31 results on '"Kirrane, S"'
Search Results
2. PD-0737 Internationally led remote IGRT training and outcomes for RTTs in Mainland China
- Author
-
Leong, A., primary, Kirrane, S., additional, Huang, B., additional, and Smith, C., additional
- Published
- 2023
- Full Text
- View/download PDF
3. Knowledge graphs
- Author
-
Hogan, A, Blomqvist, E, Cochez, M, D'Amato, C, Melo, G, Gutierrez, C, Kirrane, S, Gayo, J, Navigli, R, Neumaier, S, Ngomo, A, Polleres, A, Rashid, S, Rula, A, Schmelzeisen, L, Sequeda, J, Staab, S, Zimmermann, A, Hogan A., Blomqvist E., Cochez M., D'Amato C., Melo G. D., Gutierrez C., Kirrane S., Gayo J. E. L., Navigli R., Neumaier S., Ngomo A. -C. N., Polleres A., Rashid S. M., Rula A., Schmelzeisen L., Sequeda J., Staab S., Zimmermann A., Hogan, A, Blomqvist, E, Cochez, M, D'Amato, C, Melo, G, Gutierrez, C, Kirrane, S, Gayo, J, Navigli, R, Neumaier, S, Ngomo, A, Polleres, A, Rashid, S, Rula, A, Schmelzeisen, L, Sequeda, J, Staab, S, Zimmermann, A, Hogan A., Blomqvist E., Cochez M., D'Amato C., Melo G. D., Gutierrez C., Kirrane S., Gayo J. E. L., Navigli R., Neumaier S., Ngomo A. -C. N., Polleres A., Rashid S. M., Rula A., Schmelzeisen L., Sequeda J., Staab S., and Zimmermann A.
- Abstract
In this article, we provide a comprehensive introduction to knowledge graphs, which have recently garnered significant attention from both industry and academia in scenarios that require exploiting diverse, dynamic, large-scale collections of data. After some opening remarks, we motivate and contrast various graph-based data models, as well as languages used to query and validate knowledge graphs. We explain how knowledge can be represented and extracted using a combination of deductive and inductive techniques. We conclude with high-level future research directions for knowledge graphs.
- Published
- 2021
4. A decade of Semantic Web research through the lenses of a mixed methods approach
- Author
-
Kirrane, S, Sabou, M, Fernandez, J, Osborne, F, Robin, C, Buitelaar, P, Motta, E, Polleres, A, Kirrane S, Sabou M, Fernandez JD, Osborne F, Robin C, Buitelaar P, Motta E, Polleres A, Kirrane, S, Sabou, M, Fernandez, J, Osborne, F, Robin, C, Buitelaar, P, Motta, E, Polleres, A, Kirrane S, Sabou M, Fernandez JD, Osborne F, Robin C, Buitelaar P, Motta E, and Polleres A
- Abstract
The identification of research topics and trends is an important scientometric activity, as it can help guide the direction of future research. In the Semantic Web area, initially topic and trend detection was primarily performed through qualitative, top-down style approaches, that rely on expert knowledge. More recently, data-driven, bottom-up approaches have been proposed that offer a quantitative analysis of the evolution of a research domain. In this paper, we aim to provide a broader and more complete picture of Semantic Web topics and trends by adopting a mixed methods methodology, which allows for the combined use of both qualitative and quantitative approaches. Concretely, we build on a qualitative analysis of the main seminal papers, which adopt a top-down approach, and on quantitative results derived with three bottom-up data-driven approaches (Rexplore, Saffron, PoolParty), on a corpus of Semantic Web papers published between 2006 and 2015. In this process, we both use the latter for 'fact-checking' on the former and also to derive key findings in relation to the strengths and weaknesses of top-down and bottom-up approaches to research topic identification. Although we provide a detailed study on the past decade of Semantic Web research, the findings and the methodology are relevant not only for our community but beyond the area of the Semantic Web to other research fields as well.
- Published
- 2020
5. National scientific medical meeting 1997 abstracts
- Author
-
