56 results on '"Kleinman PJ"'
Search Results
2. A Global Perspective on Phosphorus Management Decision Support in Agriculture: Lessons Learned and Future Directions.
- Author
-
Drohan PJ, Bechmann M, Buda A, Djodjic F, Doody D, Duncan JM, Iho A, Jordan P, Kleinman PJ, McDowell R, Mellander PE, Thomas IA, and Withers PJA
- Subjects
- Environment, New Zealand, Soil, Agriculture, Phosphorus
- Abstract
The evolution of phosphorus (P) management decision support tools (DSTs) and systems (DSS), in support of food and environmental security has been most strongly affected in developed regions by national strategies (i) to optimize levels of plant available P in agricultural soils, and (ii) to mitigate P runoff to water bodies. In the United States, Western Europe, and New Zealand, combinations of regulatory and voluntary strategies, sometimes backed by economic incentives, have often been driven by reactive legislation to protect water bodies. Farmer-specific DSSs, either based on modeling of P transfer source and transport mechanisms, or when coupled with farm-specific information or local knowledge, have typically guided best practices, education, and implementation, yet applying DSSs in data poor catchments and/or where user adoption is poor hampers the effectiveness of these systems. Recent developments focused on integrated digital mapping of hydrologically sensitive areas and critical source areas, sometimes using real-time data and weather forecasting, have rapidly advanced runoff modeling and education. Advances in technology related to monitoring, imaging, sensors, remote sensing, and analytical instrumentation will facilitate the development of DSSs that can predict heterogeneity over wider geographical areas. However, significant challenges remain in developing DSSs that incorporate "big data" in a format that is acceptable to users, and that adequately accounts for catchment variability, farming systems, and farmer behavior. Future efforts will undoubtedly focus on improving efficiency and conserving phosphate rock reserves in the face of future scarcity or prohibitive cost. Most importantly, the principles reviewed here are critical for sustainable agriculture., (© 2019 The Author(s). Re-use requires permission from the publisher.)
- Published
- 2019
- Full Text
- View/download PDF
3. Short communication: Identifying challenges and opportunities for improved nutrient management through the USDA's Dairy Agroecosystem Working Group.
- Author
-
Holly MA, Kleinman PJ, Bryant RB, Bjorneberg DL, Rotz CA, Baker JM, Boggess MV, Brauer DK, Chintala R, Feyereisen GW, Gamble JD, Leytem AB, Reed KF, Vadas PA, and Waldrip HM
- Subjects
- Animals, Female, Manure, Nutritional Requirements, Phosphorus, United States, United States Department of Agriculture, Animal Feed standards, Animal Nutritional Physiological Phenomena, Cattle physiology, Dairying methods
- Abstract
Nutrient management on US dairy farms must balance an array of priorities, some of which conflict. To illustrate nutrient management challenges and opportunities across the US dairy industry, the USDA Agricultural Research Service Dairy Agroecosystems Working Group (DAWG) modeled 8 confinement and 2 grazing operations in the 7 largest US dairy-producing states using the Integrated Farm System Model (IFSM). Opportunities existed across all of the dairies studied to increase on-farm feed production and lower purchased feed bills, most notably on large dairies (>1,000 cows) with the highest herd densities. Purchased feed accounted for 18 to 44% of large dairies' total operating costs compared with 7 to 14% on small dairies (<300 milk cows) due to lower stocking rates. For dairies with larger land bases, in addition to a reduction in environmental impact, financial incentives exist to promote prudent nutrient management practices by substituting manure nutrients or legume nutrients for purchased fertilizers. Environmental priorities varied regionally and were principally tied to facility management for dry-lot dairies of the semi-arid western United States (ammonia-N emissions), to manure handling and application for humid midwestern and eastern US dairies (nitrate-N leaching and P runoff), and pasture management for dairies with significant grazing components (nitrous oxide emissions). Many of the nutrient management challenges identified by DAWG are beyond slight modifications in management and require coordinated solutions to ensure an environmentally and economically sustainable US dairy industry., (The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).)
- Published
- 2018
- Full Text
- View/download PDF
4. Temperature and Nitrogen Effects on Phosphorus Uptake by Agricultural Stream-Bed Sediments.
- Author
-
McDowell RW, Elkin KR, and Kleinman PJ
- Subjects
- Geologic Sediments, Rivers, Temperature, Nitrogen chemistry, Phosphorus chemistry
- Abstract
Climate change will likely increase the growing season, temperatures, and ratio of nitrogen (N) to phosphorus (P) loss from land to water. However, it is unknown how these factors influence P concentrations in streams. We sought to evaluate differences in biotic and abiotic processes affecting stream sediment P dynamics under different temperature and N-enrichment regimes. Three sediments of varying P composition and sorption characteristics were placed into a fluvarium. Synthetic runoff water, with or without added N, was added to the flume's reservoir, and the solution was maintained at 19 or 26°C. Water and sediment samples were taken with time since runoff was introduced. The rate and magnitude of P uptake by sediment was greater at 19°C compared with 26°C, and also when N was added compared with no N added. Analysis of sediment samples indicated that P uptake via abiotic processes was greater at 19 than at 26°C. The addition of N stimulated P uptake by the microbial biomass at 19°C, but microbial uptake was potentially inhibited at 26°C. Because microbial biomass is a temporary store of P, these data suggest that more P may be available with increasing temperatures during the growing season, especially under baseflow, implying that strategies to mitigate P losses from land to water should be strengthened to prevent potential water quality impairment., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2017
- Full Text
- View/download PDF
5. Urea Release by Intermittently Saturated Sediments from a Coastal Agricultural Landscape.
- Author
-
King MD, Bryant RB, Saporito LS, Buda AR, Allen AL, Hughes LA, Hashem FM, Kleinman PJ, and May EB
- Subjects
- Environment, Floods, Geologic Sediments, Agriculture, Urea analysis, Water Pollutants, Chemical analysis, Wetlands
- Abstract
Urea-N is linked to harmful algal blooms in lakes and estuaries, and urea-N-based fertilizers have been implicated as a source. However, the export of urea-N-based fertilizers appears unlikely, as high concentrations of urea-N are most commonly found in surface waters outside periods of fertilization. To evaluate possible autochthonous production of urea-N, we monitored urea-N released from drainage ditch sediments using mesocosms. Sediments from a cleaned (recently dredged) drainage ditch, uncleaned ditch, forested ditch, riparian wetland, and an autoclaved sand control were isolated in mesocosms and flooded for 72 h to quantify urea-N, NH-N, and NO-N in the floodwater. Sediments were flooded with different N-amended solutions (distilled HO, 1.5 mg L NH-N, 3.0 mg L NH-N, 2.6 mg L NO-N, or 5.1 mg L NO-N) and incubated at three water temperatures (16, 21, and 27°C). Urea-N concentrations in mesocosms representing uncleaned and cleaned drainage ditches were significantly greater than nonagricultural sediments and controls. While flooding sediments with N-enriched solution had no clear effect on urea-N, warmer (27°C) temperatures resulted in significantly higher urea-N. Data collected from field ditches that were flooded by a summer rainstorm showed increases in urea-N that mirrored the mesocosm experiment. We postulate that concentrations of urea-N in ditches that greatly exceed environmental thresholds are mediated by biological production in sediments and release to stagnant surface water. Storm-driven urea-N export from ditches could elevate the risk of harmful algal blooms downstream in receiving waters despite the dilution effect., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2017
- Full Text
- View/download PDF
6. Nitrous Oxide and Ammonia Emissions from Injected and Broadcast-Applied Dairy Slurry.
- Author
-
Duncan EW, Dell CJ, Kleinman PJ, and Beegle DB
- Subjects
- Dairying, Nitrogen, Soil, Ammonia analysis, Manure, Nitrous Oxide analysis
- Abstract
Trade-offs associated with surface application or injection of manure pose important environmental and agronomic concerns. Manure injection can conserve nitrogen (N) by decreasing ammonia (NH) volatilization. However, the injection band also creates conditions that potentially favor nitrous oxide (NO) production: an abundant organic substrate-promoting microbial activity, anaerobic conditions favoring denitrification, and large local concentrations of N. We assessed differences in NH volatilization and NO emissions with broadcast application versus shallow disk injection of dairy slurry during the 2011 to 2013 growing seasons on a well-drained silt loam that received average manure-N application rates of 180 kg N ha via injection or 200 kg N ha via broadcast. Ammonia emissions were measured using a photoacoustic gas analyzer and chambers, and NO emissions were measured using syringes to draw timed samples from vented chambers with analysis by gas chromatograph. Results point to a 92 to 98% (3.02-11.05 kg NH-N ha) reduction in NH volatilization (for the initial sampling) with injection compared with broadcasting manure but also reveal 84 to 152% (725.9-3187.8 g NO-N ha) greater cumulative NO emissions. Although losses of N via NO emission were at least three orders of magnitude less than NH volatilization, their potential role as a greenhouse gas is of concern. Despite the potential greenhouse gas trade-offs associated with shallow disk injection of manure, decreasing NH volatilization provides a substantial benefit, especially to farmers who are trying to conserve N and improve the N/P ratio of soil-applied manure., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2017
- Full Text
- View/download PDF
7. Estrogen Transport in Surface Runoff from Agricultural Fields Treated with Two Application Methods of Dairy Manure.
- Author
-
Mina O, Gall HE, Saporito LS, and Kleinman PJ
- Subjects
- Pennsylvania, Phosphorus, Soil, Water Movements, Agriculture, Estrogens analysis, Manure
- Abstract
This study compares two methods of dairy manure application-surface broadcast and shallow disk injection-on the fate and transport of natural estrogens in surface runoff from 12 field plots in central Pennsylvania. Ten natural surface runoff events were sampled over a 9-mo period after fall manure application. Results show that the range of estrogen concentrations observed in surface runoff from the broadcast plots was several orders of magnitude higher (>5000 ng L) than the concentrations in runoff from the shallow disk injection plots (<10 ng L). Additionally, the transport dynamics differed, with the majority of the estrogen loads from the surface broadcast plots occurring during the first rainfall event after application, whereas the majority of the loads from the shallow disk injection plots occurred more than 6 mo later during a hail storm event. Total estrogen loads were, on average, two orders of magnitude lower for shallow disk injection compared with surface broadcast. Independent of the method of manure application, 17α-estradiol and estrone were preserved in the field for as long as 9 mo after application. Overall, injection of manure shows promise in reducing the potential for off-site losses of hormones from manure-amended soils., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2016
- Full Text
- View/download PDF
8. Reducing Phosphorus Runoff and Leaching from Poultry Litter with Alum: Twenty-Year Small Plot and Paired-Watershed Studies.
