12 results on '"Klingenhof M"'
Search Results
2. Oxygen Reduction Reaction Activity and Stability of Shaped Metal-Doped PtNi Electrocatalysts Evaluated in Gas Diffusion Electrode Half-Cells.
- Author
-
Polani S, Amitrano R, Baumunk AF, Pan L, Lu J, Schmitt N, Gernert U, Klingenhof M, Selve S, Günther CM, Etzold BJM, and Strasser P
- Abstract
The synthesis of bimetallic and trimetallic platinum-based octahedral catalysts for the cathode of proton exchange membrane fuel cells (PEMFCs) is a particularly active area aimed at meeting technological requirements in terms of durability and cost. The electrocatalytic activity and stability of these shaped catalysts were tested at relatively high potentials (@0.9 V vs RHE) and at lower current densities using the rotating disk electrode, which is less suitable for assessing their behavior under the operating conditions of PEMFCs. In this work, we use a gas diffusion electrode (GDE) half-cell setup to test the performance of the catalysts under application-oriented conditions, relatively higher current densities, and a square-wave stability test. After the stability test, we analyzed the GDE catalytic layer to study the agglomeration and dissolution of the transition metal under these conditions by using high-resolution scanning electron microscopy and energy-dispersive X-ray spectroscopy. The present results provide valuable guidance for developing next-generation active and durable catalysts for PEMFCs.
- Published
- 2024
- Full Text
- View/download PDF
3. Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO 2 through Pt single atoms doping.
- Author
-
Zhu Y, Klingenhof M, Gao C, Koketsu T, Weiser G, Pi Y, Liu S, Sui L, Hou J, Li J, Jiang H, Xu L, Huang WH, Pao CW, Yang M, Hu Z, Strasser P, and Ma J
- Abstract
Exploring an active and cost-effective electrocatalyst alternative to carbon-supported platinum nanoparticles for alkaline hydrogen evolution reaction (HER) have remained elusive to date. Here, we report a catalyst based on platinum single atoms (SAs) doped into the hetero-interfaced Ru/RuO
2 support (referred to as Pt-Ru/RuO2 ), which features a low HER overpotential, an excellent stability and a distinctly enhanced cost-based activity compared to commercial Pt/C and Ru/C in 1 M KOH. Advanced physico-chemical characterizations disclose that the sluggish water dissociation is accelerated by RuO2 while Pt SAs and the metallic Ru facilitate the subsequent H* combination. Theoretical calculations correlate with the experimental findings. Furthermore, Pt-Ru/RuO2 only requires 1.90 V to reach 1 A cm-2 and delivers a high price activity in the anion exchange membrane water electrolyzer, outperforming the benchmark Pt/C. This research offers a feasible guidance for developing the noble metal-based catalysts with high performance and low cost toward practical H2 production., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
4. Defect-Promoted Ni-Based Layer Double Hydroxides with Enhanced Deprotonation Capability for Efficient Biomass Electrooxidation.
- Author
-
Yang Y, Lie WH, Unocic RR, Yuwono JA, Klingenhof M, Merzdorf T, Buchheister PW, Kroschel M, Walker A, Gallington LC, Thomsen L, Kumar PV, Strasser P, Scott JA, and Bedford NM
- Abstract
Ni-based hydroxides are promising electrocatalysts for biomass oxidation reactions, supplanting the oxygen evolution reaction (OER) due to lower overpotentials while producing value-added chemicals. The identification and subsequent engineering of their catalytically active sites are essential to facilitate these anodic reactions. Herein, the proportional relationship between catalysts' deprotonation propensity and Faradic efficiency of 5-hydroxymethylfurfural (5-HMF)-to-2,5 furandicarboxylic acid (FDCA, FE
FDCA ) is revealed by thorough density functional theory (DFT) simulations and atomic-scale characterizations, including in situ synchrotron diffraction and spectroscopy methods. The deprotonation capability of ultrathin layer-double hydroxides (UT-LDHs) is regulated by tuning the covalency of metal (M)-oxygen (O) motifs through defect site engineering and selection of M3+ co-chemistry. NiMn UT-LDHs show an ultrahigh FEFDCA of 99% at 1.37 V versus reversible hydrogen electrode (RHE) and retain a high FEFDCA of 92.7% in the OER-operating window at 1.52 V, about 2× that of NiFe UT-LDHs (49.5%) at 1.52 V. Ni-O and Mn-O motifs function as dual active sites for HMF electrooxidation, where the continuous deprotonation of Mn-OH sites plays a dominant role in achieving high selectivity while suppressing OER at high potentials. The results showcase a universal concept of modulating competing anodic reactions in aqueous biomass electrolysis by electronically engineering the deprotonation behavior of metal hydroxides, anticipated to be translatable across various biomass substrates., (© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.)- Published
- 2023
- Full Text
- View/download PDF
5. Hydrogenation versus hydrogenolysis during alkaline electrochemical valorization of 5-hydroxymethylfurfural over oxide-derived Cu-bimetallics.