Willison, H. J., Lastovica, A. J., Prendergast, M. M., Moran, A. P., Walsh, C., Flitcroft, I., Eustace, P., McMahon, C., Smith, J., Smith, O. P., Lakshmandass, G., Taylor, M. R. H., Holland, C. V., Cox, D., Good, B., Kearns, G. M., Gaffney, P., Shark, K., Frauenshuh, M., Ortmann, W., Messner, R., King, R., Rich, S., Behrens, T., Mahmud, N., Molloy, A., McPartlin, J., Scott, J. M., Weir, D. G., Walsh, K. M., Thorburn, D., Mills, P., Morris, A. J., Good, T., Cameron, S., McCruden, E. A. B., Bennett, M. W., O’Connell, J., Brady, C., Roche, D., Collins, J. K., Shanahan, F., O’Sullivant, G. C., Henry, M., Koston, S., McMahon, K., MacNee, W., FitzGerald, M. X., O’Connor, C. M., McGonagle, D., Gibbon, W., O’Connor, P., Emery, P., Murphy, M., Watson, R., Casey, E., Naidu, E., Murphy, M., Watson, R., Barnes, L., McCann, S., Murphy, M., Watson, R., Barnes, L., Sweeney, E., Barrett, E. J., Graham, H., Cunningham, R. T., Johnston, C. F., Curry, W. J., Buchanan, K. D., Courtney, C. H., McAllister, A. S., McCance, D. R., Hadden, D. R., Bell, P. M., Leslie, H., Sheridan, B., Atkinson, A. B., Kilbane, M. T., Smith, D. F., Murray, M. J., Shering, S. G., McDermott, E. W. M., O’Higgins, N. J., Smyth, P. P. A., McEneny, J., Trimble, E. R., Young, I. S., Sharpe, P., Mercer, C., McMaster, D., Young, I. S., Evans, A. E., Young, I. S., Cundick, J., Hasselwander, O., McMaster, D., McGeough, J., Savage, D., Maxwell, A. P., Evans, A. E., Kee, F., Larkin, C. J., Watson, R. G. P., Johnston, C., Ardill, J. E. S., Buchanan, K. D., McNamara, D. A., Walsh, T. N., Bouchier-Hayes, D. J., Madden, C., Timon, C., Gardiner, N., Lawler, M., O’Riordan, J., Duggan, C., McCann, S. R., Gowing, H., Braakman, E., Lawler, M., Byrne, C., Martens, A. C. M., Hagenbeek, A., McCann, S. R., Kinsella, N., Cusack, S., Lawler, M., Baker, H., White, B., Smith, O. P., Lawler, M., Gardiner, N., Molloy, K., Gowing, H., Wogan, A., McCann, S. R., McElwaine, S., Lawler, M., Hollywood, D., McCann, S. R., Mcmahon, C., Merry, C., Ryan, M., Smith, O., Mulcahy, F. M., Murphy, C., Briones, J., Gardiner, N., McCann, S. R., Lawler, M., White, B., Lawler, M., Cusack, S., Kinsella, N., Smith, O. P., Lavin, P., McCaffrey, M., Gillen, P., White, B., Smith, O. P., Thompson, L., Lalloz, M., Layton, M., Barnes, L., Corish, C., Kennedy, N. P., Flood, P., Mulligan, S., McNamara, E., Kennedy, N. P., Flood, P., Mathias, P. M., Ball, E., Duiculescu, D., Calistru, P., O’Gorman, N., Kennedy, N. P., Abuzakouk, M., Feighery, C., Brannigan, M., Pender, S., Keeling, F., Varghese, J., Lee, M., Colreavy, M., Gaffney, R., Hone, S., Herzig, M., Walsh, M., Dolan, C., Wogan, A., Lawler, M., McCann, S. R., Hollywood, D., Donovan, D., Harmey, J., Bouchier-Hayes, D. J., Haverty, A., Wang, J. H., Harmey, J. H., Redmond, H. P., Bouchier-Hayes, D. J., McGreal, G., Shering, S. G., Moriarty, M. J., Shortt, A., Kilbane, M. T., Smith, D. F., McDermott, E. W. M., O’Higgins, N. J., Smyth, P. P. A., McNamara, D. A., Harmey, J., Wang, J. H., Donovan, D., Walsh, T. N., Bouchier-Hayes, D. J., Kay, E., Pidgeon, G., Harmey, J., McNamara, D. A., Bouchier-Hayes, D. J., Dunne, P., Lambkin, H., Russell, J. M., O’Neill, A. J., Dunne, B. M., O’Donovan, M., Lawler, M., Gaffney, E. F., Gillan, J. E., Cotter, T. G., Horan, J., Jones, D., Biswas, S. K., Mulkerrin, E. C., Brady, H., O’Donnell, J., Neary, J., Healy, E., Watson, A., Keogh, B., Ryan, M., Cassidy, C., Ward, S., Stokes, E., Keoghan, F., Barrett, A., O’Connell, P., Ryall, N., O’Connell, P. A., Jenkinson, A., O’Brien, T., O’Connell, P. G., Harrison, R., Barrett, T., Bailey, D. M. D., Butler, A., Barton, D. E., Byrne, C., McElwaine, S., McCann, S. R., Lawler, M., Cusack, S., Lawler, M., White, B., Smith, O. P., Daly, G., Gill, M., Heron, S., Hawi, Z., Fitzgerald, M., Hawi, Z., Mynett-Johnson, L., Shiels, D., Kendler, K., McKeon, P., Gill, M., Straub, R., Walsh, D., Ryan, F., Barton, D. E., McCabe, D., Murphy, R., Segurado, R., Mulcahy, T., Larson, B., Comerford, C., O’Connell, R., O’Mahony, E., Gill, M., Donnelly, J., Minahan, F., O’Neill, D., Farrell, Z., O’Neill, D., Jones, D., Horan, J., Glynn, C., Biswas, S. K., Mulkerrin, E., Brady, H., Lennox, S. E., Murphy, A., Rea, I. M., McNulty, H., McMeel, C., O’Neill, D., McEvoy, H., Freaney, R., McKenna, M. J., Crowe, M., Keating, D., Colreavy, M., Hone, S., Norman, G., Widda, S., Viani, L., Galvin, Nolan, C. M., Hardiman, O., Hardiman, O., Brett, F., Droogan, O., Gallagher, P., Harmey, M., King, M., Murphy, J., Perryrnan, R., Sukumaran, S., Walsh, J., Farrell, M. A., Hughes, G., Cunningham, C., Walsh, J. B., Coakley, D., O’Neill, D., Hurson, M., Flood, P., McMonagle, P., Hardiman, O., Ryan, F., O’Sullivan, S., Merry, C., Dodd, P., Redmond, J., Mulcahy, F. M., Browne, R., Keating, S., O’Connor, J., Cassidy, B. P., Smyth, R., Sheppard, N. P., Cullivan, R., Crown, J., Walsh, N., Denihan, A., Bruce, I., Radic, A., Coakley, D., Lawlor, B. A., Bridges, P. K., O’Doherty, M., Farrington, A., O’Doherty, M., Farragher, B., Fahy, S., Kelly, R., Carey, T., Owens, J., Gallagher, O., Sloan, D., McDonough, C., Casey, P., Horgan, A., Elneihum, A., O’Neill, C., McMonagle, T., Quinn, J., Meagher, D., Murphy, P., Kinsella, A., Mullaney, J., Waddington, J. L., Rooney, S., Rooney, S., Bamford, L., Sloan, D., O’Connor, J. J., Franklin, R., O’Brien, K., Fitzpatrick, G., Laffey, J. G., Boylan, J. F., Laffey, J., Coleman, M., Boylan, J., Laffey, J. G., McShane, A. J., Boylan, J. F., Loughrey, J. P. R., Gardiner, J., McGinley, J., Leonard, I., Carey, M., Neligan, P., O’Rourke, J., Cunningham, A., Fennessy, F., Kelly, C., Bouchier-Hayes, D., Fennessy, F., Wang, J. H., Kelly, C., Bouchier-Hayes, D., Fennessy, F., Wang, J. H., Kelly, C., Bouchier-Hayes, D. J., Kellett, J., Laffey, J., Murphy, D., Regan, J., O’Keeffe, D., Mahmud, A., Hemeryck, L., Feely, J., Mahmud, A., Hemeryck, L., Hall, M., Feely, J., Menown, I. B. A., Mathew, T. P., Nesbitt, G. S., Syme, M., Young, I. S., Adgey, A. A. J., Menown, I. B. A., Turtle, F., Allen, J., Anderson, J., Adgey, A. A. J., O’Hanlon, R., Codd, M. B., Walkin, S., McCann, H. A., Sugrue, D. D., Rasheed, A. M., Chen, G., Kelly, C., Bouchier-Hayes, D. J., Leahy, A., Rasheed, A. M., Kay, E., Jina, S., Bouchier-Hayes, D. J., Leahy, A., McDowell, I., Rasheed, A. M., Wang, J. H., Wo, Q., Kelly, C., Bouchier-Hayes, D. J., Leahy, A., Shuhaibar, M. N., McGovern, E., Turtle, F., Menown, I. B. A., Manoharan, G., Kirkpatrick, R., Campbell, N. P. S., Walkin, S., Codd, M. B., O’Hanlon, R., McCarthy, C., McCann, H. A., Sugrue, D. D., Wen, Y., Killalea, S., Hall, M., Hemeryck, L., Feely, J., Fahy, C. J., Griffith, A., McGinley, J., McCabe, D., Fraser, A., Casey, E., Ryan, T., Murphy, R., Browne, M., Fenton, J., Hughes, J., Timon, C. I., Fenton, J., Curran, A., Smyth, D., Viani, L., Walsh, M., Hughes, J. P., Fenton, J., Lee, P., Kelly, A., Timon, C. I., Hughes, J. P., Fenton, J., Shine, N., Blayney, A., McShane, D. P., Timon, C. I., Hussey, J., Howlett, M., Langton, A., McEvoy, A., Slevin, J., Fitzpatrick, C., Turner, M. J., Enright, F., Goggin, N., Costigan, C., Duff, D., Osizlok, P., Wood, F., Watson, R., Fitzsimons, R. B., Flanagan, N., Enright, F., Barnes, L., Watson, R., Molloy, E., Griffin, E., Deasy, P. F., Sheridan, M., White, M. J., Moore, R., Gray, A., Hill, J., Glasgow, J. F. T., Middleton, B., Slattery, D., Donoghue, V., McMahon, A., Murphy, J., Slattery, D., McCarthy, A., Oslislok, P., Duff, D., Colreavy, M., Keogh, I., Hone, S., Walsh, M., Henry, M., Koston, S., McMahon, K., MacNee, W., FitzGerald, M. X., O’Connor, C. M., Russell, K. J., Henry, M., Fitzgerald, M. X., O’Connor, C. M., Kavanagh, P. V., McNamara, S. M., Feely, J., Barry, M., O’Brien, J. E., McCormick, P., Molony, C., Doyle, R. M., Walsh, J. B., Coakley, D., Codd, M. B., O’Connell, P. R., Dowey, L. C., McGlynn, H., Thurnham, D. I., Elborn, S. J., Flynn, L., Carton, J., Byrne, B., O’Farrelly, C., Kelehan, P., O’Herlihy, C., O’Hara, A. M., Moran, A. P., Orren, A., Fernie, B. A., Merry, C., Clarke, S., Courtney, G., de Gascun, C., Mulcahy, F. M., Merry, C., Ryan, M., Barry, M., Mulcahy, F. M., Merry, C., Ryan, M., Barry, M., Mulcahy, F. M., Byrne, M., Moylett, E., Murphy, H., Butler, K., Nourse, C., Thaker, H., Barry, C., Russell, J., Sheehan, G., Boyle, B., Hone, R., Conboy, B., Butler, C., Moris, D., Cormican, M., Flynn, J., McCormack, O., Corbally, N., Murray, A., Kirrane, S., O’Keane, C., Hone, R., Lynch, S. M., Cryan, B., Whyte, D., Morris, D., Butler, C., Cormican, M., Flynn, J., Corbett-Feeney, G., Murray, A., Corbally, N., Hone, R., Mackle, T., Colreavy, M., Perkins, J., Saidlear, C., Young, A., Eustace, P., Wrigley, M., Clifford, J., Waddington, J. L., Tighe, O., Croke, D. T., Drago, J., Sibley, D. R., Feely, J., Kelly, A., Carvalho, M., Hennessy, M., Kelly, M., Feely, J., Hughes, C., Hanlon, M., Feely, J., Sabra, K., Keane, T., Egan, D., Ryan, M., Maerry, C., Ryan, M., Barry, M., Mulcahy, F. M., Maerry, C., Ryan, M., Barry, M., Mulcahy, F. M., Sharma, S. C., Williams, D., Kelly, A., Carvalho, M., Feely, J., Williams, D., Kelly, A., Carvalho, M., Feely, J., Codd, M. B., Mahon, N. G., McCann, H. A., Sugrue, D. D., Sayers, G. M., Johnson, Z., McNamara, S. M., Kavanagh, P. V., and Feely, J.