- Author
-
Huang L, Moore PA, Kleinman PJ, Elkin KR, Savin MC, Pote DH, and Edwards DR
- Subjects
- Alum Compounds, Animals, Poultry, Soil, Water Movements, Manure, Phosphorus analysis
- Abstract
Treating poultry litter with alum has been shown to lower ammonia (NH) emissions and phosphorus (P) runoff losses. Two long-term studies were conducted to assess the effects of alum-treated poultry litter on P availability, leaching, and runoff under pasture conditions. From 1995 to 2015, litter was applied annually in a paired watershed study comparing alum-treated and untreated litter and in a small plot study comparing 13 treatments (an unfertilized control, four rates of alum-treated litter, four rates of untreated litter, and four rates of NHNO). In the paired watershed study, total P loads in runoff were 231% higher from pasture receiving untreated litter (1.96 kg P ha) than from that receiving alum-treated litter (0.85 kg P ha). In both studies, alum-treated litter resulted in significantly higher Mehlich III P (M3-P) and lower water-extractable P at the soil surface, reflecting greater retention of applied P and lesser availability of that P to runoff or leaching. In soils fertilized with alum-treated litter, M3-P was much higher when analyzed by inductively coupled argon plasma emission spectrometry than by colorimetry, possibly due to the formation of aluminum phytate. Indeed, alum-treated poultry litter leached less P over the 20-yr study: M3-P at 10 to 50 cm was 266% greater in plots fertilized with untreated litter (331 kg M3-P ha) than with alum-treated litter (124 kg M3-P ha). This research provides compelling evidence that treating poultry litter with alum provides short-term and long-term benefits to P conservation and water quality., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2016
- Full Text
- View/download PDF
9. Improved Simulation of Edaphic and Manure Phosphorus Loss in SWAT.
- Author
-
Collick AS, Veith TL, Fuka DR, Kleinman PJ, Buda AR, Weld JL, Bryant RB, Vadas PA, White MJ, Harmel RD, and Easton ZM
- Subjects
- Agriculture, Pennsylvania, Soil, Water, Manure, Phosphorus, Water Movements
- Abstract
Watershed models such as the Soil Water Assessment Tool (SWAT) and the Agricultural Policy Environmental EXtender (APEX) are widely used to assess the fate and transport of agricultural nutrient management practices on soluble and particulate phosphorus (P) loss in runoff. Soil P-cycling routines used in SWAT2012 revision 586, however, do not simulate the short-term effects of applying a concentrated source of soluble P, such as manure, to the soil surface where it is most vulnerable to runoff. We added a new set of soil P routines to SWAT2012 revision 586 to simulate surface-applied manure at field and subwatershed scales within Mahantango Creek watershed in south-central Pennsylvania. We corroborated the new P routines and standard P routines in two versions of SWAT (conventional SWAT, and a topographically driven variation called TopoSWAT) for a total of four modeling "treatments". All modeling treatments included 5 yr of measured data under field-specific, historical management information. Short-term "wash off" processes resulting from precipitation immediately following surface application of manures were captured with the new P routine whereas the standard routines resulted in losses regardless of manure application. The new routines improved sensitivity to key factors in nutrient management (i.e., timing, rate, method, and form of P application). Only the new P routines indicated decreases in soluble P losses for dairy manure applications at 1, 5, and 10 d before a storm event. The new P routines also resulted in more variable P losses when applying manure versus commercial fertilizer and represented increases in total P losses, as compared with standard P routines, with rate increases in dairy manure application (56,000 to 84,000 L ha). The new P routines exhibited greater than 50% variation among proportions of organic, particulate, and soluble P corresponding to spreading method. In contrast, proportions of P forms under the standard P routines varied less than 20%. Results suggest similar revisions to other agroecosystem watershed models would be appropriate., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2016
- Full Text
- View/download PDF
10. A Protocol for Collecting and Constructing Soil Core Lysimeters.
- Author
-
Saporito LS, Bryant RB, and Kleinman PJ
- Subjects
- Agriculture, Fertilizers, Manure, Nitrates, Soil Pollutants, Soil
- Abstract
Leaching of nutrients from land applied fertilizers and manure used in agriculture can lead to accelerated eutrophication of surface water. Because the landscape has complex and varied soil morphology, an accompanying disparity in flow paths for leachate through the soil macropore and matrix structure is present. The rate of flow through these paths is further affected by antecedent soil moisture. Lysimeters are used to quantify flow rate, volume of water and concentration of nutrients leaching downward through soils. While many lysimeter designs exist, accurately determining the volume of water and mass balance of nutrients is best accomplished with bounded lysimeters that leave the natural soil structure intact. Here we present a detailed method for the extraction and construction of soil core lysimeters equipped with soil moisture sensors at 5 cm and 25 cm depths. Lysimeters from four different Coastal Plain soils (Bojac, Evesboro, Quindocqua and Sassafras) were collected on the Delmarva Peninsula and moved to an indoor climate controlled facility. Soils were irrigated once weekly with the equivalent of 2 cm of rainfall to draw down soil nitrate-N concentrations. At the end of the draw down period, poultry litter was applied (162 kg TN ha(-1)) and leaching was resumed for an additional five weeks. Total recovery of applied irrigation water varied from 71% to 85%. Nitrate-N concentration varied over the course of the study from an average of 27.1 mg L(-1) before litter application to 40.3 mg L(-1) following litter application. While greatest flux of nutrients was measured in soils dominated by coarse sand (Sassafras) the greatest immediate flux occurred from the finest textured soil with pronounced macropore development (Quindocqua).
- Published
- 2016
- Full Text
- View/download PDF
11. Persistence and Surface Transport of Urea-Nitrogen: A Rainfall Simulation Study.
- Author
-
Kibet LC, Bryant RB, Buda AR, Kleinman PJ, Saporito LS, Allen AL, Hashem FM, and May EB
- Subjects
- Animals, Manure, Phosphorus, Rain, Water Movements, Fertilizers, Nitrogen, Urea
- Abstract
Studies of harmful algal blooms and associated urea concentrations in the Chesapeake Bay and in coastal areas around the globe strongly suggest that elevated urea concentrations are associated with harmful algal blooms. The observed increased frequency and toxicity of these blooms in recent decades has been correlated with increased agricultural use of N inputs and increased use of urea as a preferred form of commercial N. This rainfall simulation study sought to assess the potential for different N fertilizers and manures to contribute to urea in runoff from a Coastal Plain soil on the Eastern Shore of Maryland. Under worst-case conditions, ~1% of urea-N applied as commercial fertilizer and surface-applied poultry litter was lost in runoff in a simulated rainfall event, roughly equivalent to a 1-yr return period rain storm in the study area, 12 h after application. Cumulative urea-N losses, including four subsequent weekly rainfall events, approached 1.7% from urea-N fertilizer containing a urease inhibitor. Urea-N loss from incorporated poultry litter was negligible, and losses from dairy manure were intermediate. These losses are likely confined to hydrological contributing areas that extend several meters from a drainage ditch or stream for storms with frequent recurrence intervals. Cumulative dissolved N losses in runoff (urea-N + ammonium-N + nitrate-N) as a proportion of total applied plant-available N were <5%, suggesting that most of the applied N was lost by other pathways or was immobilized in soil. Results also highlight the potential for simple management options, such as shallow incorporation or timing, to greatly reduce urea runoff losses., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2016
- Full Text
- View/download PDF
12. Spatial Scale and Field Management Affect Patterns of Phosphorus Loss in Cranberry Floodwaters.
- Author
-
Kennedy CD, Kleinman PJ, and DeMoranville CJ
- Subjects
- Fertilizers, Agriculture, Phosphorus analysis, Soil chemistry, Vaccinium macrocarpon
- Abstract
Although cranberries ( Ait.) are indigenous to the northeastern United States, phosphorus (P) fertilizer additions and periodic flooding make commercial cranberry a potential source of P to the region's lakes and streams. In this study, we report values of P export in cranberry floodwaters that range from <0.8 to 4.7 kg P ha, generally reflecting differences in the hydrological, edaphic, and management factors underlying soil P transfer to floodwater. The relatively high P loading rate (4.7 P kg P ha) was associated with harvest flooding of organic-rich soils. Periods of winter flooding and the discharge of harvest floodwater from mineral soils resulted in relatively low P loss (<0.8 kg P ha). Increases in concentrations of total dissolved P (DP) and total particulate P (PP) in floodwater as stage decreased below the surface of the cranberry bed were consistent with the transport of dissolved P in soil porewater and mobilization of particulate P in ditches. Variations in floodwater DP, as well as conservative and reactive tracer concentrations, suggested that the processes by which soil P is released to porewater included desorption of near-surface soil P and anaerobic dissolution of iron-P compounds deeper in the soil profile. At the farm scale, concentrations of DP and PP steadily increased over time, presumably because drainage waters from beds farther upgradient had longer contact times with P-rich sources, such as soil porewater and ditch sediments. Overall, the study illustrates the role that scale-dependent processes impart on patterns of P loss in agricultural production systems., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2016
