearly distinguishable among other changes in the growth-to-climate relationship. Our findings further demonstrate that trees growing in areas exposed to urban development are the most susceptible to downside effects of river regulation.
- Published
- 2019
- Full Text
- View/download PDF
19. Does the Genotype Have a Significant Effect on the Formation of Intra-Annual Density Fluctuations? A Case Study Using Larix decidua from Northern Poland.
- Author
-
Klisz M, Koprowski M, Ukalska J, and Nabais C
- Abstract
Intra-annual density fluctuations (IADFs) can imprint environmental conditions within the growing season and most of the research on IADFs has been focused on their climatic signal. However, to our knowledge, the genetic influence on the frequency and type of IADFs has not been evaluated. To understand if the genotype can affect the formation of IADFs we have used a common garden experiment using eight families of Larix decidua established in two neighboring forest stands in northern Poland. Four types of IADFs were identified using X-ray density profiles: latewood-like cells within earlywood (IADF-type E), latewood-like cells in the transition from early- to latewood (IADF type E+), earlywood-like cells within latewood (IADF-type L), and earlywood-like cells in the border zone between the previous and present annual ring (IADF-type L+). The influence of explanatory variables i.e., families, sites, and years on identified density fluctuations was analyzed using generalized estimating equations (GEE). We hypothesized that trees from different families will differ in terms of frequency and type of IADFs because each family will react to precipitation and temperature in a different way, depending on the origin of those trees. The most frequent fluctuation was E+ and L types on both sites. The most important factors in the formation of IADFs were the site and year, the last one reflecting the variable climatic conditions, with no significant effect of the family. However, the relation between the formation of IADFs and selected climate parameters was different between families. Although, our results did not give a significant effect of the genotype on the formation of IADFs, the different sensitivity to climatic parameters among different families indicate that there is a genetic influence.
- Published
- 2016
- Full Text
- View/download PDF
20. Structure and Function of Intra-Annual Density Fluctuations: Mind the Gaps.
- Author
-
Battipaglia G, Campelo F, Vieira J, Grabner M, De Micco V, Nabais C, Cherubini P, Carrer M, Bräuning A, Čufar K, Di Filippo A, García-González I, Koprowski M, Klisz M, Kirdyanov AV, Zafirov N, and de Luis M
- Abstract
Tree rings are natural archives of climate and environmental information with a yearly resolution. Indeed, wood anatomical, chemical, and other properties of tree rings are a synthesis of several intrinsic and external factors, and their interaction during tree growth. In particular, Intra-Annual Density Fluctuations (IADFs) can be considered as tree-ring anomalies that can be used to better understand tree growth and to reconstruct past climate conditions with intra-annual resolution. However, the ecophysiological processes behind IADF formation, as well as their functional impact, remain unclear. Are IADFs resulting from a prompt adjustment to fluctuations in environmental conditions to avoid stressful conditions and/or to take advantage from favorable conditions? In this paper we discuss: (1) the influence of climatic factors on the formation of IADFs; (2) the occurrence of IADFs in different species and environments; (3) the potential of new approaches to study IADFs and identify their triggering factors. Our final aim is to underscore the advantages offered by network analyses of data and the importance of high-resolution measurements to gain insight into IADFs formation processes and their relations with climatic conditions, including extreme weather events.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.