- Published
- 1998
- Full Text
- View/download PDF
6. Preface
- Author
-
Harth, Andreas, Kirrane, Sabrina, Ngomo, Axel Cyrille Ngonga, Paulheim, Heiko, Rula, Anisa, Gentile, Anna Lisa, Haase, Peter, Cochez, Michael, Harth, A., Kirrane, S., Ngonga Ngomo, A.-C., Paulheim, H., Rula, A., Gentile, A.L., Haase, P., Cochez, M, Artificial intelligence, Network Institute, and Artificial Intelligence (section level)
- Published
- 2020
7. SPIRIT: A Semantic Transparency and Compliance Stack
- Author
-
Westphal, P., Javier D. Fernández, Kirrane, S., and Lehmann, J.
- Subjects
ComputingMilieux_LEGALASPECTSOFCOMPUTING - Abstract
The European General Data Protection Regulation (GDPR) sets new precedents for the processing of personal data. In this paper, we propose an architecture that provides an automated means to enable transparency with respect to personal data processing and sharing transactions and compliance checking with respect to data subject usage policies and GDPR legislative obligations.
- Published
- 2019
- Full Text
- View/download PDF
8. The Semantic Web - 17th International Conference, {ESWC} 2020, Heraklion, Crete, Greece, May 31-June 4, 2020, Proceedings
- Author
-
Andreas Harth, Sabrina Kirrane, Axel-Cyrille Ngonga Ngomo, Heiko Paulheim, Anisa Rula, Anna Lisa Gentile, Peter Haase, Michael Cochez, Harth, A, Kirrane, S, Ngonga Ngomo, A, Paulheim, H, Rula, A, Lisa Gentile, A, Haase, P, Cochez, M, Andreas Harth, Sabrina Kirrane, Axel-Cyrille Ngonga Ngomo, Heiko Paulheim, Anisa Rula, Anna Lisa Gentile, Peter Haase, Michael Cochez, Harth, A, Kirrane, S, Ngonga Ngomo, A, Paulheim, H, Rula, A, Lisa Gentile, A, Haase, P, and Cochez, M
- Published
- 2020
9. D2.5 Policy Language V2
- Author
-
Bonatti, P.A., Kirrane, S., Petrova, I., Sauro, L., and Schlehahn, E.
- Subjects
policy language - Abstract
This is the second version of the deliverable devoted to defining SPECIAL’s policy language and related vocabularies. It refines the first version by taking into account the work on the pilots and their specific policies, plus the discussion that is taking place within the DPVCG community group of W3C.The additional needs emerging from the above activities require only one structural change to SPECIAL’s language, namely, allowing object properties to be used in the vocabularies (while so far they were only applied to policies, to specify their attributes “data category”, “purpose”,“processing”, and so on). In particular, the usage policy language grammar reported in Figure 1.1 has not been changed.1The other changes concern the need for pilot-specific terms, for more general categorizations associated to GDPR’s requirements (such as distinguishing sensitive data and criminal records,for example), and for additional concepts stemming from the GDPR, such as the legal basis for processing.The novel features are discussed in Section 9. The rest of the deliverable corresponds to the first version, with the exception of a few minor corrections.
- Published
- 2018
- Full Text
- View/download PDF
10. MantisTable: A Tool for Creating Semantic Annotations on Tabular Data
- Author
-
Hitzler, P, Kirrane, S, Hartig, O, de Boer, V, Vidal, ME, Maleshkova, M, Schlobach, S, Hammar, K, Lasierra, N, Stadtm"uller, S, Hose, K, Verborgh, R, Cremaschi, M, Rula, A, Siano, A, De Paoli, F, Hitzler, P, Kirrane, S, Hartig, O, de Boer, V, Vidal, ME, Maleshkova, M, Schlobach, S, Hammar, K, Lasierra, N, Stadtm"uller, S, Hose, K, Verborgh, R, Cremaschi, M, Rula, A, Siano, A, and De Paoli, F
- Abstract
This paper describes MantisTable, an open source Semantic Table Interpretation tool, which automatically annotates tables using a Knowledge Graph. MantisTable provides a graphical interface allowing users to analyse the results of the semantic table interpretation process and validate the final annotations. The tool also provides a guided mode for viewing and editing annotations by users. Thanks to MantisTable features, it is possible to create semantic annotations and favour the publication and exchange of tabular data.
- Published
- 2019
11. Mining Scholarly Publications for Scientific Knowledge Graph Construction
- Author
-
Hitzler, P, Kirrane, S, Hartig, O, de Boer, V, Schlobach, S, Vidal, ME, Maleshkova, M, Hammar, K, Lasierra, N, Stadtmüller, S, Hose, K, Verborgh, R, Buscaldi, D, Dessì, D, Motta, E, Osborne, F, Reforgiato Recupero, D, Buscaldi D, Dessì D, Motta E, Osborne F, Reforgiato Recupero D, Hitzler, P, Kirrane, S, Hartig, O, de Boer, V, Schlobach, S, Vidal, ME, Maleshkova, M, Hammar, K, Lasierra, N, Stadtmüller, S, Hose, K, Verborgh, R, Buscaldi, D, Dessì, D, Motta, E, Osborne, F, Reforgiato Recupero, D, Buscaldi D, Dessì D, Motta E, Osborne F, and Reforgiato Recupero D
- Abstract
In this paper, we present a preliminary approach that uses a set of NLP and Deep Learning methods for extracting entities and relationships from research publications and then integrates them in a Knowledge Graph. More specifically, we (i) tackle the challenge of knowledge extraction by employing several state-of-the-art Natural Language Processing and Text Mining tools, (ii) describe an approach for integrating entities and relationships generated by these tools, and (iii) analyse an automatically generated Knowledge Graph including 10, 425 entities and 25, 655 relationships in the field of Semantic Web.