- Full Text
- View/download PDF
13. The Pivotal Role of Phosphorus in a Resilient Water-Energy-Food Security Nexus.
- Author
-
Jarvie HP, Sharpley AN, Flaten D, Kleinman PJ, Jenkins A, and Simmons T
- Abstract
We make the case that phosphorus (P) is inextricably linked to an increasingly fragile, interconnected, and interdependent nexus of water, energy, and food security and should be managed accordingly. Although there are many other drivers that influence water, energy, and food security, P plays a unique and under-recognized role within the nexus. The P paradox derives from fundamental challenges in meeting water, energy, and food security for a growing global population. We face simultaneous dilemmas of overcoming scarcity of P to sustain terrestrial food and biofuel production and addressing overabundance of P entering aquatic systems, which impairs water quality and aquatic ecosystems and threatens water security. Historical success in redistributing rock phosphate as fertilizer to enable modern feed and food production systems is a grand societal achievement in overcoming inequality. However, using the United States as the main example, we demonstrate how successes in redistribution of P and reorganization of farming systems have broken local P cycles and have inadvertently created instability that threatens resilience within the nexus. Furthermore, recent expansion of the biofuels sector is placing further pressure on P distribution and availability. Despite these challenges, opportunities exist to intensify and expand food and biofuel production through recycling and better management of land and water resources. Ultimately, a strategic approach to sustainable P management can help address the P paradox, minimize tradeoffs, and catalyze synergies to improve resilience among components of the water, energy, and food security nexus., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
14. Chemical and Isotopic Tracers Illustrate Pathways of Nitrogen Loss in Cranberry Floodwaters.
- Author
-
Kennedy CD, Buda AR, Kleinman PJ, and DeMoranville CJ
- Abstract
Limited research exists on the sources of nitrogen (N) in cranberry floodwaters, which have been identified as a prominent cause of concern to watershed N loading in the cranberry-producing region of southeastern Massachusetts. In this study, we used naturally occurring chemical and isotopic tracers to infer the sources of N transported by harvest floodwaters. In 2012, the cranberry bed was a net source of total N (TN), exporting 0.8 kg N ha (primarily as organic N) to a nearby lake. Systematic increases in TN concentration were associated with increasing fractions of pre-event soil water and groundwater ("porewater") in discharge. Results showed that N concentrations in porewater generally derive from the natural mixing of soil water and perched groundwater within the cranberry bed but locally display a connection to deep groundwater where the underlying peat is absent. These findings illustrate the environmental significance of stored pools of porewater in cranberry beds and the ability to focus on moments of disproportionate N transfer to most efficiently curtail floodwater N losses (i.e., 58% of N export occurred in only 22% of floodwater discharge)., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
15. Linking nitrogen management, seep chemistry, and stream water quality in two agricultural headwater watersheds.
- Author
-
Williams MR, Buda AR, Elliott HA, Collick AS, Dell C, and Kleinman PJ
- Abstract
Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO-N concentrations in seep and stream water were affected by NO-N processing along seep surface flow paths and by upslope applications of N from fertilizers and manures. The research was conducted in two headwater agricultural watersheds, FD36 (40 ha) and RS (45 ha), which are fed, in part, by a shallow fractured aquifer system possessing high (3-16 mg L) NO-N concentrations. Data from in-seep monitoring showed that NO-N concentrations generally decreased downseep (top to bottom), indicating that most seeps retained or removed a fraction of delivered NO-N (16% in FD36 and 1% in RS). Annual mean N applications in upslope fields (as determined by yearly farmer surveys) were highly correlated with seep NO-N concentrations in both watersheds (slope: 0.06; = 0.79; < 0.001). Strong positive relationships also existed between seep and stream NO-N concentrations in FD36 (slope: 1.01; = 0.79; < 0.001) and in RS (slope: 0.64; = 0.80; < 0.001), further indicating that N applications control NO-N concentrations at the watershed scale. Our findings clearly point to NO-N leaching from upslope agricultural fields as the primary driver of NO-N losses from seeps to streams in these watersheds and therefore suggest that appropriate management strategies (cover crops, limiting fall/winter nutrient applications, decision support tools) be targeted in these zones., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
16. Phosphorus fate, management, and modeling in artificially drained systems.
- Author
-
Kleinman PJ, Smith DR, Bolster CH, and Easton ZM
- Abstract
Phosphorus (P) losses in agricultural drainage waters, both surface and subsurface, are among the most difficult form of nonpoint source pollution to mitigate. This special collection of papers on P in drainage waters documents the range of field conditions leading to P loss in drainage water, the potential for drainage and nutrient management practices to control drainage losses of P, and the ability of models to represent P loss to drainage systems. A review of P in tile drainage and case studies from North America, Europe, and New Zealand highlight the potential for artificial drainage to exacerbate watershed loads of dissolved and particulate P via rapid, bypass flow and shorter flow path distances. Trade-offs are identified in association with drainage intensification, tillage, cover crops, and manure management. While P in drainage waters tends to be tied to surface sources of P (soil, amendments or vegetation) that are in highest concentration, legacy sources of P may occur at deeper depths or other points along drainage flow paths. Most startling, none of the major fate-and-transport models used to predict management impacts on watershed P losses simulate the dominant processes of P loss to drainage waters. Because P losses to drainage waters can be so difficult to manage and to model, major investment are needed (i) in systems that can provide necessary drainage for agronomic production while detaining peak flows and promoting P retention and (ii) in models that can adequately describe P loss to drainage waters., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
17. Phosphorus leaching from agricultural soils of the delmarva peninsula, USA.
- Author
-
Kleinman PJ, Church C, Saporito LS, McGrath JM, Reiter MS, Allen AL, Tingle S, Binford GD, Han K, and Joern BC
- Abstract
Leaching of phosphorus (P) mobilizes edaphic and applied sources of P and is a primary pathway of concern in agricultural soils of the Delmarva Peninsula, which defines the eastern boundary of the eutrophic Chesapeake Bay. We evaluated P leaching before and after poultry litter application from intact soil columns (30 cm diameter × 50 cm depth) obtained from low- and high-P members of four dominant Delmarva Peninsula soils. Surface soil textures ranged from fine sand to silt loam, and Mehlich-3 soil P ranged from 64 to 628 mg kg. Irrigation of soil columns before litter application pointed to surface soil P controls on dissolved P in leachate (with soil P sorption saturation providing a stronger relationship than Mehlich-3 P); however, strong relationships between P in the subsoil (45-50 cm) and leachate P concentrations were also observed ( = 0.61-0.73). After poultry litter application (4.5 Mg ha), leachate P concentrations and loads increased significantly for the finest-textured soils, consistent with observations that well-structured soils have the greatest propensity to transmit applied P. Phosphorus derived from poultry litter appeared to contribute 41 and 76% of total P loss in leachate from the two soils with the finest textures. Results point to soil P, including P sorption saturation, as a sound metric of P loss potential in leachate when manure is not an acute source of P but highlight the need to factor in macropore transport potential to predict leaching losses from applied P sources., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
18. Phosphorus and nitrogen leaching before and after tillage and urea application.
- Author
-
Han K, Kleinman PJ, Saporito LS, Church C, McGrath JM, Reiter MS, Tingle SC, Allen AL, Wang LQ, and Bryant RB
- Abstract
Leaching of nutrients through agricultural soils is a priority water quality concern on the Atlantic Coastal Plain. This study evaluated the effect of tillage and urea application on leaching of phosphorus (P) and nitrogen (N) from soils of the Delmarva Peninsula that had previously been under no-till management. Intact soil columns (30 cm wide × 50 cm deep) were irrigated for 6 wk to establish a baseline of leaching response. After 2 wk of drying, a subset of soil columns was subjected to simulated tillage (0-20 cm) in an attempt to curtail leaching of surface nutrients, especially P. Urea (145 kg N ha) was then broadcast on all soils (tilled and untilled), and the columns were irrigated for another 8 wk. Comparison of leachate recoveries representing rapid and slow flows confirmed the potential to manipulate flow fractions with tillage, albeit with mixed results across soils. Leachate trends in the finer-textured soil suggest that tillage impeded macropore flow and forced greater matrix flow. Despite significant vertical stratification of soil P that suggested tillage could prevent leaching of P via macropores from the surface to the subsoil, tillage had no significant impact on P leaching losses. Relatively high levels of soil P below 20 cm may have served as the source of P enrichment in leachate waters. However, tillage did lower losses of applied urea in leachate from two of the three soils, partially confirming the study's premise that tillage would destroy macropore pathways transmitting surface constituents to the subsoil., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
19. Phosphorus transport in agricultural subsurface drainage: a review.
- Author
-
King KW, Williams MR, Macrae ML, Fausey NR, Frankenberger J, Smith DR, Kleinman PJ, and Brown LC
- Abstract
Phosphorus (P) loss from agricultural fields and watersheds has been an important water quality issue for decades because of the critical role P plays in eutrophication. Historically, most research has focused on P losses by surface runoff and erosion because subsurface P losses were often deemed to be negligible. Perceptions of subsurface P transport, however, have evolved, and considerable work has been conducted to better understand the magnitude and importance of subsurface P transport and to identify practices and treatments that decrease subsurface P loads to surface waters. The objectives of this paper were (i) to critically review research on P transport in subsurface drainage, (ii) to determine factors that control P losses, and (iii) to identify gaps in the current scientific understanding of the role of subsurface drainage in P transport. Factors that affect subsurface P transport are discussed within the framework of intensively drained agricultural settings. These factors include soil characteristics (e.g., preferential flow, P sorption capacity, and redox conditions), drainage design (e.g., tile spacing, tile depth, and the installation of surface inlets), prevailing conditions and management (e.g., soil-test P levels, tillage, cropping system, and the source, rate, placement, and timing of P application), and hydrologic and climatic variables (e.g., baseflow, event flow, and seasonal differences). Structural, treatment, and management approaches to mitigate subsurface P transport-such as practices that disconnect flow pathways between surface soils and tile drains, drainage water management, in-stream or end-of-tile treatments, and ditch design and management-are also discussed. The review concludes by identifying gaps in the current understanding of P transport in subsurface drains and suggesting areas where future research is needed., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
20. Implementing agricultural phosphorus science and management to combat eutrophication.
- Author
-
Kleinman PJ, Sharpley AN, Withers PJ, Bergström L, Johnson LT, and Doody DG
- Subjects
- Agriculture, Environmental Monitoring, Eutrophication, Phosphorus analysis
- Abstract
Experience with implementing agricultural phosphorus (P) strategies highlights successes and uncertainty over outcomes. We examine case studies from the USA, UK, and Sweden under a gradient of voluntary, litigated, and regulatory settings. In the USA, voluntary strategies are complicated by competing objectives between soil conservation and dissolved P mitigation. In litigated watersheds, mandated manure export has not wrought dire consequences on poultry farms, but has adversely affected beef producers who fertilize pastures with manure. In the UK, regulatory and voluntary approaches are improving farmer awareness, but require a comprehensive consideration of P management options to achieve downstream reductions. In Sweden, widespread subsidies sometime hinder serious assessment of program effectiveness. In all cases, absence of local data can undermine recommendations from models and outside experts. Effective action requires iterative application of existing knowledge of P fate and transport, coupled with unabashed description and demonstration of tradeoffs to local stakeholders.