- Author
-
Hauke P, Merzdorf T, Klingenhof M, and Strasser P
- Abstract
The electrochemical conversion of 5-Hydroxymethylfurfural, especially its reduction, is an attractive green production pathway for carbonaceous e-chemicals. We demonstrate the reduction of 5-Hydroxymethylfurfural to 5-Methylfurfurylalcohol under strongly alkaline reaction environments over oxide-derived Cu bimetallic electrocatalysts. We investigate whether and how the surface catalysis of the MO
x phases tune the catalytic selectivity of oxide-derived Cu with respect to the 2-electron hydrogenation to 2.5-Bishydroxymethylfuran and the (2 + 2)-electron hydrogenation/hydrogenolysis to 5-Methylfurfurylalcohol. We provide evidence for a kinetic competition between the evolution of H2 and the 2-electron hydrogenolysis of 2.5-Bishydroxymethylfuran to 5-Methylfurfurylalcohol and discuss its mechanistic implications. Finally, we demonstrate that the ability to conduct 5-Hydroxymethylfurfural reduction to 5-Methylfurfurylalcohol in alkaline conditions over oxide-derived Cu/MOx Cu foam electrodes enable an efficiently operating alkaline exchange membranes electrolyzer, in which the cathodic 5-Hydroxymethylfurfural valorization is coupled to either alkaline oxygen evolution anode or to oxidative 5-Hydroxymethylfurfural valorization., (© 2023. Springer Nature Limited.)- Published
- 2023
- Full Text
- View/download PDF
6. Low-Pt NiNC-Supported PtNi Nanoalloy Oxygen Reduction Reaction Electrocatalysts-In Situ Tracking of the Atomic Alloying Process.
- Author
-
Feng Q, Wang X, Klingenhof M, Heggen M, and Strasser P
- Abstract
We report and analyze a synthetic strategy toward low-Pt platinum-nickel (Pt-Ni) alloy nanoparticle (NP) cathode catalysts for the catalytic electroreduction of molecular oxygen to water. The synthesis involves the pyrolysis and leaching of Ni-organic polymers, subsequent Pt NP deposition, followed by thermal alloying, resulting in single Ni atom site (NiNC)-supported PtNi alloy NPs at low Pt weight loadings of only 3-5 wt %. Despite low Pt weight loading, the catalysts exhibit more favorable Pt-mass activities compared to conventional 20-30 wt % benchmark PtNi catalysts. Using in situ microscopic techniques, we track and unravel the key stages of the PtNi alloy formation process directly at the atomic scale. Surprisingly, we find that carbon-encapsulated metallic Ni@C structures, rather than NiN
x sites, act as the Ni source during alloy formation. Our materials concepts offer a pathway to further decrease the overall Pt content in hydrogen fuel cell cathodes., (© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)- Published
- 2022
- Full Text
- View/download PDF
7. On the electrocatalytical oxygen reduction reaction activity and stability of quaternary RhMo-doped PtNi/C octahedral nanocrystals.