- Published
- 2019
12. Trust, Accountability, and Autonomy in Knowledge Graph-Based AI for Self-Determination
- Author
-
Ibáñez, Luis-Daniel, Domingue, John, Kirrane, Sabrina, Seneviratne, Oshani, Third, Aisling, and Vidal, Maria-Esther
- Subjects
trust ,accountability ,autonomy ,ai ,knowledge graphs ,Electronic computers. Computer science ,QA75.5-76.95 - Abstract
Knowledge Graphs (KGs) have emerged as fundamental platforms for powering intelligent decision-making and a wide range of Artificial Intelligence (AI) services across major corporations such as Google, Walmart, and AirBnb. KGs complement Machine Learning (ML) algorithms by providing data context and semantics, thereby enabling further inference and question-answering capabilities. The integration of KGs with neuronal learning (e.g., Large Language Models (LLMs)) is currently a topic of active research, commonly named neuro-symbolic AI. Despite the numerous benefits that can be accomplished with KG-based AI, its growing ubiquity within online services may result in the loss of self-determination for citizens as a fundamental societal issue. The more we rely on these technologies, which are often centralised, the less citizens will be able to determine their own destinies. To counter this threat, AI regulation, such as the European Union (EU) AI Act, is being proposed in certain regions. The regulation sets what technologists need to do, leading to questions concerning How the output of AI systems can be trusted? What is needed to ensure that the data fuelling and the inner workings of these artefacts are transparent? How can AI be made accountable for its decision-making? This paper conceptualises the foundational topics and research pillars to support KG-based AI for self-determination. Drawing upon this conceptual framework, challenges and opportunities for citizen self-determination are illustrated and analysed in a real-world scenario. As a result, we propose a research agenda aimed at accomplishing the recommended objectives.
- Published
- 2023
- Full Text
- View/download PDF
13. Modeling Social Web Privacy to Detect Perception Gaps
- Author
-
Ceolin, D., Aroyo, L.M., Duinker, J., Decker, S., d'Aquin, M., Brewster, C., Kirrane, S., Business Web and Media, Network Institute, and Intelligent Information Systems
- Published
- 2015
14. Data privacy vocabularies and controls: Semantic web for transparency and privacy
- Author
-
Bonatti, P. A., Bos, B., Decker, S., Javier D. Fernández, Kirrane, S., Peristeras, V., Polleres, A., and Wenning, R.
- Abstract
Managing Privacy and understanding the handling of personal data has turned into a fundamental right-at least for Europeans-since May 25th with the coming into force of the General Data Protection Regulation. Yet, whereas many different tools by different vendors promise companies to guarantee their compliance to GDPR in terms of consent management and keeping track of the personal data they handle in their processes, interoperability between such tools as well uniform user facing interfaces will be needed to enable true transparency, user-configurable and -manageable privacy policies and data portability (as also implicitly promised by GDPR). We argue that such interoperability can be enabled by agreed upon vocabularies and Linked Data.
15. DALICC: Alicense management framework for digital assets
- Author
-
Pellegrini, T., Havur, G., Steyskal, S., Panasiuk, O., Anna Fensel, Mireles-Chavez, V., Thurner, T., Polleres, A., Kirrane, S., and Schönhofer, A.
16. Automatic license compatibility checking
- Author
-
Havur, G., Steyskal, S., Panasiuk, O., Anna Fensel, Mireles, V., Pellegrini, T., Thurner, T., Polleres, A., and Kirrane, S.
17. DALICC: A framework for publishing and consuming data assets legally
- Author
-
Havur, G., Steyskal, S., Panasiuk, O., Anna Fensel, Mireles, V., Pellegrini, T., Thurner, T., Polleres, A., and Kirrane, S.
18. [Untitled]
- Author
-
Blomqvist, Eva, Groth, Paul, de Boer, Victor, Pellegrini, Tassilo, Alam, Mehwish, Käfer, Tobias, Kieseberg, Peter, Kirrane, Sabrina, Meroño-Peñuela, Albert, and Pandit, Harshvardhan J.
- Abstract
This open access book constitutes the refereed proceedings of the 16th International Conference on Semantic Systems, SEMANTiCS 2020, held in Amsterdam, The Netherlands, in September 2020. The conference was held virtually due to the COVID-19 pandemic.
- Full Text
- View/download PDF
19. Knowledge Graphs
- Author
-
Axel Polleres, Lukas Schmelzeisen, Axel-Cyrille Ngonga Ngomo, Roberto Navigli, Steffen Staab, Eva Blomqvist, Claudio Gutierrez, José Emilio Labra Gayo, Juan F. Sequeda, Sabrina Kirrane, Aidan Hogan, Sabbir M. Rashid, Michael Cochez, Claudia d'Amato, Antoine Zimmermann, Sebastian Neumaier, Gerard de Melo, Anisa Rula, Millennium Institute for Foundational Research on Data (IMFD), Pontificia Universidad Católica de Chile (UC), Linköping University (LIU), Vrije Universiteit Brussel (VUB), Discovery Lab, Polytechnic University of Bari, Rutgers University System (Rutgers), WU Vienna, Universidad de Oviedo [Oviedo], Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Universität Paderborn (UPB), Tetherless World Constellation, Rensselaer Polytechnic Institute (RPI), University of Milano, University of Bonn, Universität Stuttgart [Stuttgart], data.world, École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT), Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), Institut Henri Fayol (FAYOL-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Département Informatique et systèmes intelligents ( FAYOL-ENSMSE), Ecole Nationale Supérieure des Mines de St Etienne, Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Universität Bonn = University of Bonn, Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE), Department of Computer and Information Science - Linköping University, Computer Systems Section - Vrije Universiteit Amsterdam, Vrije Universiteit Amsterdam [Amsterdam] (VU), University of Bari Aldo Moro (UNIBA), Department of Informatics and System Sciences (Sapienza University of Rome), Università degli Studi di Milano-Bicocca [Milano] (UNIMIB), Universität Koblenz-Landau [Koblenz], University of Southampton, Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Département Informatique et systèmes intelligents (FAYOL-ENSMSE), Mines Saint-Etienne, Breuil, Florent, Hogan, A, Blomqvist, E, Cochez, M, D'Amato, C, Melo, G, Gutierrez, C, Kirrane, S, Gayo, J, Navigli, R, Neumaier, S, Ngomo, A, Polleres, A, Rashid, S, Rula, A, Schmelzeisen, L, Sequeda, J, Staab, S, and Zimmermann, A