- Published
- 2015
- Full Text
- View/download PDF
21. A protocol for conducting rainfall simulation to study soil runoff.
- Author
-
Kibet LC, Saporito LS, Allen AL, May EB, Kleinman PJ, Hashem FM, and Bryant RB
- Subjects
- Environmental Monitoring methods, Agrochemicals chemistry, Models, Theoretical, Rain, Soil chemistry, Urea chemistry, Water Movements, Water Pollutants, Chemical chemistry
- Abstract
Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.
- Published
- 2014
- Full Text
- View/download PDF
22. Water quality remediation faces unprecedented challenges from "legacy phosphorus".
- Author
-
Jarvie HP, Sharpley AN, Spears B, Buda AR, May L, and Kleinman PJ
- Subjects
- Environmental Restoration and Remediation, Phosphorus, Water Quality
- Published
- 2013
- Full Text
- View/download PDF
23. Using flue gas desulfurization gypsum to remove dissolved phosphorus from agricultural drainage waters.
- Author
-
Bryant RB, Buda AR, Kleinman PJ, Church CD, Saporito LS, Folmar GJ, Bose S, and Allen AL
- Subjects
- Agriculture, Hazardous Substances analysis, Metals, Heavy chemistry, Calcium Sulfate chemistry, Filtration instrumentation, Phosphorus chemistry, Water Pollutants, Chemical chemistry, Water Purification methods
- Abstract
High levels of accumulated phosphorus (P) in soils of the Delmarva Peninsula are a major source of dissolved P entering drainage ditches that empty into the Chesapeake Bay. The objective of this study was to design, construct, and monitor a within-ditch filter to remove dissolved P, thereby protecting receiving waters against P losses from upstream areas. In April 2007, 110 Mg of flue gas desulfurization (FGD) gypsum, a low-cost coal combustion product, was used as the reactive ingredient in a ditch filter. The ditch filter was monitored from 2007 to 2010, during which time 29 storm-induced flow events were characterized. For storm-induced flow, the event mean concentration efficiency for total dissolved P (TDP) removal for water passing through the gypsum bed was 73 ± 27% confidence interval (α = 0.05). The removal efficiency for storm-induced flow by the summation of load method was 65 ± 27% confidence interval (α = 0.05). Although chemically effective, the maximum observed hydraulic conductivity of FGD gypsum was 4 L s(-1), but it decreased over time to <1 L s(-1). When bypass flow and base flow were taken into consideration, the ditch filter removed approximately 22% of the TDP load over the 3.6-yr monitoring period. Due to maintenance and clean-out requirements, we conclude that ditch filtration using FGD gypsum is not practical at a farm scale. However, we propose an alternate design consisting of FGD gypsum-filled trenches parallel to the ditch to intercept and treat groundwater before it enters the ditch., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2012
- Full Text
- View/download PDF
24. Low-disturbance manure incorporation effects on ammonia and nitrate loss.
- Author
-
Dell CJ, Kleinman PJ, Schmidt JP, and Beegle DB
- Subjects
- Air Pollutants chemistry, Animals, Cattle, Fertilizers, Silage, Waste Disposal, Fluid methods, Zea mays growth & development, Ammonia chemistry, Nitrates chemistry
- Abstract
Low-disturbance manure application methods can provide the benefits of manure incorporation, including reducing ammonia (NH3) emissions, in production systems where tillage is not possible. However, incorporation can exacerbate nitrate (NO3⁻) leaching. We sought to assess the trade-offs in NH3 and NO3⁻ losses caused by alternative manure application methods. Dairy slurry (2006-2007) and liquid swine manure (2008-2009) were applied to no-till corn by (i) shallow (<10 cm) disk injection, (ii) surface banding with soil aeration, (iii) broadcasting, and (iv) broadcasting with tillage incorporation. Ammonia emissions were monitored for 72 h after application using ventilated chambers and passive diffusion samplers, and NO3⁻ leaching to 80 cm was monitored with buried column lysimeters. The greatest NH3 emissions occurred with broadcasting (35-63 kg NH3-N ha⁻), and the lowest emissions were from unamended soil (<1 kg NH-N ha⁻¹). Injection decreased NH-N emissions by 91 to 99% compared with broadcasting and resulted in lower emissions than tillage incorporation 1 h after broadcasting. Ammonia-nitrogen emissions from banding manure with aeration were inconsistent between years, averaging 0 to 71% that of broadcasting. Annual NO3⁻ leaching losses were small (<25 kg NO3-N ha⁻¹) and similar between treatments, except for the first winter when NO3⁻ leaching was fivefold greater with injection. Because NO3⁻ leaching with injection was substantially lower over subsequent seasons, we hypothesize that the elevated losses during the first winter were through preferential flow paths inadvertently created during lysimeter installation. Overall, shallow disk injection yielded the lowest NH3 emissions without consistently increasing NO3⁻ leaching, whereas manure banding with soil aeration conserved inconsistent amounts of N., (Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
- Published
- 2012
- Full Text
- View/download PDF
25. An experimental study on using rare earth elements to trace phosphorous losses from nonpoint sources.
- Author
-
Wang L, Liang T, Kleinman PJ, and Cao H
- Subjects
- Agriculture, Feasibility Studies, Geologic Sediments chemistry, Laboratories, Solubility, Water chemistry, Environmental Pollutants chemistry, Metals, Rare Earth chemistry, Phosphorus chemistry
- Abstract
Controlling phosphorous (P) inputs through management of its sources and transport is critical for limiting freshwater eutrophication. In this study, characteristics of exogenous rare earth elements (REEs) and P and their losses with surface runoff (both in the water and sediments) during simulated rainfall experiments (83 mm h⁻¹) were investigated. The results revealed that on average most REEs (La, 94%; Nd, 93%; Sm, 96%) and P (96%) transported with sediments in the runoff. The total amounts of losses of REEs and P in the runoff were significantly correlated, suggesting the possibility of using REEs to trace the fate of agricultural nonpoint P losses., (Copyright © 2011 Elsevier Ltd. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF
26. Novel manure management technologies in no-till and forage introduction to the special series.
- Author
-
Maguire RO, Kleinman PJ, and Beegle DB
- Subjects
- Agriculture instrumentation, Agriculture trends, Ammonia chemistry, Ammonia metabolism, Animals, Crops, Agricultural, Humans, Nitrogen chemistry, Nitrogen metabolism, Phosphorus chemistry, Phosphorus metabolism, Water Pollutants chemistry, Water Pollutants metabolism, Agriculture methods, Manure
- Abstract
Surface application of manures leaves nitrogen (N) and phosphorus (P) susceptible to being lost in runoff, and N can also be lost to the atmosphere through ammonia (IH3) volatilization. Tillage immediately after surface application of manure moves manure nutrients under the soil surface, where they are less vulnerable to runoff and volatilization loss. Tillage, however, destroys soil structure, can lead to soil erosion, and is incompatible with forage and no-till systems. A variety of technologies are now available to place manure nutrients under the soil surface, but these are not widely used as surface broadcasting is cheap and long established as the standard method for land application of manure. This collection of papers includes agronomic, environmental, and economic assessments of subsurface manure application technologies, many of which clearly show benefits when comparedwith surface broadcasting. However, there remain significant gaps in our current knowledge, some related to the site-specific nature of technological performance, others related to the nascent and incomplete nature of the assessment process. Thus, while we know that we can improve land application of manure and the sustainability of farming systems with alternatives to surface broadcasting, many questions remain concerning which technologies work best for particular soils, manure types, and farming and cropping systems.
- Published
- 2011
- Full Text
- View/download PDF
27. Environmental and economic comparisons of manure application methods in farming systems.
- Author
-
Rotz CA, Kleinman PJ, Dell CJ, Veith TL, and Beegle DB
- Subjects
- Animals, Cattle, Environmental Pollution, Models, Theoretical, Nitrogen analysis, Pennsylvania, Phosphorus analysis, Swine, Agriculture economics, Agriculture methods, Environment, Manure
- Abstract
Alternative methods for applying livestock manure to no-till soils involve environmental and economic trade-offs. A process-level farm simulation model (Integrated Farm System Model) was used to evaluate methods for applying liquid dairy (Bos taurus L.) and swine (Sus scrofa L.) manure, including no application, broadcast spreading with and without incorporation by tillage, band application with soil aeration, and shallow disk injection. The model predicted ammonia emissions, nitrate leaching, and phosphorus (P) runoff losses similar to those measured over 4 yr of field trials. Each application method was simulated over 25 yr of weather on three Pennsylvania farms. On a swine and cow-calf beef operation under grass production, shallow disk injection increased profit by $340 yr(-1) while reducing ammonia nitrogen and soluble P losses by 48 and 70%, respectively. On a corn (Zea mays L.)-and-grass-based grazing dairy farm, shallow disk injection reduced ammonia loss by 21% and soluble P loss by 76% with little impact on farm profit. Incorporation by tillage and band application with aeration provided less environmental benefit with a net decrease in farm profit. On a large corn-and-alfalfa (Medicago sativa L.)-based dairy farm where manure nutrients were available in excess of crop needs, incorporation methods were not economically beneficial, but they provided environmental benefits with relatively low annual net costs ($13 to $18 cow). In all farming systems, shallow disk injection provided the greatest environmental benefit at the least cost or greatest profit for the producer. With these results, producers are better informed when selecting manure application equipment.