- Author
-
Hornberger E, Klingenhof M, Polani S, Paciok P, Kormányos A, Chattot R, MacArthur KE, Wang X, Pan L, Drnec J, Cherevko S, Heggen M, Dunin-Borkowski RE, and Strasser P
- Abstract
Recently proposed bimetallic octahedral Pt-Ni electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathodes suffer from particle instabilities in the form of Ni corrosion and shape degradation. Advanced trimetallic Pt-based electrocatalysts have contributed to their catalytic performance and stability. In this work, we propose and analyse a novel quaternary octahedral (oh-)Pt nanoalloy concept with two distinct metals serving as stabilizing surface dopants. An efficient solvothermal one-pot strategy was developed for the preparation of shape-controlled oh-PtNi catalysts doped with Rh and Mo in its surface. The as-prepared quaternary octahedral PtNi(RhMo) catalysts showed exceptionally high ORR performance accompanied by improved activity and shape integrity after stability tests compared to previously reported bi- and tri-metallic systems. Synthesis, performance characteristics and degradation behaviour are investigated targeting deeper understanding for catalyst system improvement strategies. A number of different operando and on-line analysis techniques were employed to monitor the structural and elemental evolution, including identical location scanning transmission electron microscopy and energy dispersive X-ray analysis (IL-STEM-EDX), operando wide angle X-ray spectroscopy (WAXS), and on-line scanning flow cell inductively coupled plasma mass spectrometry (SFC-ICP-MS). Our studies show that doping PtNi octahedral catalysts with small amounts of Rh and Mo suppresses detrimental Pt diffusion and thus offers an attractive new family of shaped Pt alloy catalysts for deployment in PEMFC cathode layers., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)
- Published
- 2022
- Full Text
- View/download PDF
8. Highly Active and Stable Large Mo-Doped Pt-Ni Octahedral Catalysts for ORR: Synthesis, Post-treatments, and Electrochemical Performance and Stability.
- Author
-
Polani S, MacArthur KE, Kang J, Klingenhof M, Wang X, Möller T, Amitrano R, Chattot R, Heggen M, Dunin-Borkowski RE, and Strasser P
- Abstract
Over the past decade, advances in the colloidal syntheses of octahedral-shaped Pt-Ni alloy nanocatalysts for use in fuel cell cathodes have raised our atomic-scale control of particle morphology and surface composition, which, in turn, helped raise their catalytic activity far above that of benchmark Pt catalysts. Future fuel cell deployment in heavy-duty vehicles caused the scientific priorities to shift from alloy particle activity to stability. Larger particles generally offer enhanced thermodynamic stability, yet synthetic approaches toward larger octahedral Pt-Ni alloy nanoparticles have remained elusive. In this study, we show how a simple manipulation of solvothermal synthesis reaction kinetics involving depressurization of the gas phase at different stages of the reaction allows tuning the size of the resulting octahedral nanocatalysts to previously unachieved scales. We then link the underlying mechanism of our approach to the classical "LaMer" model of nucleation and growth. We focus on large, annealed Mo-doped Pt-Ni octahedra and investigate their synthesis, post-synthesis treatments, and elemental distribution using advanced electron microscopy. We evaluate the electrocatalytic ORR performance and stability and succeed to obtain a deeper understanding of the enhanced stability of a new class of relatively large, active, and long-lived Mo-doped Pt-Ni octahedral catalysts for the cathode of PEMFCs.
- Published
- 2022
- Full Text
- View/download PDF
9. Impact of Carbon N-Doping and Pyridinic-N Content on the Fuel Cell Performance and Durability of Carbon-Supported Pt Nanoparticle Catalysts.
- Author
-
Hornberger E, Merzdorf T, Schmies H, Hübner J, Klingenhof M, Gernert U, Kroschel M, Anke B, Lerch M, Schmidt J, Thomas A, Chattot R, Martens I, Drnec J, and Strasser P
- Abstract
Cathode catalyst layers of proton exchange membrane fuel cells (PEMFCs) typically consist of carbon-supported platinum catalysts with varying weight ratios of proton-conducting ionomers. N-Doping of carbon support materials is proposed to enhance the performance and durability of the cathode layer under operating conditions in a PEMFC. However, a detailed understanding of the contributing N-moieties is missing. Here, we report the successful synthesis and fuel cell implementation of Pt electrocatalysts supported on N-doped carbons, with a focus on the analysis of the N-induced effect on catalyst performance and durability. A customized fluidized bed reduction reactor was used to synthesize highly monodisperse Pt nanoparticles deposited on N-doped carbons (N-C), the catalytic oxygen reduction reaction activity and stability of which matched those of state-of-the-art PEMFC catalysts. Operando high-energy X-ray diffraction experiments were conducted using a fourth generation storage ring; the light of extreme brilliance and coherence allows investigating the impact of N-doping on the degradation behavior of the Pt/N-C catalysts. Tests in liquid electrolytes were compared with tests in membrane electrode assemblies in single-cell PEMFCs. Our analysis refines earlier views on the subject of N-doped carbon catalyst supports: it provides evidence that heteroatom doping and thus the incorporation of defects into the carbon backbone do not mitigate the carbon corrosion during high-potential cycling (1-1.5 V) and, however, can promote the cell performance under usual PEMFC operating conditions (0.6-0.9 V).