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Graph databases ,Theoretical computer science ,Computer science ,505002 Data protection ,Ontologie ,02 engineering and technology ,computer.software_genre ,Data modeling ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Machine Learning (cs.LG) ,102001 Artificial intelligence ,0202 electrical engineering, electronic engineering, information engineering ,Graph query language ,Graph algorithms ,102015 Informationssysteme ,Computer Sciences ,Graph algorithm ,Shape ,Contrast (statistics) ,Databases (cs.DB) ,Graph neural network ,Embeddings ,Graph (abstract data type) ,Graph neural networks ,Graph query languages ,Knowledge graphs ,Ontologies ,Rule mining ,Shapes ,020201 artificial intelligence & image processing ,[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation ,Embedding ,[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,General Computer Science ,Computer Science - Artificial Intelligence ,[INFO] Computer Science [cs] ,Theoretical Computer Science ,502050 Wirtschaftsinformatik ,Computer Science - Databases ,020204 information systems ,505002 Datenschutz ,Knowledge graphs, graph databases, graph query languages, shapes, ontologies, graph algorithms, embeddings, graph neural networks, rule mining ,102015 Information systems ,[INFO]Computer Science [cs] ,graph databases ,graph query languages ,shapes ,ontologies ,graph algorithms ,embeddings ,graph neural networks ,rule mining ,Knowledge graph ,Graph database ,502050 Business informatics ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Datavetenskap (datalogi) ,Artificial Intelligence (cs.AI) ,computer - Abstract
In this paper we provide a comprehensive introduction to knowledge graphs, which have recently garnered significant attention from both industry and academia in scenarios that require exploiting diverse, dynamic, large-scale collections of data. After some opening remarks, we motivate and contrast various graph-based data models and query languages that are used for knowledge graphs. We discuss the roles of schema, identity, and context in knowledge graphs. We explain how knowledge can be represented and extracted using a combination of deductive and inductive techniques. We summarise methods for the creation, enrichment, quality assessment, refinement, and publication of knowledge graphs. We provide an overview of prominent open knowledge graphs and enterprise knowledge graphs, their applications, and how they use the aforementioned techniques. We conclude with high-level future research directions for knowledge graphs., Comment: Revision from v5: Correcting errata from previous version for entailment/models, and some other minor typos
- Published
- 2020
- Full Text
- View/download PDF
20. A decade of Semantic Web research through the lenses of a mixed methods approach
- Author
-
Axel Polleres, Enrico Motta, Sabrina Kirrane, Cécile Robin, Paul Buitelaar, Marta Sabou, Francesco Osborne, Javier D. Fernández, Kirrane, S, Sabou, M, Fernandez, J, Osborne, F, Robin, C, Buitelaar, P, Motta, E, and Polleres, A
- Subjects
Relation (database) ,Computer Networks and Communications ,Computer science ,Research Topics ,02 engineering and technology ,research trend ,01 natural sciences ,020204 information systems ,0202 electrical engineering, electronic engineering, information engineering ,scientometric ,Semantic Web ,Research topic ,010401 analytical chemistry ,Scientometrics ,Top-down and bottom-up design ,Linked data ,Data science ,0104 chemical sciences ,Computer Science Applications ,Identification (information) ,Quantitative analysis (finance) ,Linked Data ,Strengths and weaknesses ,Research Trends ,Information Systems - Abstract
The identification of research topics and trends is an important scientometric activity, as it can help guide the direction of future research. In the Semantic Web area, initially topic and trend detection was primarily performed through qualitative, top-down style approaches, that rely on expert knowledge. More recently, data-driven, bottom-up approaches have been proposed that offer a quantitative analysis of the evolution of a research domain. In this paper, we aim to provide a broader and more complete picture of Semantic Web topics and trends by adopting a mixed methods methodology, which allows for the combined use of both qualitative and quantitative approaches. Concretely, we build on a qualitative analysis of the main seminal papers, which adopt a top-down approach, and on quantitative results derived with three bottom-up data-driven approaches (Rexplore, Saffron, PoolParty), on a corpus of Semantic Web papers published between 2006 and 2015. In this process, we both use the latter for “fact-checking” on the former and also to derive key findings in relation to the strengths and weaknesses of top-down and bottom-up approaches to research topic identification. Although we provide a detailed study on the past decade of Semantic Web research, the findings and the methodology are relevant not only for our community but beyond the area of the Semantic Web to other research fields as well.
- Published
- 2020
21. REWARD : ontology for reward schemes
- Author
-
Ioannis Chrysakis, Ruben Verborgh, Theodore Patkos, Anastasia Dimou, Giorgos Flouris, Harth, A., Kirrane, S., Ngonga Ngomo, A.C., Paulheim, H., Rula, A., Gentile, A.L., Haase, P., and Cochez, M.
- Subjects
Technology and Engineering ,Computer science ,business.industry ,05 social sciences ,02 engineering and technology ,Ontology (information science) ,Service provider ,Crowdsourcing ,Data science ,Domain (software engineering) ,Terminology ,020204 information systems ,Human resource management ,0502 economics and business ,0202 electrical engineering, electronic engineering, information engineering ,business ,050203 business & management ,ComputingMilieux_MISCELLANEOUS - Abstract
Rewarding people is common in several contexts, such as human resource management and crowdsourcing applications. However, designing a reward strategy is not straightforward, as it requires considering different parameters. These parameters include, for example, management of rewarding tasks and identifying critical features, such as the type of rewards and possibilities such as gamification. Moreover, the lack of a common terminology introduces the problem of communication among experts and prevents integration among different reward strategies. An ontology can offer a common understanding among domain experts and flexible management of rewarding parameters. Apart from that, an ontology can also help in the interrelationship and integration between different reward schemes employed by different service providers. In this paper, we present REWARD, a general-purpose ontology for capturing various common features of diverse reward schemes. This ontology is a result of the CAP-A European project and its application to the crowdsourcing domain, but it is designed to cover different needs and domains.