- Published
- 2011
- Full Text
- View/download PDF
28. Phosphorus runoff losses from subsurface-applied poultry litter on coastal plain soils.
- Author
-
Kibet LC, Allen AL, Kleinman PJ, Feyereisen GW, Church C, Saporito LS, and Way TR
- Subjects
- Animals, Fertilizers, Maryland, Poultry, Rain, Water Supply, Agriculture methods, Manure, Phosphorus metabolism, Water Movements, Water Pollutants metabolism
- Abstract
The application of poultry litter to soils is a water quality concern on the Delmarva Peninsula, as runoff contributes P to the eutrophic Chesapeake Bay. This study compared a new subsurface applicator for poultry litter with conventional surface application and tillage incorporation of litter on a Coastal Plain soil under no-till management. Monolith lysimeters (61 cm by 61 cm by 61 cm) were collected immediately after litter application and subjected to rainfall simulation (61 mm h(-1) 1 h) 15 and 42 d later. In the first rainfall event, subsurface application of litter significantly lowered total P losses in runoff (1.90 kg ha(-1)) compared with surface application (4.78 kg ha(-1)). Losses of P with subsurface application were not significantly different from disked litter or an unamended control. By the second event, total P losses did not differ significantly between surface and subsurface litter treatments but were at least twofold greater than losses from the disked and control treatments. A rising water table in the second event likely mobilized dissolved forms of P in subsurface-applied litter to the soil surface, enriching runoff water with P. Across both events, subsurface application of litter did not significantly decrease cumulative losses of P relative to surface-applied litter, whereas disking the litter into the soil did. Results confirm the short-term reduction of runoff P losses with subsurface litter application observed elsewhere but highlight the modifying effect of soil hydrology on this technology's ability to minimize P loss in runoff.
- Published
- 2011
- Full Text
- View/download PDF
29. Subsurface application of poultry litter in pasture and no-till soils.
- Author
-
Pote DH, Way TR, Kleinman PJ, Moore PA Jr, Meisinger JJ, Sistani KR, Saporito LS, Allen AL, and Feyereisen GW
- Subjects
- Agriculture instrumentation, Air Pollution, Animals, Crops, Agricultural, Fertilizers, Phosphorus metabolism, Poultry, Water Pollution, Water Supply, Agriculture methods, Manure, Soil
- Abstract
Poultry litter provides a rich nutrient source for crops, but the usual practice of surface-applying litter can degrade water quality by allowing nutrients to be transported from fields in surface runoff while much of the ammonia (NH3)-N escapes into the atmosphere. Our goal was to improve on conventional titter application methods to decrease associated nutrient losses to air and water while increasing soil productivity. We developed and tested a knifing technique to directly apply dry poultry litter beneath the surface of pastures. Results showed that subsurface litter application decreased NH3-N volatilization and nutrient losses in runoff more than 90% (compared with surface-applied litter) to levels statistically as low as those from control (no litter) plots. Given this success, two advanced tractor-drawn prototypes were developed to subsurface apply poultry litter in field research. The two prototypes have been tested in pasture and no-till experiments and are both effective in improving nutrient-use efficiency compared with surface-applied litter, increasing crop yields (possibly by retaining more nitrogen in the soil), and decreasing nutrient losses, often to near background (control plot) levels. A paired-watershed study showed that cumulative phosphorus losses in runoff from continuously grazed perennial pastures were decreased by 55% over a 3-yr period if the annual poultry litter applications were subsurface applied rather than surface broadcast. Results highlight opportunities and challenges for commercial adoption of subsurface poultry litter application in pasture and no-till systems.
- Published
- 2011
- Full Text
- View/download PDF
30. Field olfactometry assessment of dairy manure land application methods.
- Author
-
Brandt RC, Elliott HA, Adviento-Borbe MA, Wheeler EF, Kleinman PJ, and Beegle DB
- Subjects
- Animals, Cattle, Agriculture methods, Air Pollutants analysis, Environmental Monitoring methods, Manure, Odorants
- Abstract
Surface application of manure in reduced tillage systems generates nuisance odors, but their management is hindered by a lack of standardized field quantification methods. An investigation was undertaken to evaluate odor emissions associated with various technologies that incorporate manure with minimal soil disturbance. Dairy manure slurry was applied by five methods in a 3.5-m swath to grassland in 61-m-inside-diameter rings. Nasal Ranger Field Olfactometer (NRO) instruments were used to collect dilutions-to-threshold (D/T) observations from the center of each ring using a panel of four odor assessors taking four readings each over a 10-min period. The Best Estimate Threshold D/T (BET10) was calculated for each application method and an untreated control based on preapplication and <1 h, 2 to 4 h, and approximately 24 h after spreading. Whole-air samples were simultaneously collected for laboratory dynamic olfactometer evaluation using the triangular forced-choice (TFC) method. The BET10 of NRO data composited for all measurement times showed D/T decreased in the following order (a = 0.05): surface broadcast > aeration infiltration > surface + chisel incorporation > direct ground injection Sshallow disk injection > control, which closely followed laboratory TFC odor panel results (r = 0.83). At 24 h, odor reduction benefits relative to broadcasting persisted for all methods except aeration infiltration, and odors associated with direct ground injection were not different from the untreated control. Shallow disk injection provided substantial odor reduction with familiar toolbar equipment that is well adapted to regional soil conditions and conservation tillage operations.
- Published
- 2011
- Full Text
- View/download PDF
31. Manure application technology in reduced tillage and forage systems: a review.
- Author
-
Maguire RO, Kleinman PJ, Dell CJ, Beegle DB, Brandt RC, McGrath JM, and Ketterings QM
- Subjects
- Agriculture instrumentation, Ammonia metabolism, Crops, Agricultural, Fertilizers, Nitrogen metabolism, Phosphorus metabolism, Plant Roots growth & development, Water Pollutants chemistry, Water Pollutants metabolism, Agriculture methods, Manure, Soil
- Abstract
Managing manure in reduced tillage and forage systems presents challenges, as incorporation by tillage is not compatible. Surface-applied manure that is not quickly incorporated into soil provides inefficient delivery of manure nutrients to crops due to environmental losses through ammonia (NH3) volatilization and nutrient losses in runoff, and serves as a major source of nuisance odors. An array of technologies now exist to facilitate the incorporation of liquid manures into soil with restricted or minor soil disturbance, some of which are new: shallow disk injection; chisel injection; aeration infiltration; pressure injection. Surface banding of manure inforages decreases NH3 emissions relative to surface broadcasting, as the canopy can decrease wind speed over the manure, but greater reductions can be achieved with manure injection. Soilaeration is intended to hasten manure infiltration, but its benefits are not consistent and may be related to factors such as soildrainage characteristics. Work remains to be done on refining its method of use and timing relative to manure application, which may improve its effectiveness. Placing manure under the soil surface efficiency by injection offers much promise to improve N use efficiency through less NH3 volatilization, reduced odors and decreased nutrient losses in runoff, relative to surface application. We identified significant gaps in our knowledge as manyof these technologies are relatively new, and this should help target future research efforts including environmental, agronomic, and economic assessments.
- Published
- 2011
- Full Text
- View/download PDF
32. Critical source area management of agricultural phosphorus: experiences, challenges and opportunities.
- Author
-
Sharpley AN, Kleinman PJ, Flaten DN, and Buda AR
- Subjects
- Phosphorus analysis, Water Pollutants, Chemical analysis, Agriculture, Phosphorus isolation & purification, Water Pollutants, Chemical isolation & purification
- Abstract
The concept of critical source areas of phosphorus (P) loss produced by coinciding source and transport factors has been studied since the mid 1990s. It is widely recognized that identification of such areas has led to targeting of management strategies and conservation practices that more effectively mitigate P transfers from agricultural landscapes to surface waters. Such was the purpose of P Indices and more complex nonpoint source models. Despite their widespread adoption across the U.S., a lack of water quality improvement in certain areas (e.g. Chesapeake Bay Watershed and some of its tributaries) has challenged critical source area management to be more restrictive. While the role of soil and applied P has been easy to define and quantify, representation of transport processes still remains more elusive. Even so, the release of P from land management and in-stream buffering contribute to a legacy effect that can overwhelm the benefits of critical source area management, particularly as scale increases (e.g. the Chesapeake Bay). Also, conservation tillage that reduces erosion can lead to vertical stratification of soil P and ultimately increased dissolved P loss. Clearly, complexities imparted by spatially variable landscapes, climate, and system response will require iterative monitoring and adaptation, to develop locally relevant solutions. To overcome the challenges we have outlined, critical source area management must involve development of a 'toolbox' that contains several approaches to address the underlying problem of localized excesses of P and provide both spatial and temporal management options. To a large extent, this may be facilitated with the use of GIS and digital elevation models. Irrespective of the tool used, however, there must be a two-way dialogue between science and policy to limit the softening of technically rigorous and politically difficult approaches to truly reducing P losses.
- Published
- 2011
- Full Text
- View/download PDF
33. Occurrence of arsenic and phosphorus in ditch flow from litter-amended soils and barn areas.
- Author
-
Church CD, Kleinman PJ, Bryant RB, Saporito LS, and Allen AL
- Subjects
- Animals, Chickens, Environmental Monitoring, Floors and Floorcoverings, Soil Pollutants, Time Factors, Water Movements, Agriculture, Arsenic chemistry, Housing, Animal, Phosphorus chemistry, Soil chemistry, Water Pollutants, Chemical chemistry
- Abstract
Little is known about the fate of arsenic (As) in land-applied litter from chickens that have been fed roxarsone, an organic feed additive containing As. This study seeks to elucidate the transfer of As in runoff from ditch-drained soils of the poultry-producing region of the Delmarva Peninsula by tracking As and phosphorus (P) export from seven drainage ditches over two water-years (1 July 2005 to 30 June 2007). Annual losses of As from ditches ranged from 0.004 to 0.071 kg ha(-1) while P losses ranged from 0.33 to 18.56 kg ha(-1), with the largest loads associated with a litter storage shed that served as a point source. Event-based As and P losses in ditch flow fluctuated by a factor of 162 and 1882, respectively. The two elements were correlated in flow from the ditch draining a litter storage shed (r = 0.99), and in sediment extracts in soils near the litter shed (r = 0.73), pointing to similar behavior under point source conditions. Indeed, As and P exhibited similar behavior within storms for all ditches, characterized by relatively high initial concentrations subject to rapid concentration declines before peak flow, consistent with dilution of a finite source. However, As and P concentrations varied significantly between ditches and showed considerable temporal variability within ditches, with no clear seasonal trends or associations with current management strategies. The results suggest that similar management strategies might be effective for As and P point sources, but that field management practices geared toward controlling nonpoint source P losses may not readily transfer to the control of As losses.