- Published
- 2022
- Full Text
- View/download PDF
10. Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction.
- Author
-
Wang X, Klingan K, Klingenhof M, Möller T, Ferreira de Araújo J, Martens I, Bagger A, Jiang S, Rossmeisl J, Dau H, and Strasser P
- Abstract
Cu oxides catalyze the electrochemical carbon dioxide reduction reaction (CO2RR) to hydrocarbons and oxygenates with favorable selectivity. Among them, the shape-controlled Cu oxide cubes have been most widely studied. In contrast, we report on novel 2-dimensional (2D) Cu(II) oxide nanosheet (CuO NS) catalysts with high C
2+ products, selectivities (> 400 mA cm-2 ) in gas diffusion electrodes (GDE) at industrially relevant currents and neutral pH. Under applied bias, the (001)-orientated CuO NS slowly evolve into highly branched, metallic Cu0 dendrites that appear as a general dominant morphology under electrolyte flow conditions, as attested by operando X-ray absorption spectroscopy and in situ electrochemical transmission electron microscopy (TEM). Millisecond-resolved differential electrochemical mass spectrometry (DEMS) track a previously unavailable set of product onset potentials. While the close mechanistic relation between CO and C2 H4 was thereby confirmed, the DEMS data help uncover an unexpected mechanistic link between CH4 and ethanol. We demonstrate evidence that adsorbed methyl species, *CH3 , serve as common intermediates of both CH3 H and CH3 CH2 OH and possibly of other CH3 -R products via a previously overlooked pathway at (110) steps adjacent to (100) terraces at larger overpotentials. Our mechanistic conclusions challenge and refine our current mechanistic understanding of the CO2 electrolysis on Cu catalysts.- Published
- 2021
- Full Text
- View/download PDF
11. Publisher Correction: Key role of chemistry versus bias in electrocatalytic oxygen evolution.
- Author
-
Nong HN, Falling LJ, Bergmann A, Klingenhof M, Tran HP, Spöri C, Mom R, Timoshenko J, Zichittella G, Knop-Gericke A, Piccinin S, Pérez-Ramírez J, Cuenya BR, Schlögl R, Strasser P, Teschner D, and Jones TE
- Published
- 2021
- Full Text
- View/download PDF
12. Key role of chemistry versus bias in electrocatalytic oxygen evolution.
- Author
-
Nong HN, Falling LJ, Bergmann A, Klingenhof M, Tran HP, Spöri C, Mom R, Timoshenko J, Zichittella G, Knop-Gericke A, Piccinin S, Pérez-Ramírez J, Cuenya BR, Schlögl R, Strasser P, Teschner D, and Jones TE
- Abstract
The oxygen evolution reaction has an important role in many alternative-energy schemes because it supplies the protons and electrons required for converting renewable electricity into chemical fuels
1-3 . Electrocatalysts accelerate the reaction by facilitating the required electron transfer4 , as well as the formation and rupture of chemical bonds5 . This involvement in fundamentally different processes results in complex electrochemical kinetics that can be challenging to understand and control, and that typically depends exponentially on overpotential1,2,6,7 . Such behaviour emerges when the applied bias drives the reaction in line with the phenomenological Butler-Volmer theory, which focuses on electron transfer8 , enabling the use of Tafel analysis to gain mechanistic insight under quasi-equilibrium9-11 or steady-state assumptions12 . However, the charging of catalyst surfaces under bias also affects bond formation and rupture13-15 , the effect of which on the electrocatalytic rate is not accounted for by the phenomenological Tafel analysis8 and is often unknown. Here we report pulse voltammetry and operando X-ray absorption spectroscopy measurements on iridium oxide to show that the applied bias does not act directly on the reaction coordinate, but affects the electrocatalytically generated current through charge accumulation in the catalyst. We find that the activation free energy decreases linearly with the amount of oxidative charge stored, and show that this relationship underlies electrocatalytic performance and can be evaluated using measurement and computation. We anticipate that these findings and our methodology will help to better understand other electrocatalytic materials and design systems with improved performance.- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.