- Published
- 2020
22. Big Data and Analytics in the Age of the GDPR
- Author
-
Piero A. Bonatti, Sabrina Kirrane, Bonatti, P. A., and Kirrane, S.
- Subjects
Usage Control Policies ,Data processing ,Personal Data Processing ,Computer science ,business.industry ,Big data ,Anonymization ,02 engineering and technology ,Explicit consent ,Analytic ,Data science ,Compliance (psychology) ,Exploratory data analysis ,Analytics ,020204 information systems ,General Data Protection Regulation ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,GDPR ,business - Abstract
The new European General Data Protection Regulation places stringent restrictions on the processing of personally identifiable data. The GDPR does not only affect European companies, as the regulation applies to all the organizations that track or provide services to European citizens. Free exploratory data analysis is permitted only on anonymous data, at the cost of some legal risks. We argue that for the other kinds of personal data processing, the most flexible and safe legal basis is explicit consent. We illustrate the approach to consent management and compliance with the GDPR being developed by the European H2020 project SPECIAL, and highlight some related big data aspects.
- Published
- 2019
23. Mining Scholarly Publications for Scientific Knowledge Graph Construction
- Author
-
Davide Buscaldi, Enrico Motta, Francesco Osborne, Diego Reforgiato Recupero, Danilo Dessì, Hitzler, P, Kirrane, S, Hartig, O, de Boer, V, Schlobach, S, Vidal, ME, Maleshkova, M, Hammar, K, Lasierra, N, Stadtmüller, S, Hose, K, Verborgh, R, Buscaldi, D, Dessì, D, Motta, E, Osborne, F, and Reforgiato Recupero, D
- Subjects
Sociology of scientific knowledge ,Information retrieval ,Text mining ,Computer science ,business.industry ,Deep learning ,010401 analytical chemistry ,020207 software engineering ,02 engineering and technology ,01 natural sciences ,0104 chemical sciences ,Knowledge extraction ,Knowledge graph ,Knowledge representation ,Learning system ,0202 electrical engineering, electronic engineering, information engineering ,Graph (abstract data type) ,Artificial intelligence ,business ,Semantic Web ,Natural language processing system - Abstract
In this paper, we present a preliminary approach that uses a set of NLP and Deep Learning methods for extracting entities and relationships from research publications and then integrates them in a Knowledge Graph. More specifically, we (i) tackle the challenge of knowledge extraction by employing several state-of-the-art Natural Language Processing and Text Mining tools, (ii) describe an approach for integrating entities and relationships generated by these tools, and (iii) analyse an automatically generated Knowledge Graph including 10,425 entities and 25,655 relationships in the field of Semantic Web.
- Published
- 2019
- Full Text
- View/download PDF
24. MantisTable: A Tool for Creating Semantic Annotations on Tabular Data
- Author
-
Anisa Rula, Marco Cremaschi, Alessandra Siano, Flavio De Paoli, Hitzler, P, Kirrane, S, Hartig, O, de Boer, V, Vidal, ME, Maleshkova, M, Schlobach, S, Hammar, K, Lasierra, N, Stadtm'uller, S, Hose, K, Verborgh, R, Cremaschi, M, Rula, A, Siano, A, and De Paoli, F
- Subjects
Knowledge Graph ,Computer science ,Semantic Table Interpretation ,Semantic Web ,Ontology ,Linked Data ,Semantic annotations ,Ontology (information science) ,Table (information) ,01 natural sciences ,Mode (computer interface) ,0501 psychology and cognitive sciences ,Graphical user interface ,Interpretation (logic) ,Information retrieval ,business.industry ,010401 analytical chemistry ,05 social sciences ,Linked data ,Semantic Web, Ontology, Linked Data, Knowledge Graph, Semantic Table Interpretation, Semantic annotations ,0104 chemical sciences ,Knowledge graph ,business ,050104 developmental & child psychology - Abstract
This paper describes MantisTable, an open source Semantic Table Interpretation tool, which automatically annotates tables using a Knowledge Graph. MantisTable provides a graphical interface allowing users to analyse the results of the semantic table interpretation process and validate the final annotations. The tool also provides a guided mode for viewing and editing annotations by users. Thanks to MantisTable features, it is possible to create semantic annotations and favour the publication and exchange of tabular data.
- Published
- 2019
25. SAD Generator: Eating Our Own Dog Food to Generate KGs and Websites for Academic Events
- Author
-
Anastasia Dimou, Freddy Priyatna, Juan F. Sequeda, Pieter Heyvaert, David Chaves-Fraga, Hitzler, P, Kirrane, S, Hartig, O, De Boer, V, Vidal, ME, Maleshkova, M, Schlobach, S, Hammar, K, Lasierra, N, Stadtmuller, S, Hose, K, and Verborgh, R
- Subjects
Technology and Engineering ,Web development ,Computer science ,02 engineering and technology ,SPARQL ,01 natural sciences ,RDF ,World Wide Web ,0202 electrical engineering, electronic engineering, information engineering ,Dissemination ,Semantic Web ,GraphQL ,Generator (computer programming) ,Event (computing) ,business.industry ,010401 analytical chemistry ,020207 software engineering ,computer.file_format ,RML ,0104 chemical sciences ,YARRRML ,Publishing ,business ,computer - Abstract
Nowadays, a website is used to disseminate information about an event (e.g., location, dates, time). In the academic world, it is common to develop a website for an event, such as workshops or conferences. Aligning with the “Web of data”, its dissemination should also happen by publishing the information of the event as a knowledge graph, e.g., via RDF that is available through a SPARQL endpoint or a Triple Patterns Fragment server. However, the RDF generation and website development is not always straightforward and can be time-consuming. In this demo, we present the Semantic Academic-event Dissemination (SAD) Generator for generating RDF and websites for academic events. The generator allows to (i) annotate CSV files that contain academic event data and use the annotations to generate a knowledge graph and (ii) generate a website with the information for the event querying the knowledge graph. We used our generator to generate the RDF and website of a real workshop, the KGB workshop. It can be easily reused by organizers of other academic events by simply providing the event’s information in CSV files.