- Published
- 2010
- Full Text
- View/download PDF
34. Runoff losses of sediment and phosphorus from no-till and cultivated soils receiving dairy manure.
- Author
-
Verbree DA, Duiker SW, and Kleinman PJ
- Subjects
- Animals, Dairying, Geologic Sediments, Manure, Phosphorus analysis, Soil analysis
- Abstract
Managing manure in no-till systems is a water quality concern because surface application of manure can enrich runoff with dissolved phosphorus (P), and incorporation by tillage increases particulate P loss. This study compared runoff from well-drained and somewhat poorly drained soils under corn (Zea mays, L.) production that had been in no-till for more than 10 yr. Dairy cattle (Bos taurus L.) manure was broadcast into a fall planted cover crop before no-till corn planting or incorporated by chisel/disk tillage in the absence of a cover crop. Rainfall simulations (60 mm h(-1)) were performed after planting, mid-season, and post-harvest in 2007 and 2008. In both years and on both soils, no-till yielded significantly less sediment than did chisel/disking. Relative effects of tillage on runoff and P loss differed with soil. On the well-drained soil, runoff depths from no-till were much lower than with chisel/disking, producing significantly lower total P loads (22-50% less). On the somewhat poorly drained soil, there was little to no reduction in runoff depth with no-till, and total P loads were significantly greater than with chisel/disking (40-47% greater). Particulate P losses outweighed dissolved P losses as the major concern on the well-drained soil, whereas dissolved P from surface applied manure was more important on the somewhat poorly drained soil. This study confirms the benefit of no-till to erosion and total P runoff control on well-drained soils but highlights trade-offs in no-till management on somewhat poorly drained soils where the absence of manure incorporation can exacerbate total P losses.
- Published
- 2010
- Full Text
- View/download PDF
35. Using rare earth elements to control phosphorus and track manure in runoff.
- Author
-
Buda AR, Church C, Kleinman PJ, Saporito LS, Moyer BG, and Tao L
- Subjects
- Animals, Cattle, Poultry, Soil analysis, Swine, Water Movements, Water Pollutants, Environmental Monitoring methods, Lanthanum chemistry, Manure analysis, Phosphorus chemistry, Ytterbium chemistry
- Abstract
Concern over the enrichment of agricultural runoff with phosphorus (P) from land applied livestock manures has prompted the development of manure amendments that minimize P solubility. In this study, we amended poultry, dairy, and swine manures with two rare earth chlorides, lanthanum chloride (LaCl(3).7H(2)O) and ytterbium chloride (YbCl(3).6H(2)O), to evaluate their effects on P solubility in the manure following incubation in the laboratory as well as on the fate of P and rare earth elements (REEs) when manures were surface-applied to packed soil boxes and subjected to simulated rainfall. In terms of manure P solubility, La:water-extractable P (WEP) ratios close to 1:1 resulted in maximum WEP reduction of 95% in dairy manure and 98% in dry poultry litter. Results from the runoff study showed that REE applications to dry manures such as poultry litter were less effective in reducing dissolved reactive phosphorus (DRP) in runoff than in liquid manures and slurries, which was likely due to mixing limitations. The most effective reductions of DRP in runoff by REEs were observed in the alkaline pH soil, although reductions of DRP in runoff from the acidic soil were still >50%. Particulate REEs were strongly associated with particulate P in runoff, suggesting a potentially useful role in tracking the fate of P and other manure constituents from manure-amended soils. Finally, REEs that remained in soil following runoff had a tendency to precipitate WEP, especially in soils receiving manure amendments. The findings have valuable applications in water quality protection and the evaluation of P site assessment indices.
- Published
- 2010
- Full Text
- View/download PDF
36. Nitrogen fate in drainage ditches of the coastal plain after dredging.
- Author
-
Shigaki F, Schmidt JP, Kleinman PJ, Sharpley AN, and Allen AL
- Subjects
- Maryland, Drainage, Sanitary, Geologic Sediments analysis, Nitrogen analysis
- Abstract
Drainage ditches are a key conduit of nitrogen (N) from agricultural fields to surface water. The effect of ditch dredging, a common practice to improve drainage, on the fate of N in ditch effluent is not well understood. This study evaluated the effect of dredging on N transport in drainage ditches of the Delmarva Peninsula. Sediments from two ditches draining a single field were collected (0-5 cm) to represent conditions before and after dredging. Sediments were packed in 10-m-long recirculating flumes and subjected to a three-phase experiment to assess the sediment's role as a sink or source of ammonium (NH4) and nitrate (NO3). Under conditions of low initial NH4-N and NO3-N concentrations in flume water, sediment from the undredged ditch released 113 times more NO3-N to water than did sediment from the dredged ditch. When flume water was spiked with NH4-N and NO3-N to simulate increases in N concentrations from drainage and runoff from adjacent fields, NO3-N in flume water increased during 48 h compared with the initial spiked concentration, while NH4-N decreased. These simultaneous changes were attributed to nitrification, with 23% more NO3-N observed in flume water with undredged ditch sediment compared with dredged ditch sediment. Replacing the N-spiked water with deionized water resulted in two times more NO3-N released from the undredged ditch sediment than the dredged ditch sediment. These results suggest that ditch sediments could represent significant stores of N and that dredging could greatly affect the ditch sediment's ability to temporarily assimilate N input from field drainage.
- Published
- 2009
- Full Text
- View/download PDF
37. Effects of hydrology and field management on phosphorus transport in surface runoff.
- Author
-
Buda AR, Kleinman PJ, Srinivasan MS, Bryant RB, and Feyereisen GW
- Subjects
- Geography, Mid-Atlantic Region, Rain, Seasons, Water Pollutants, Chemical analysis, Phosphorus analysis, Water Movements
- Abstract
Phosphorus (P) losses from agricultural landscapes arise from the interaction of hydrologic, edaphic, and management factors, complicated by their spatial and temporal variability. We monitored sites along two agricultural hillslopes to assess the effects of field management and hydrology on P transfers in surface runoff at different landscape positions. Surface runoff varied by landscape position, with saturation excess runoff accounting for 19 times the volume of infiltration excess runoff at the north footslope position, but infiltration excess runoff dominated at upslope landscape positions. Runoff differed significantly between south and north footslopes, coinciding with the extent of upslope soil underlain by a fragipan. Phosphorus in runoff was predominantly in dissolved reactive form (70%), with the highest concentrations associated with upper landscape positions closest to fields serving as major sources of P. However, the largest loads of P were from the north footslope, where runoff volumes were 24 times larger than from all other sites combined. Loads of P from the north footslope appeared to be primarily chronic transfers of desorbed soil P. Although runoff from the footslope likely contributed directly to stream flow and hence to stream water quality, 27% of runoff P from the upslope sites did not connect directly with stream flow. Findings of this study will be useful for evaluating the critical source area concept and metrics such as the P-Index.
- Published
- 2009
- Full Text
- View/download PDF
38. Evaluating the success of phosphorus management from field to watershed.
- Author
-
Sharpley AN, Kleinman PJ, Jordan P, Bergström L, and Allen AL
- Subjects
- Agriculture, Conservation of Natural Resources, Environmental Restoration and Remediation, Phosphorus chemistry, Water Pollutants chemistry, Phosphorus analysis, Water Pollutants analysis, Water Pollution prevention & control, Water Supply
- Abstract
Studies have demonstrated some P loss reduction following implementation of remedial strategies at field scales. However, there has been little coordinated evaluation of best management practices (BMPs) on a watershed scale to show where, when, and which work most effectively. Thus, it is still difficult to answer with a degree of certainty, critical questions such as, how long before we see a response and where would we expect to observe the greatest or least response? In cases where field and watershed scales are monitored, it is not uncommon for trends in P loss to be disconnected. We review case studies demonstrating that potential causes of the disconnect varies, from competing sources of P at watershed scales that are not reflected in field monitoring to an abundance of sinks at watershed scales that buffer field sources. To be successful, P-based mitigation strategies need to occur iteratively, involve stakeholder driven programs, and address the inherent complexity of all P sources within watersheds.
- Published
- 2009
- Full Text
- View/download PDF
39. Integrating contributing areas and indexing phosphorus loss from agricultural watersheds.
- Author
-
Sharpley AN, Kleinman PJ, Heathwaite AL, Gburek WJ, Weld JL, and Folmar GJ
- Subjects
- Agriculture, Phosphorus chemistry, Water chemistry
- Abstract
Most states in the USA have adopted P Indexing to guide P-based management of agricultural fields by identifying the relative risk of P loss at farm and watershed scales. To a large extent, this risk is based on hydrologic principles that frequently occurring storms can initiate surface runoff from fields. Once initiated, this hydrological pathway has a high potential to transport P to the stream. In regions where hydrologically active areas of watersheds vary in time and space, surface runoff generation by "saturation excess" has been linked to distance from stream, with larger events resulting in larger contributing distances. Thus, storm-return period and P loss from a 39.5-ha mixed-land-use watershed in Pennsylvania was evaluated to relate return-period thresholds and distances contributing P to streams. Of 248 storm flows between 1997 and 2006, 93% had a return period of 1 yr, contributing 47% of total P (TP) export, while the largest two storms (10-yr return period) accounted for 23% of TP export. Contributing distance thresholds for the watershed were determined (50-150 m) for a range of storm-return periods (1-10 yr) from hydrograph analysis. By modifying storm-return period thresholds in the P Index and thereby contributing distance, it is possible to account for greater risk of P loss during large storms. For instance, increasing return period threshold from 1 (current P indices) to 5 yr, which accounted for 67% of TP export, increased the P-management restricted area from 20 to 58% of the watershed. An increase in impacted area relative to a decreased risk of P loss creates a management-policy dilemma that cannot be ignored.
- Published
- 2008
- Full Text
- View/download PDF
40. A comparison of phosphorus speciation and potential bioavailability in feed and feces of different dairy herds using 31p nuclear magnetic resonance spectroscopy.
- Author
-
McDowell RW, Dou Z, Toth JD, Cade-Menun BJ, Kleinman PJ, Soder K, and Saporito L
- Subjects
- Animals, Biological Availability, Cattle, Animal Feed, Feces, Magnetic Resonance Spectroscopy methods, Phosphorus Isotopes chemistry
- Abstract
An experiment was conducted to examine how potential phosphorus (P) bioavailability (inferred from speciation) differs in feed and feces collected in spring from four dairy herds representing different management systems: (i) total confinement with cows fed total mixed ration (TMR), (ii) total confinement with TMR plus P mineral supplement, (iii) a hybrid of confinement with TMR and pastoral grazing, and (iv) predominantly grazing with supplemental grains. A treatment was included that air dried feces to simulate conditions after dung deposition. Wet chemical techniques and solution (31)P nuclear magnetic resonance spectroscopy ((31)P-NMR) were used to identify P concentrations and compounds present in water (a surrogate for P in overland flow), dilute acid (0.012 M HCl, an estimate of P utilization by cattle), or NaOH-EDTA (a solution that maximizes the organic P extraction) extracts of feed and feces. In general, P concentration in feces paralleled P in feed. Air drying feces decreased water-extractable P by 13 to 61% largely due to a decrease in orthophosphate, whereas NaOH-EDTA-extractable P increased by 18 to 48%. Analysis of dilute HCl was unsuccessful due to orthophosphate precipitation when pH was adjusted to 12 for (31)P-NMR. In water extracts, more P was in bioavailable diester-P forms, undetectable by colorimetry, than in NaOH-EDTA extracts. In feed, orthophosphate dominated (46-70%), but myo-IHP varied with feed (<10% in forage samples but 43% in a TMR sample). The proportion of myo-IHP decreased in feces compared with feed via mineralization but decreased less in systems with a greater proportion of available P input (e.g., orthophosphate and phospholipids). Feed and drying effect the concentrations and forms of P in feces and their potential impact on soil and water quality. Although bioavailable P in feces from pasture-based and confined systems can be similar in spring, dung-P is distributed on a lower kg P ha(-1) rate in grazing systems. The best method to mitigate P loss from feces is to decrease P in feed.
- Published
- 2008
- Full Text
- View/download PDF
41. Phosphorus loss from an agricultural watershed as a function of storm size.
- Author
-
Sharpley AN, Kleinman PJ, Heathwaite AL, Gburek WJ, Folmar GJ, and Schmidt JP
- Subjects
- Environmental Monitoring, Pennsylvania, Water Supply, Agriculture, Phosphorus analysis, Rain, Soil Pollutants analysis, Water Movements
- Abstract
Phosphorus (P) loss from agricultural watersheds is generally greater in storm rather than base flow. Although fundamental to P-based risk assessment tools, few studies have quantified the effect of storm size on P loss. Thus, the loss of P as a function of flow type (base and storm flow) and size was quantified for a mixed-land use watershed (FD-36; 39.5 ha) from 1997 to 2006. Storm size was ranked by return period (<1, 1-3, 3-5, 5-10, and >10 yr), where increasing return period represents storms with greater peak and total flow. From 1997 to 2006, storm flow accounted for 32% of watershed discharge yet contributed 65% of dissolved reactive P (DP) (107 g ha(-1) yr(-1)) and 80% of total P (TP) exported (515 g ha(-1) yr(-1)). Of 248 storm flows during this period, 93% had a return period of <1 yr, contributing most of the 10-yr flow (6507 m(3) ha(-1); 63%) and export of DP (574 g ha(-1); 54%) and TP (2423 g ha(-1); 47%). Two 10-yr storms contributed 23% of P exported between 1997 and 2006. A significant increase in storm flow DP concentration with storm size (0.09-0.16 mg L(-1)) suggests that P release from soil and/or area of the watershed producing runoff increase with storm size. Thus, implementation of P-based Best Management Practice needs to consider what level of risk management is acceptable.
- Published
- 2008
- Full Text
- View/download PDF
42. Hydrology of small field plots used to study phosphorus runoff under simulated rainfall.
- Author
-
Srinivasan MS, Kleinman PJ, Sharpley AN, Buob T, and Gburek WJ
- Subjects
- Computer Simulation, Soil, Phosphorus analysis, Rain chemistry, Water Movements
- Abstract
Use of small plots and rainfall simulators to extrapolate trends in runoff water quality requires careful consideration of hydrologic process represented under such conditions. A modified version of the National Phosphorus Runoff Project (NPRP) protocol was used to assess the hydrology of paired 1 x 2 m plots established on two soils with contrasting hydrologic properties (somewhat poorly drained vs. well drained). Rain simulations (60 mm h(-1)) were conducted to generate 30 min of runoff. For the somewhat poorly drained soil, simulations were conducted in October and May to contrast dry conditions typically targeted by NPRP protocols with wet conditions generally associated with natural runoff. For the well-drained soil, only dry conditions (October) were evaluated. Under dry antecedent moisture conditions, an average of 64 mm of rainfall was applied to the somewhat poorly drained soil to generate 30 min of runoff, as opposed to 96 mm to the well-drained soil. At an extreme, differences in rainfall were equivalent to a 50-yr rainfall-return period. An absence of detectable spatial trends in surface soil moisture suggests uniformity of runoff processes within the plots. No differences in applied rainfall were evident between wet and dry antecedent conditions for the somewhat poorly drained soil. However, significant differences in runoff generation processes were observed in dissolved P concentrations between wet and dry conditions. As natural runoff from the somewhat poorly drained soil is largely under wet antecedent conditions, this study highlights the need for care in interpreting findings from generalized protocols that favor infiltration-excess runoff mechanisms.
- Published
- 2007
- Full Text
- View/download PDF
43. Vertical distribution of phosphorus in agricultural drainage ditch soils.
- Author
-
Vaughan RE, Needelman BA, Kleinman PJ, and Allen AL
- Subjects
- Maryland, Organic Chemicals chemistry, Oxidation-Reduction, Probability, Sulfides chemistry, Water Movements, Agriculture, Phosphorus analysis, Soil analysis, Water chemistry
- Abstract
Pedological processes such as gleization and organic matter accumulation may affect the vertical distribution of P within agricultural drainage ditch soils. The objective of this study was to assess the vertical distribution of P as a function of horizonation in ditch soils at the University of Maryland Eastern Shore Research Farm in Princess Anne, Maryland. Twenty-one profiles were sampled from 10 agricultural ditches ranging in length from 225 to 550 m. Horizon samples were analyzed for total P; water-extractable P; Mehlich-3 P; acid ammonium oxalate-extractable P, Fe, and Al (P ox, Fe ox, Al ox); pH; and organic C (n = 126). Total P ranged from 27 to 4882 mg kg(-1), P ox from 4 to 4631 mg kg(-1), Mehlich-3 P from 2 to 401 mg kg(-1), and water-extractable P from 0 to 17 mg kg(-1). Soil-forming processes that result in differences between horizons had a strong relationship with various P fractions and P sorption capacity. Fibric organic horizons at the ditch soil surface had the greatest mean P ox, Fe ox, and Al ox concentrations of any horizon class. Gleyed A horizons had a mean Fe ox concentrations 2.6 times lower than dark A horizons and were significantly lower in total P and P ox. Variation in P due to organic matter accumulation and gleization provide critical insight into short- and long-term dynamics of P in ditch soils and should be accounted for when applying ditch management practices.
- Published
- 2007
- Full Text
- View/download PDF
44. Spatial variation of soil phosphorus within a drainage ditch network.
- Author
-
Vaughan RE, Needelman BA, Kleinman PJ, and Allen AL
- Subjects
- Geography, Hydrogen-Ion Concentration, Maryland, Oxalates, Agriculture, Aluminum analysis, Iron analysis, Phosphorus analysis, Soil analysis
- Abstract
Agricultural drainage ditches serve as P transport pathways from fields to surface waters. Little is known about the spatial variation of P at the soil-water interface within ditch networks. We quantified the spatial variation of surficial (0-5 cm) soil P within vegetated agricultural ditches on a farm in Princess Anne, MD with an approximately 30-yr history of poultry litter application. Ditch soils from 10 ditches were sampled at 10-m intervals and analyzed for acid ammonium oxalate-extractable P, Fe, Al (P(ox), Fe(ox), Al(ox)), and pH. These variables were spatially autocorrelated. Oxalate-P (min = 135 mg kg(-1), max = 6919 mg kg(-1), mean = 700 mg kg(-1)) exhibited a high standard deviation across the study area (overall 580 mg kg(-1)) and within individual ditches (maximum 1383 mg kg(-1)). Several ditches contained distinct areas of high P(ox), which were associated with either point- or nonpoint-P sources. Phosphorus was correlated with Al(ox) or Fe(ox) within specific ditches. Across all ditches, Al(ox) (r = 0.80; p < 0.001) was better correlated with P(ox) than was Fe(ox) (r = 0.44; p < 0.001). The high level of spatial variation of soil P observed in this ditch network suggests that spatially distributed sampling may be necessary to target best management practices and to model P transport and fate in ditch networks.
- Published
- 2007
- Full Text
- View/download PDF
45. A model for phosphorus transformation and runoff loss for surface-applied manures.
- Author
-
Vadas PA, Gburek WJ, Sharpley AN, Kleinman PJ, Moore PA Jr, Cabrera ML, and Harmel RD
- Subjects
- Alum Compounds chemistry, Animals, Poultry, Rain, Manure, Phosphorus chemistry
- Abstract
Agricultural P transport in runoff is an environmental concern. An important source of P runoff is surface-applied, unincorporated manures, but computer models used to assess P transport do not adequately simulate P release and transport from surface manures. We developed a model to address this limitation. The model operates on a daily basis and simulates manure application to the soil surface, letting 60% of manure P infiltrate into soil if manure slurry with less than 15% solids is applied. The model divides manure P into four pools, water-extractable inorganic and organic P, and stable inorganic and organic P. The model simulates manure dry matter decomposition, and manure stable P transformation to water-extractable P. Manure dry matter and P are assimilated into soil to simulate bioturbation. Water-extractable P is leached from manure when it rains, and a portion of leached P can be transferred to surface runoff. Eighty percent of manure P leached into soil by rain remains in the top 2 cm, while 20% leaches deeper. This 2-cm soil layer contributes P to runoff via desorption. We used data from field studies in Texas, Pennsylvania, Georgia, and Arkansas to build and validate the model. Validation results show the model accurately predicted cumulative P loads in runoff, reflecting successful simulation of the dynamics of manure dry matter, manure and soil P pools, and storm-event runoff P concentrations. Predicted runoff P concentrations were significantly related to (r2=0.57) but slightly less than measured concentrations. Our model thus represents an important modification for field or watershed scale models that assess P loss from manured soils.