- Published
- 2019
- Full Text
- View/download PDF
26. A scalable consent, transparency and compliance architecture
- Author
-
Sabrina Kirrane, Wouter Dullaert, Uros Milosevic, Philip Raschke, Olha Drozd, Javier D. Fernández, Rigo Wenning, Piero A. Bonatti, Axel Polleres, Kirrane, S., Fernandez, J. D., Dullaert, W., Milosevic, U., Polleres, A., Bonatti, P. A., Wenning, R., Drozd, O., and Raschke, P.
- Subjects
business.industry ,Computer science ,Control (management) ,Internet privacy ,ComputingMilieux_LEGALASPECTSOFCOMPUTING ,02 engineering and technology ,Transparency (behavior) ,Compliance (psychology) ,020204 information systems ,General Data Protection Regulation ,Scalability ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Architecture ,business - Abstract
In this demo we present the SPECIAL consent, transparency and compliance system. The objective of the system is to afford data subjects more control over personal data processing and sharing, while at the same time enabling data controllers and processors to comply with consent and transparency obligations mandated by the European General Data Protection Regulation. A short promotional video can be found at https://purl.com/specialprivacy/demos/ESWC2018.
- Published
- 2018
27. Transparent Personal Data Processing: The Road Ahead
- Author
-
Axel Polleres, Piero A. Bonatti, Sabrina Kirrane, Rigo Wenning, Bonatti, P., Kirrane, S., Polleres, A., and Wenning, R.
- Subjects
Data processing ,Computer science ,business.industry ,Logging ,02 engineering and technology ,Explicit consent ,Computer security ,computer.software_genre ,Transparency (behavior) ,020204 information systems ,General Data Protection Regulation ,0202 electrical engineering, electronic engineering, information engineering ,Erasure ,Position paper ,020201 artificial intelligence & image processing ,Architecture ,Telecommunications ,business ,computer - Abstract
The European General Data Protection Regulation defines a set of obligations for personal data controllers and processors. Primary obligations include: obtaining explicit consent from the data subject for the processing of personal data, providing full transparency with respect to the processing, and enabling data rectification and erasure (albeit only in certain circumstances). At the core of any transparency architecture is the logging of events in relation to the processing and sharing of personal data. The logs should enable verification that data processors abide by the access and usage control policies that have been associated with the data based on the data subject's consent and the applicable regulations. In this position paper, we: (i) identify the requirements that need to be satisfied by such a transparency architecture, (ii) examine the suitability of existing logging mechanisms in light of said requirements, and (iii) present a number of open challenges and opportunities.
- Published
- 2017
- Full Text
- View/download PDF
28. Towards search on encrypted graph data
- Author
-
Kasten, Andreas, Scherp, Ansgar, Armknecht, Frederik, Krause, Matthias, Kirrane, S, Hendler, J, and Decker, S
- Abstract
We present an approach where one can execute user defined SPARQL queries on encrypted graph data. The graph data is only partially revealed to those users authorised for executing a query. The approach is based on eight different types of queries, corresponding to the different binding possibilities in a single SPARQL triple pattern. The allowed queries can be further restricted by the owner of the graph data, e. g., through pre-defining a specific predicate or object. Single triple patterns can be combined to query group patterns as they can be stated in SPARQL queries and allow to execute a wide range of SELECT and ASK queries.
- Published
- 2014
29. Towards a configurable framework for iterative signing of distributed graph data
- Author
-
Kasten, Andreas, Scherp, Ansgar, Decker, S, Hendler, J, and Kirrane, S
- Subjects
Computer Science::Digital Libraries ,MathematicsofComputing_DISCRETEMATHEMATICS - Abstract
When publishing graph data on the web such as vocabularies using RDF(S) or OWL, one has only limited means to verify its authenticity and integrity. Today’s approaches require a high signature overhead and do not allow for an iterative signing of graph data. This paper presents a configurable framework for signing arbitrary graph data provided in RDF(S), Named Graphs, or OWL. Our framework supports signing graph data at different levels of granularity: minimum self-contained graphs (MSG), sets of MSGs, and entire graphs. It supports an iterative signing of graph data, e. g., when different parties provide different parts of a common graph, and allows for signing multiple graphs. Both can be done with a constant, low overhead for the signature graph, even when iteratively signing graph data.
- Published
- 2013
30. HLA antigens in the pseudoexfoliation syndrome.
- Author
-
Eustace P, Joyce PD, McAuliffe-Curtin D, and Kirrane S
- Subjects
- Humans, Lens, Crystalline, Syndrome, Eye Diseases immunology, HLA Antigens analysis
- Published
- 1980
31. T helper/suppressor ratio and acute attacks in multiple sclerosis.
- Author
-
O'Keeffe F, Staunton H, Woods R, and Kirrane S
- Subjects
- Acute Disease, Adult, Female, Humans, Longitudinal Studies, Middle Aged, Multiple Sclerosis immunology, T-Lymphocytes, Helper-Inducer classification, T-Lymphocytes, Regulatory classification
- Published
- 1984
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.