- Published
- 2007
- Full Text
- View/download PDF
46. Estimating source coefficients for phosphorus site indices.
- Author
-
Elliott HA, Brandt RC, Kleinman PJ, Sharpley AN, and Beegle DB
- Subjects
- Agriculture, Animals, Cattle, Organic Chemicals analysis, Poultry, Solubility, Water Movements, Abstracting and Indexing, Environmental Monitoring, Manure analysis, Phosphorus analysis, Soil Pollutants analysis, Water Pollutants analysis
- Abstract
Phosphorus release to runoff varies widely for different land-applied organic P sources even when spread at equivalent total P rates. To address this variability, some P site indices include tabulated P source coefficients (PSCs) for differential weighting of applied P materials based on their runoff enrichment potential. Because runoff P can vary widely even within source categories depending on composition, storage, and treatment differences, this study explored a method for estimating PSCs based on the water-extractable P (WEP) content of the applied amendment. Using seven published rainfall-runoff studies that followed National Phosphorus Research Project protocols, runoff dissolved P (RDP) was correlated (r(2) = 0.80) with WEP for multiple surface-applied manures and biosolids. Assuming amendments with WEP >/= 10 g kg(-1) behave as highly soluble P sources and have a maximum PSC of 1.0, an empirical equation was developed for computing source-specific PSCs from laboratory-determined WEP values [PSC = 0.102 x WEP(0.99)]. For two independent runoff experiments, correlations between RDP loss and P source loading rate were improved when loading rates were multiplied by the computed (r(2) = 0.73-0.86) versus generic (r(2) = 0.45-0.48) PSCs. Source-specific PSCs should enhance the ability of assessment tools to identify vulnerable sites and P loss management alternatives, although the exact inclusion process depends on index scaling and conceptual framework.
- Published
- 2006
- Full Text
- View/download PDF
47. Role of rainfall intensity and hydrology in nutrient transport via surface runoff.
- Author
-
Kleinman PJ, Srinivasan MS, Dell CJ, Schmidt JP, Sharpley AN, and Bryant RB
- Subjects
- Environmental Monitoring, Eutrophication, Medicago sativa growth & development, Nitrogen metabolism, Phosphorus metabolism, Poaceae growth & development, Seasons, Soil Pollutants metabolism, Time Factors, Water Movements, Water Pollutants metabolism, Nitrogen analysis, Phosphorus analysis, Rain chemistry, Soil Pollutants analysis, Water Pollutants analysis
- Abstract
Loss of soil nutrients in runoff accelerates eutrophication of surface waters. This study evaluated P and N in surface runoff in relation to rainfall intensity and hydrology for two soils along a single hillslope. Experiments were initiated on 1- by 2-m plots at foot-slope (6%) and mid-slope (30%) positions within an alfalfa (Medicago sativa L.)-orchardgrass (Dactylis glomerata L.) field. Rain simulations (2.9 and 7.0 cm h(-1)) were conducted under wet (spring) and dry (late-summer) conditions. Elevated, antecedent soil moisture at the foot-slope during the spring resulted in less rain required to generate runoff and greater runoff volumes, compared with runoff from the well-drained mid-slope in spring and at both landscape positions in late summer. Phosphorus in runoff was primarily in dissolved reactive form (DRP averaged 71% of total P), with DRP concentrations from the two soils corresponding with soil test P levels. Nitrogen in runoff was mainly nitrate (NO3-N averaged 77% of total N). Site hydrology, not chemistry, was primarily responsible for variations in mass N and P losses with landscape position. Larger runoff volumes from the foot-slope produced higher losses of total P (0.08 kg ha(-1)) and N (1.35 kg ha(-1)) than did runoff from the mid-slope (0.05 total P kg ha(-1); 0.48 kg N ha(-1)), particularly under wet, spring-time conditions. Nutrient losses were significantly greater under the high intensity rainfall due to larger runoff volumes. Results affirm the critical source area concept for both N and P: both nutrient availability and hydrology in combination control nutrient loss.
- Published
- 2006
- Full Text
- View/download PDF
48. Effect of methodology in estimating and interpreting water-extractable phosphorus in animal manures.
- Author
-
Vadas PA and Kleinman PJ
- Subjects
- Agriculture, Animals, Animals, Domestic, Phosphorus chemistry, Rain, Solubility, Temperature, Manure analysis, Phosphorus analysis, Soil Pollutants analysis, Water chemistry, Water Pollutants analysis
- Abstract
Manure water-extractable phosphorus (WEP) data are used in indices and models to assess P transport in runoff. Methods to measure WEP vary widely, often without understanding the effect on how much P is extracted. We conducted water extractions on five dairy, swine, and poultry manures to assess single and sequential extractions, drying manures, solution to solid (cm3 g(-1)) extraction ratios, and P determination method. We found little difference in WEP of single or sequential extractions. Increasing extraction ratio from 10:1 to 250:1 resulted in more WEP recovered, but in a diminishing fashion so that ratios of 200:1 and 250:1 were not significantly different. Patterns of increased WEP with extraction ratio varied with manure type, presence of bedding material, and drying treatment. Fresh and air-dried manures had similar patterns, but differed substantially from oven-dried (90 degrees C) manures. The differential effect of oven-drying on WEP was greatest for dairy and poultry manure, and less for swine manure. We analyzed water extracts colorimetrically before and after digestion, to examine the potential effect of P determination by inductively coupled plasma (ICP) spectroscopy. Digested extracts always contained more P. For manures with bedding, drying decreased the difference in P measured before and after digestion. The opposite was true for manures without bedding. Results highlight the influence of methodology on manure WEP measurement and caution needed when comparing data across studies using different WEP methods. Overall, our results point to a need for a standard manure water extraction method.
- Published
- 2006
- Full Text
- View/download PDF
49. Freeze-thaw effects on phosphorus loss in runoff from manured and catch-cropped soils.
- Author
-
Bechmann ME, Kleinman PJ, Sharpley AN, and Saporito LS
- Subjects
- Climate, Freezing, Pennsylvania, Agriculture methods, Lolium, Manure, Phosphorus metabolism, Soil
- Abstract
Concern over nonpoint source P losses from agricultural lands to surface waters in frigid climates has focused attention on the role of freezing and thawing on P loss from catch crops (cover crops). This study evaluated the effect of freezing and thawing on the fate of P in bare soils, soils mixed with dairy manure, and soils with an established catch crop of annual ryegrass (Lolium multiflorum L.). Experiments were conducted to evaluate changes in P runoff from packed soil boxes (100 by 20 by 5 cm) and P leaching from intact soil columns (30 cm deep). Before freezing and thawing, total P (TP) in runoff from catch-cropped soils was lower than from manured and bare soils due to lower erosion. Repeated freezing and thawing significantly increased water-extractable P (WEP) from catch crop biomass and resulted in significantly elevated concentrations of dissolved P in runoff (9.7 mg L(-1)) compared with manured (0.18 mg L(-1)) and bare soils (0.14 mg L(-1)). Catch crop WEP was strongly correlated with the number of freeze-thaw cycles. Freezing and thawing did not change the WEP of soils mixed with manures, nor were differences observed in subsurface losses of P between catch-cropped and bare soils before or after manure application. This study illustrates the trade-offs of establishing catch crops in frigid climates, which can enhance P uptake by biomass and reduce erosion potential but increase dissolved P runoff.
- Published
- 2005
- Full Text
- View/download PDF
50. Relating soil phosphorus to dissolved phosphorus in runoff: a single extraction coefficient for water quality modeling.
- Author
-
Vadas PA, Kleinman PJ, Sharpley AN, and Turner BL
- Subjects
- Environmental Monitoring methods, Quality Control, Solubility, Water chemistry, Water Movements, Models, Theoretical, Phosphorus analysis, Soil Pollutants analysis, Water Pollutants analysis
- Abstract
Phosphorus transport from agricultural soils contributes to eutrophication of fresh waters. Computer modeling can help identify agricultural areas with high potential P transport. Most models use a constant extraction coefficient (i.e., the slope of the linear regression between filterable reactive phosphorus [FRP] in runoff and soil P) to predict dissolved P release from soil to runoff, yet it is unclear how variations in soil properties, management practices, or hydrology affect extraction coefficients. We investigated published data from 17 studies that determined extraction coefficients using Mehlich-3 or Bray-1 soil P (mg kg(-1)), water-extractable soil P (mg kg(-1)), or soil P sorption saturation (%) as determined by ammonium oxalate extraction. Studies represented 31 soils with a variety of management conditions. Extraction coefficients from Mehlich-3 or Bray-1 soil P were not significantly different for 26 of 31 soils, with values ranging from 1.2 to 3.0. Extraction coefficients from water-extractable soil P were not significantly different for 17 of 20 soils, with values ranging from 6.0 to 18.3. The relationship between soil P sorption saturation and runoff FRP (microg L(-1)) was the same for all 10 soils investigated, exhibiting a split-line relationship where runoff FRP rapidly increased at P sorption saturation values greater than 12.5%. Overall, a single extraction coefficient (2.0 for Mehlich-3 P data, 11.2 for water-extractable P data, and a split-line relationship for P sorption saturation data) could be used in water quality models to approximate dissolved P release from soil to runoff for the majority of soil, hydrologic, or management conditions. A test for soil P sorption saturation may provide the most universal approximation, but only for noncalcareous soils.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.